REDOX Balance in Oligodendrocytes Is Important for Zebrafish Visual System Regeneration
Abstract
:1. Introduction
2. Methods
2.1. Animals
2.2. Optic Nerve Crush
2.3. Melatonin Treatment
2.4. Brain Dissection and Tissue Processing
2.5. Probes and Flow Cytometry
2.6. Histochemistry
2.7. Immunostaining
2.8. Western Blot
2.9. Imaging and Quantification
2.10. Statistics
3. Results
3.1. ROS Are Produced by sox10:EGFP Oligodendrocytes after Optic Nerve Crushing
3.2. Melatonin Does Not Always Exert an Antioxidant Effect in sox10:EGFP Oligodendrocytes
3.3. Oligodendrocytes and Their Mitochondrial Population Are Altered during Regeneration
3.4. Exposure to Melatonin Induces Changes in the OT Undergoing Regeneration
3.5. Melatonin Treatment Hinders Regeneration
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghaddar, B.; Lübke, L.; Couret, D.; Rastegar, S.; Diotel, N. Cellular Mechanisms Participating in Brain Repair of Adult Zebrafish and Mammals after Injury. Cells 2021, 10, 391. [Google Scholar] [CrossRef] [PubMed]
- Soltan, A.; Barrett, J.M.; Maaskant, P.; Armstrong, N.; Al-Atabany, W.; Chaudet, L.; Neil, M.; Sernagor, E.; Degenaar, P. A head mounted device stimulator for optogenetic retinal prosthesis. J. Neural Eng. 2018, 15, 065002. [Google Scholar] [CrossRef] [PubMed]
- Allsopp, T.E.; Ebneth, A.; Cabrera-Socorro, A. Deploying human pluripotent stem cells to treat central nervous system disorders: Facts, challenges and realising the potential. Stem Cell Res. 2019, 41, 101581. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Li, S.; Li, X.J.; Yang, S. CRISPR-Based Genome-Editing Tools for Huntington’s Disease Research and Therapy. Neurosci. Bull. 2022, 38, 1397–1408. [Google Scholar] [CrossRef]
- Masson, M.A.; Nait-Oumesmar, B. Emerging concepts in oligodendrocyte and myelin formation, inputs from the zebrafish model. Glia 2023, 71, 1147–1163. [Google Scholar] [CrossRef]
- Gonzalez, D.; Allende, M.L. Current Advances in Comprehending Dynamics of Regenerating Axons and Axon-Glia Interactions after Peripheral Nerve Injury in Zebrafish. Int. J. Mol. Sci. 2021, 22, 2484. [Google Scholar] [CrossRef]
- Derrick, C.J.; Santos-Ledo, A.; Eley, L.; Henderson, D.; Chaudhry, B. Sequential action of JNK genes establishes the embryonic left-right axis. Development 2022, 149, dev200136. [Google Scholar] [CrossRef]
- Wang, B.J.; Her, G.M.; Hu, M.-K.; Chen, Y.-W.; Tung, Y.-T.; Wu, P.-Y.; Hsu, W.-M.; Lee, H.; Jin, L.-W.; Hwang, S.-P.L.; et al. ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2017, 114, E3129–E3138. [Google Scholar] [CrossRef]
- Catalani, E.; Cherubini, A.; Del Quondam, S.; Cervia, D. Regenerative Strategies for Retinal Neurons: Novel Insights in Non-Mammalian Model Organisms. Int. J. Mol. Sci. 2022, 23, 8180. [Google Scholar] [CrossRef]
- Stella, S.L.; Geathers, J.S.; Weber, S.R.; Grillo, M.A.; Barber, A.J.; Sundstrom, J.M.; Grillo, S.L. Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells 2021, 10, 633. [Google Scholar] [CrossRef]
- Jurisch-Yaksi, N.; Yaksi, E.; Kizil, C. Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 2020, 68, 2451–2470. [Google Scholar] [CrossRef]
- Zhou, L.; McAdow, A.R.; Yamada, H.; Burris, B.; Klatt Shaw, D.K.; Oonk, K.; Poss, K.D.; Mokalled, M.H. Progenitor-derived glia are required for spinal cord regeneration in zebrafish. Development 2023, 150, dev201162. [Google Scholar] [CrossRef] [PubMed]
- Duncan, I.D.; Radcliff, A.B.; Heidari, M.; Kidd, G.; August, B.K.; Wierenga, L.A. The adult oligodendrocyte can participate in remyelination. Proc. Natl. Acad. Sci. USA 2018, 115, E11807–E11816. [Google Scholar] [CrossRef] [PubMed]
- Neely, S.A.; Williamson, J.; Klingseisen, A.; Zoupi, L.; Early, J.; Williams, A.C.; Lyons, D.A. New oligodendrocytes exhibit more abundant and accurate myelin regeneration than those that survive demyelination. Nat. Neurosci. 2022, 25, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.W. Macrophage-Neuroglia Interactions in Promoting Neuronal Regeneration in Zebrafish. Int. J. Mol. Sci. 2023, 24, 6483. [Google Scholar] [CrossRef]
- Thornton, M.A.; Hughes, E.G. Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular signaling. Neurosci. Lett. 2020, 727, 134916. [Google Scholar] [CrossRef]
- Olguín-Albuerne, M.; Morán, J. Redox Signaling Mechanisms in Nervous System Development. Antioxid. Redox Signal. 2018, 28, 1603–1625. [Google Scholar] [CrossRef]
- Herb, M.; Gluschko, A.; Schramm, M. Reactive Oxygen Species: Not Omnipresent but Important in Many Locations. Front. Cell Dev. Biol. 2021, 9, 716406. [Google Scholar] [CrossRef]
- Pérez Estrada, C.; Covacu, R.; Sankavaram, S.R.; Svensson, M.; Brundin, L. Oxidative stress increases neurogenesis and oligodendrogenesis in adult neural progenitor cells. Stem Cells Dev. 2014, 23, 2311–2327. [Google Scholar] [CrossRef]
- Gauron, C.; Rampon, C.; Bouzaffour, M.; Ipendey, E.; Teillon, J.; Volovitch, M.; Vriz, S. Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Sci. Rep. 2013, 3, 2084. [Google Scholar] [CrossRef]
- Wu, Y.; Lim, Y.-W.; Stroud, D.A.; Martel, N.; Hall, T.E.; Lo, H.P.; Ferguson, C.; Ryan, M.T.; McMahon, K.-A.; Parton, R.G. Caveolae sense oxidative stress through membrane lipid peroxidation and cytosolic release of CAVIN1 to regulate NRF2. Dev. Cell 2023, 58, 376–397.e4. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.K.; Sahu, M.R.; Mondal, A.C. Induction of oxidative stress and apoptosis in the injured brain: Potential relevance to brain regeneration in zebrafish. Mol. Biol. Rep. 2021, 48, 5099–5108. [Google Scholar] [CrossRef] [PubMed]
- Spaas, J.; van Veggel, L.; Schepers, M.; Tiane, A.; van Horssen, J.; Wilson, D.M.; Moya, P.R.; Piccart, E.; Hellings, N.; Eijnde, B.O.; et al. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol. Life Sci. 2021, 78, 4615–4637. [Google Scholar] [CrossRef] [PubMed]
- Santos-Ledo, A.; de Luxán-Delgado, B.; Caballero, B.; Potes, Y.; Rodríguez-González, S.M.; Boga, J.A.; Coto-Montes, A.; García-Macia, M. Melatonin Ameliorates Autophagy Impairment in a Metabolic Syndrome Model. Antioxidants 2021, 10, 796. [Google Scholar] [CrossRef]
- Aranda-Martínez, P.; Fernández-Martínez, J.; Ramírez-Casas, Y.; Guerra-Librero, A.; Rodríguez-Santana, C.; Escames, G.; Acuña-Castroviejo, D. The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int. J. Mol. Sci. 2022, 23, 7438. [Google Scholar] [CrossRef]
- Giacomini, A.C.V.V.; Teixeira, K.H.; Marcon, L.; Scolari, N.; Bueno, B.W.; Genario, R.; de Abreu, N.S.; Demin, K.A.; Galstyan, D.S.; Kalueff, A.V.; et al. Melatonin treatment reverses cognitive and endocrine deficits evoked by a 24-h light exposure in adult zebrafish. Neurosci. Lett. 2020, 733, 135073. [Google Scholar] [CrossRef]
- Carney, T.J.; Dutton, K.A.; Greenhill, E.; Delfino-Machín, M.; Dufourcq, P.; Blader, P.; Kelsh, R.N. A direct role for Sox10 in specification of neural crest-derived sensory neurons. Development 2006, 133, 4619–4630. [Google Scholar] [CrossRef]
- Blasky, A.J.; Pan, L.; Moens, C.B.; Appel, B. Pard3 regulates contact between neural crest cells and the timing of Schwann cell differentiation but is not essential for neural crest migration or myelination. Dev. Dyn. 2014, 243, 1511–1523. [Google Scholar] [CrossRef]
- Hughes, A.N.; Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 2020, 23, 1055–1066. [Google Scholar] [CrossRef]
- Santos-Ledo, A.; Pérez-Montes, C.; DeOliveira-Mello, L.; Arévalo, R.; Velasco, A. Oligodendrocyte origin and development in the zebrafish visual system. J. Comp. Neurol. 2023, 531, 515–527. [Google Scholar] [CrossRef]
- Xiao, Y.; Petrucco, L.; Hoodless, L.J.; Portugues, R.; Czopka, T. Oligodendrocyte precursor cells sculpt the visual system by regulating axonal remodeling. Nat. Neurosci. 2022, 25, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Londraville, R.L. Using the adult zebrafish visual system to study cadherin-2 expression during central nervous system regeneration. Methods Cell Sci. 2003, 25, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, A.; Hassan, M. Stability of melatonin in aqueous solution. J. Pineal Res. 1995, 18, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Morant-Ferrando, B.; Jimenez-Blasco, D.; Alonso-Batan, P.; Agulla, J.; Lapresa, R.; Garcia-Rodriguez, D.; Yunta-Sanchez, S.; Lopez-Fabuel, I.; Fernandez, E.; Carmeliet, P.; et al. Fatty acid oxidation organizes mitochondrial supercomplexes to sustain astrocytic ROS and cognition. Nat. Metab. 2023, 5, 1290–1302. [Google Scholar] [CrossRef] [PubMed]
- Darvesh, S.; MacDonald, S.E.; Losier, A.M.; Martin, E.; Hopkins, D.A.; Armour, J.A. Cholinesterases in cardiac ganglia and modulation of canine intrinsic cardiac neuronal activity. J. Auton. Nerv. Syst. 1998, 71, 75–84. [Google Scholar] [CrossRef]
- Beccari, S.; Sierra-Torre, V.; Valero, J.; Pereira-Iglesias, M.; García-Zaballa, M.; Soria, F.N.; De Las Heras-Garcia, L.; Carretero-Guillen, A.; Capetillo-Zarate, E.; Domercq, M.; et al. Microglial phagocytosis dysfunction in stroke is driven by energy depletion and induction of autophagy. Autophagy 2023, 19, 1952–1981. [Google Scholar] [CrossRef]
- Corbo, C.P.; Othman, N.A.; Gutkin, M.C.; Alonso, A.e.C.; Fulop, Z.L. Use of different morphological techniques to analyze the cellular composition of the adult zebrafish optic tectum. Microsc. Res. Tech. 2012, 75, 325–333. [Google Scholar] [CrossRef]
- Karaduman, A.; Karoglu-Eravsar, E.T.; Kaya, U.; Aydin, A.; Adams, M.M.; Kafaligonul, H. The optomotor response of aging zebrafish reveals a complex relationship between visual motion characteristics and cholinergic system. Neurobiol. Aging 2021, 98, 21–32. [Google Scholar] [CrossRef]
- Santos-Ledo, A.; Washer, S.; Dhanaseelan, T.; Eley, L.; Alqatani, H.; Chrystal, P.W.; Papoutsi, T.; Henderson, D.J.; Chaudhry, B. Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genet. 2020, 16, e1008782. [Google Scholar] [CrossRef]
- Ishida, T.; Nakajima, T.; Kudo, A.; Kawakami, A. Phosphorylation of Junb family proteins by the Jun N-terminal kinase supports tissue regeneration in zebrafish. Dev. Biol. 2010, 340, 468–479. [Google Scholar] [CrossRef]
- Love, N.R.; Chen, Y.; Ishibashi, S.; Kritsiligkou, P.; Lea, R.; Koh, Y.; Gallop, J.L.; Dorey, K.; Amaya, E. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat. Cell Biol. 2013, 15, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.V.; Willoughby, P.M.; Bruce, A.E.E.; Fernandez-Gonzalez, R. Oxidative Stress Orchestrates Cell Polarity to Promote Embryonic Wound Healing. Dev. Cell 2018, 47, 377–387.e4. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Chisholm, A.D. C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev. Cell 2014, 31, 48–60. [Google Scholar] [CrossRef]
- Narra, S.S.; Rondeau, P.; Fernezelian, D.; Gence, L.; Ghaddar, B.; Bourdon, E.; d’Hellencourt, C.L.; Rastegar, S.; Diotel, N. Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair. J. Comp. Neurol. 2023, 531, 238–255. [Google Scholar] [CrossRef]
- Smith, J.; Ladi, E.; Mayer-Proschel, M.; Noble, M. Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc. Natl. Acad. Sci. USA 2000, 97, 10032–10037. [Google Scholar] [CrossRef]
- Chang, J.Y.; Yu, F.; Shi, L.; Ko, M.L.; Ko, G.Y. Melatonin Affects Mitochondrial Fission/Fusion Dynamics in the Diabetic Retina. J. Diabetes Res. 2019, 2019, 8463125. [Google Scholar] [CrossRef]
- Laste, G.; Ripoll Rozisky, J.; Caumo, W.; Lucena da Silva Torres, I. Short- but not long-term melatonin administration reduces central levels of brain-derived neurotrophic factor in rats with inflammatory pain. Neuroimmunomodulation 2015, 22, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Olivier, P.; Fontaine, R.H.; Loron, G.; Van Steenwinckel, J.; Biran, V.; Massonneau, V.; Kaindl, A.; Dalous, J.; Charriaut-Marlangue, C.; Aigrot, M.-S.; et al. Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS ONE 2009, 4, e7128. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Z.; Wang, H.; Zhang, D.; Han, T.; Chen, H.; Chen, J.; Chen, Z.; Xie, Y.; Wang, L.; et al. Melatonin promotes peripheral nerve repair through Parkin-mediated mitophagy. Free Radic. Biol. Med. 2022, 185, 52–66. [Google Scholar] [CrossRef]
- Sajedin, A.; Menhaj, M.B.; Vahabie, A.H.; Panzeri, S.; Esteky, H. Cholinergic Modulation Promotes Attentional Modulation in Primary Visual Cortex—A Modeling Study. Sci. Rep. 2019, 9, 20186. [Google Scholar] [CrossRef]
- Issac, P.K.; Guru, A.; Velayutham, M.; Pachaiappan, R.; Arasu, M.V.; Al-Dhabi, N.A.; Choi, K.C.; Harikrishnan, R.; Arockiaraj, J. Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sci. 2021, 283, 119864. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.I.; Korde, D.S.; Humpel, C. Melatonin Supports the Survival of Cholinergic Neurons in Organotypic Brain Slices of the Basal Nucleus of Meynert. Pharmacology 2023, 108, 204–212. [Google Scholar] [CrossRef]
- Chen, B.H.; Park, J.H.; Lee, T.-K.; Song, M.; Kim, H.; Lee, J.C.; Kim, Y.-M.; Lee, C.-H.; Hwang, I.K.; Kang, I.J.; et al. Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus. Chem. Biol. Interact. 2018, 285, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Albazal, A.; Delshad, A.A.; Roghani, M. Melatonin reverses cognitive deficits in streptozotocin-induced type 1 diabetes in the rat through attenuation of oxidative stress and inflammation. J. Chem. Neuroanat. 2021, 112, 101902. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Cheng, M.; Guo, J.; Cao, D.; Luo, J.; Wan, Y.; Fang, Y.; Jin, Y.; Xie, S.-S.; Liu, J. Dual functional antioxidant and butyrylcholinesterase inhibitors for the treatment of Alzheimer’s disease: Design, synthesis and evaluation of novel melatonin-alkylbenzylamine hybrids. Bioorg. Med. Chem. 2023, 78, 117146. [Google Scholar] [CrossRef]
- Harper, S.J.; Saporito, M.S.; Hewson, L.; Young, L.; Smith, D.; Rigby, M.; Jackson, P.; Curtis, N.; Swain, C.; Hefti, F.; et al. CEP-1347 increases ChAT activity in culture and promotes cholinergic neurone survival following fimbria-fornix lesion. Neuroreport 2000, 11, 2271–2276. [Google Scholar] [CrossRef]
- Liang, X.; Nagai, A.; Terashima, M.; Sheikh, A.M.; Shiota, Y.; Mitaki, S.; Kim, S.U.; Yamaguchi, S. Cystatin C induces apoptosis and tyrosine hydroxylase gene expression through JNK-dependent pathway in neuronal cells. Neurosci. Lett. 2011, 496, 100–105. [Google Scholar] [CrossRef]
- Santabárbara-Ruiz, P.; López-Santillán, M.; Martínez-Rodríguez, I.; Binagui-Casas, A.; Pérez, L.; Milán, M.; Corominas, M.; Serras, F. ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration. PLoS Genet. 2015, 11, e1005595. [Google Scholar] [CrossRef]
- Canedo-Antelo, M.; Serrano, M.P.; Manterola, A.; Ruiz, A.; Llavero, F.; Mato, S.; Zugaza, J.L.; Pérez-Cerdá, F.; Matute, C.; Sánchez-Gómez, M.V. Inhibition of Casein Kinase 2 Protects Oligodendrocytes from Excitotoxicity by Attenuating JNK/p53 Signaling Cascade. Front. Mol. Neurosci. 2018, 11, 333. [Google Scholar] [CrossRef]
- Breton, J.M.; Long, K.L.P.; Barraza, M.K.; Perloff, O.S.; Kaufer, D. Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair. Biomolecules 2021, 11, 290. [Google Scholar] [CrossRef]
- Klymenko, A.; Lutz, D. Melatonin signalling in Schwann cells during neuroregeneration. Front. Cell Dev. Biol. 2022, 10, 999322. [Google Scholar] [CrossRef]
- Ghareghani, M.; Scavo, L.; Jand, Y.; Farhadi, N.; Sadeghi, H.; Ghanbari, A.; Mondello, S.; Arnoult, D.; Gharaghani, S.; Zibara, K. Melatonin Therapy Modulates Cerebral Metabolism and Enhances Remyelination by Increasing PDK4 in a Mouse Model of Multiple Sclerosis. Front. Pharmacol. 2019, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Ariyannur, P.S.; Ribeiro, R.; Tanaka, M.; Moffett, J.R.; Kirmani, B.F.; Namboodiri, A.M.A.; Zhang, Y. Efficacy of N-Acetylserotonin and Melatonin in the EAE Model of Multiple Sclerosis. J. Neuroimmune Pharmacol. 2016, 11, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Tiong, Y.L.; Ng, K.Y.; Koh, R.Y.; Ponnudurai, G.; Chye, S.M. Melatonin Prevents Oxidative Stress-Induced Mitochondrial Dysfunction and Apoptosis in High Glucose-Treated Schwann Cells via Upregulation of Bcl2, NF-κB, mTOR, Wnt Signalling Pathways. Antioxidants 2019, 8, 198. [Google Scholar] [CrossRef] [PubMed]
- Duregotti, E.; Negro, S.; Scorzeto, M.; Zornetta, I.; Dickinson, B.C.; Chang, C.J.; Montecucco, C.; Rigoni, M. Mitochondrial alarmins released by degenerating motor axon terminals activate perisynaptic Schwann cells. Proc. Natl. Acad. Sci. USA 2015, 112, E497–E505. [Google Scholar] [CrossRef] [PubMed]
- Labit, E.; Rabiller, L.; Rampon, C.; Guissard, C.; André, M.; Barreau, C.; Cousin, B.; Carrière, A.; Eddine, M.A.; Pipy, B.; et al. Opioids prevent regeneration in adult mammals through inhibition of ROS production. Sci. Rep. 2018, 8, 12170. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Fang, C.-W.; Shi, Y.; Zhai, S.; Jiang, A.; Li, Y.-N.; Wang, L.; Liu, Q.-L.; Zhou, G.-Y.; Cao, J.-H.; et al. Mitochondria-derived H2O2 triggers liver regeneration via FoxO3a signaling pathway after partial hepatectomy in mice. Cell Death Dis. 2023, 14, 216. [Google Scholar] [CrossRef]
- Ghareghani, M.; Dokoohaki, S.; Ghanbari, A.; Farhadi, N.; Zibara, K.; Khodadoust, S.; Parishani, M.; Ghavamizadeh, M.; Sadeghi, H. Melatonin exacerbates acute experimental autoimmune encephalomyelitis by enhancing the serum levels of lactate: A potential biomarker of multiple sclerosis progression. Clin. Exp. Pharmacol. Physiol. 2017, 44, 52–61. [Google Scholar] [CrossRef]
Antigen | Host | Reference | Dilution | Observations |
---|---|---|---|---|
Choline acetyltransferase (ChAT) | Goat | Sigma-Aldrich; ab144P | 1:100 | Catalyzes the reversible synthesis of acetylcholine from acetyl CoA and choline at cholinergic synapses |
Succinate dehydrogenase complex subunit B (SDHB) | Mouse | Abcam; ab14714 | 1:200 | Complex II of the respiratory chain involved in the oxidation of succinate |
Antigen | Host | Reference | Conjugated | Dilution |
---|---|---|---|---|
Anti-Goat | Donkey | Jackson ImmunoResearch (West Grove, PA, USA) | Alexa 488 | 1:400 |
Anti-Mouse | Donkey | Jackson ImmunoResearch | Alexa 647 | 1:400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Montes, C.; Jiménez-Cubides, J.P.; Velasco, A.; Arévalo, R.; Santos-Ledo, A.; García-Macia, M. REDOX Balance in Oligodendrocytes Is Important for Zebrafish Visual System Regeneration. Antioxidants 2023, 12, 2026. https://doi.org/10.3390/antiox12122026
Pérez-Montes C, Jiménez-Cubides JP, Velasco A, Arévalo R, Santos-Ledo A, García-Macia M. REDOX Balance in Oligodendrocytes Is Important for Zebrafish Visual System Regeneration. Antioxidants. 2023; 12(12):2026. https://doi.org/10.3390/antiox12122026
Chicago/Turabian StylePérez-Montes, Cristina, Jhoana Paola Jiménez-Cubides, Almudena Velasco, Rosario Arévalo, Adrián Santos-Ledo, and Marina García-Macia. 2023. "REDOX Balance in Oligodendrocytes Is Important for Zebrafish Visual System Regeneration" Antioxidants 12, no. 12: 2026. https://doi.org/10.3390/antiox12122026
APA StylePérez-Montes, C., Jiménez-Cubides, J. P., Velasco, A., Arévalo, R., Santos-Ledo, A., & García-Macia, M. (2023). REDOX Balance in Oligodendrocytes Is Important for Zebrafish Visual System Regeneration. Antioxidants, 12(12), 2026. https://doi.org/10.3390/antiox12122026