Antioxidant and Anti-Inflammatory Effect of the Consumption of Powdered Concentrate of Sechium edule var. nigrum spinosum in Mexican Older Adults with Metabolic Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Study Design
2.2. Diagnosis of Metabolic Syndrome
2.3. Anthropometric Measures
2.4. Blood Pressure (BP)
2.5. Biochemical Analysis
2.6. Plasma Thiobarbituric Acid-Reactive Substances (TBARS)
2.7. Total Antioxidant Status in Plasma (TAS)
2.8. Superoxide Dismutase (SOD)
2.9. Red Blood Cell Glutathione Peroxidase (GPx)
2.10. SOD/GPx and GAP
2.11. Oxidative Stress Score
2.12. Serum 8-Isoprostanes
2.13. 8-Hydroxydeoxyguanosine (8-OHdG)
2.14. Interleukin Measurement (IL)
2.15. Sechium edule Formulation
2.16. Statistic Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V. In Envejecimiento, Enfermedades Crónicas Antioxidantes; FES Zaragoza, UNAM: Mexico City, 2003; pp. 5–59. [Google Scholar]
- Harman, D. Free radical theory of aging. Mutat. Res. 1992, 275, 257–266. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C.; Cross, C.E. Free radicals, antioxidants, and human disease: Where are we now? J. Lab. Clin. Med. 1992, 119, 598–620. [Google Scholar] [PubMed]
- Chung, H.Y.; Cesari, M.; Anton, S.; Marzetti, E.; Giovannini, S.; Seo, A.Y.; Carter, C.; Yu, B.P.; Leeuwenburgh, C. Molecular inflammation: Underpinnings of aging and age-related diseases. Ageing Res. Rev. 2009, 8, 18–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Fuente, M.; Miquel, J. An update of the oxidation-inflammation theory of aging: The involvement of the inmune system in oxi-inflamm-aging. Curr. Pharm. Des. 2009, 15, 3003–3026. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Brewer, H.B.; Cleeman, J.I.; Smith, S.C., Jr.; Lenfant, C. American heart association; national heart, lung, and blood institute. Definition of metabolic syndrome: Report of the National Heart, Lung and Blood Institute/American Heart Association conference of scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Iñiguez-Luna, M.I.; Cadena-Iñiguez, J.; Soto-Hernández, R.M.; Morales-Flores, F.J.; Cortes-Cruz, M.; Watanabe, K.N. Natural bioactive compounds of Sechium spp. for therapeutic and nutraceutical supplements. Front. Plant. Sci. 2021, 12, 772389. [Google Scholar] [CrossRef]
- Cambar, P.J.; Portillo, P.; Tabora, F.E.; Lesbia de Pineda, L.; Tovar, O.; Casco, J.; Alvarado, C.; Díaz, G.; Casco, B.; Cantillo, L. Estudio preliminar sobre las acciones farmacológicas de Sechium edule. Rev. Med. Hondur. 1980, 48, 97–99. [Google Scholar]
- Cadena–Iñiguez, J.; Arévalo-Galarza, L.; Avendaño-Arzate, C.H.; Soto-Hernández, M.; Ruiz-Posadas, L.M.; Santiago-Osorio, E.; Acosta-Ramos, M.; Cisneros-Solano, V.M.; Aguirre-Medina, J.F.; Ochoa-Martínez, D. Production, genetics, postharvest management and pharmacological characteristics of Sechium edule (Jacq.) Sw. Fresh Prod. 2007, 1, 41–53. [Google Scholar]
- Wu, C.H.; Ou, T.T.; Chang, C.H.; Chang, X.Z.; Yang, M.Y.; Wang, C.J. The polyphenol extract from Sechium edule shoots inhibits lipogenesis and stimulates lipolysis via activation of AMPK signals in HepG2 cells. J. Agr. Food Chem. 2014, 62, 750–759. [Google Scholar] [CrossRef]
- Aguiñiga-Sánchez, I.; Soto-Hernández, M.; Cadena-Iñiguez, J.; Suwalsky, M.; Colina, J.R.; Castillo, I.; Rosado-Pérez, J.; Mendoza-Núñez, V.M.; Santiago-Osorio, E. Phytochemical analysis and antioxidant and anti-inflammatory capacity of the extracts of fruits of the Sechium hybrid. Molecules 2020, 25, 4637. [Google Scholar] [CrossRef]
- Rosado-Pérez, J.; Aguiñiga-Sánchez, I.; Arista-Ugalde, T.L.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. The biological significance of oxidative stress, effects of fruits as natural edible antioxidants. Curr. Pharm. Des. 2018, 24, 4807–4824. [Google Scholar] [CrossRef] [PubMed]
- Rosado-Pérez, J.; Aguiñiga-Sánchez, I.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Effect of Sechium edule var. nigrum spinosum (chayote) on oxidative stress and pro-inflammatory markers in older adults with metabolic syndrome: An exploratory study. Antioxidants 2019, 8, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavia-García, G.; Rosado-Pérez, J.; Aguiñiga-Sánchez, I.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Effect of Sechium edule var. nigrum spinosum (Chayote) on telomerase levels and antioxidant capacity in older adults with metabolic syndrome. Antioxidants 2020, 9, 634. [Google Scholar] [CrossRef]
- Cleeman, J.I.; Grundy, S.M.; Becker, D.; Clark, L. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Secretaría de Salud. Manual de Procedimientos. Toma de Medidas Clínicas y Antropométricas en el Adulto y Adulto Mayor; Subsecretaría de Prevención y Protección de la Salud: Mexico City, Mexico, 2002. [Google Scholar]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Composition of the ESPEN Working Group. Bioelectrical impedance analysis-part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Secretaría de Salud. Norma Oficial Mexicana NOM-030-SSA-1999 Para la Prevención, Tratamiento y Control de la Hipertensión Arterial; Secretaría de Salud: Mexico City, Mexico, 1999. [Google Scholar]
- Jentzsch, A.M.; Bachmann, H.; Fürst, P.; Biesalski, H.K. Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 1996, 20, 251–256. [Google Scholar] [CrossRef]
- Miller, N.J. Nonvitamin plasma antioxidants. In Free Radical and Antioxidant Protocols; Armstrong, D., Ed.; Humana Press: Totowa, NJ, USA, 1998; pp. 285–297. [Google Scholar]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Avendaño, A.C.; Cadena, I.J.; Arévalo, G.M.; Campos, R.E.; Cisneros, S.V.; Aguirre, M.J. Las Variedades del Chayote Mexicano, Recurso Ancestral Con Potencial de Comercialización; Grupo Interdisciplinario de Investigación en Sechium edule en México, A.C.: Mexico City, Mexico, 2010; pp. 34–39. [Google Scholar]
- Lombardo-Earl, G.; Roman-Ramos, R.; Zamilpa, A.; Herrera-Ruiz, M.; Rosas-Salgado, G.; Tortoriello, J.; Jiménez-Ferrer, E. Extracts and fractions from edible roots of Sechium edule (Jacq.) Sw. with antihypertensive activity. Evid. Based Complement. Alternat. Med. 2014, 2014, 594326. [Google Scholar] [CrossRef]
- Vieira, E.F.; Pinho, O.; Ferreira, I.M.; Delerue-Matos, C. Chayote (Sechium edule): A review of nutritional composition, bioactivities and potential applications. Food Chem. 2019, 275, 557–568. [Google Scholar] [CrossRef]
- Yang, M.Y.; Chan, K.C.; Lee, Y.J. Sechium edule shoot extracts and active components improve obesity and a fatty liver that involved reducing hepatic lipogenesis and adipogenesis in high-fat-diet-fed rats. J. Agric. Food Chem. 2015, 63, 4587–4596. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.K.; Anusha, I.; Sumangali, M.; Kumar, D.A.; Madhusudana, K.; Agawane, S.B. Preventive and therapeutic efficacies of Benincasa hispida and Sechium edule fruit’s juice on sweet-beverages induced impaired glucose tolerance and oxidative stress. Pharmacologia 2013, 4, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Hii, C.S.T.; Howell, S.L. Efects of flavonoids on insulin secretion and 45Ca2+ handling in rat islets of Langerhans. J. Endocrinol. 1985, 107, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Bonesi, M.; Menichini, F.; Tenuta, M.C.; Leporini, M.; Tundis, R. Antioxidant and carbohydrate-hydrolysing enzymes potential of Sechium edule (Jacq.) Swartz (Cucurbitaceae) peel, leaves and pulp fresh and processed. Plant Foods Hum. Nutr. 2016, 71, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.K.; Kumar, D.A.; Sweeya, P.S.R.; Abhinay, K.M.; Hanumantha, A.C.; Lavanya, V.; Raju, A.S.; Sireesha, K.; Pavithra, K. Protein-tyrosine phosphatase 1α inhibitory activity potential in vegetables’ juice. Pharmacologia 2013, 4, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Courtney, L.M.; Duclos, Q.; Blesso, C.N. Effects of dietary flavonoids on reverse cholesterol transport, HDL metabolism, and HDL function. Adv. Nutr. 2017, 8, 226–239. [Google Scholar]
- Demirbag, R.; Yilmaz, R.; Gur, M.; Celik, H.; Guzel, S.; Selek, S.; Kocyigit, A. DNA damage in metabolic syndrome and its association with antioxidative and oxidative measurements. Int. J. Clin. Pract. 2006, 60, 1187–1193. [Google Scholar] [CrossRef]
- Vávrová, L.; Kodydková, J.; Zeman, M.; Dušejovská, M.; Macášek, J.; Staňková, B.; Tvrzická, E.; Zák, A. Altered activities of antioxidant enzymes in patients with metabolic syndrome. Obes. Facts 2013, 6, 39–47. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative stress indexes for diagnosis of health for disease in humans. Oxid. Med. Cell Longev. 2019, 2019, 4128152. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Santiago-Osorio, E.; Vargas, L.A.; Mendoza-Núñez, V.M. Propuesta de un constructo para evaluar integralmente el estrés oxidativo. Bioquimia 2004, 29, 81–90. [Google Scholar]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 2, 16–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carey, A.L.; Febbraio, M.A. Interleukin-6 and insulin sensitivity: Friend or foe? Diabetologia 2004, 47, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Febbraio, M.A.; Pedersen, B.K. Muscle-derived interleukin-6: Mechanisms for activation and possible biological roles. FASEB J. 2002, 16, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Stouthard, J.M.; Oude-Elferink, R.P.; Sauerwein, H.P. Interleukin-6 enhances glucose transport in 3T3-L1 adipocytes. Biochem. Biophys. Res. Comm. 1996, 220, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Wallenius, V.; Wallenius, K.; Ahrén, B.; Rudling, M.; Carlsten, H.; Dickson, S.L.; Ohlsson, C.; Jansson, J.O. Interleukin-6-deficient mice develop mature-onset obesity. Nat. Med. 2002, 8, 75–79. [Google Scholar] [CrossRef] [PubMed]
Parameter | Placebo Group n = 40 | Experimental Group n = 41 | p-Value |
---|---|---|---|
Age (years) | 70.7 ± 7.5 | 67.2 ± 7.2 | 0.26 |
Weight (kg) | |||
Baseline | 78.3 ± 16.4 | 74.0 ± 11.0 | |
Three months | 77.4 ±15.9 | 72.6 ± 10.8 | 0.06 |
Six months | 77.6 ± 13.0 | 72.0 ± 11.2 | 0.05 |
kg of fat mass | |||
Baseline | 39.2 ± 10.6 | 35.3 ± 8.0 | |
Three months | 37.6 ± 10.8 | 34.6 ± 7.9 | 0.22 |
Six months | 38.6 ± 11.1 | 34.0 ± 7.9 | 0.05 |
SMMI (kg/m2) | |||
Baseline | 8.37 ± 1.7 | 8.27 ± 1.4 | |
Three months | 8.30 ± 1.6 | 8.20 ± 1.6 | 0.35 |
Six months | 8.24 ± 1.6 | 8.20 ± 1.6 | 0.42 |
Waist circumference (cm) | |||
Baseline | 104.2 ± 14.9 | 104.0 ± 11.8 | |
Three months | 102.9 ± 13.9 | 104.9 ± 13.6 | 0.26 |
Six months | 101.7 ± 14.0 | 102.9 ± 10.2 | 0.18 |
SBP (mmHg) | |||
Baseline | 138.8 ± 10.5 | 128.9 ± 10.8 | |
Three months | 132.9 ± 12.7 | 125.4 ± 10.2 | 0.05 |
Six months | 136.0 ± 12.4 | 121.6 ± 10.5 | 0.05 |
DBP (mmHg) | |||
Baseline | 89.5 ± 7.3 | 84.1 ± 8.7 | |
Three months | 86.8 ± 7.2 | 78.2 ± 7.9 | 0.05 |
Six months | 86.9 ± 7.5 | 78.6 ± 8.5 | 0.04 |
Parameter | Placebo Group n = 40 | Experimental Group n = 41 | p-Value |
---|---|---|---|
Glucose (mg/dL) | |||
Baseline | 113 ± 43 | 113 ± 37 | |
Three months | 123 ± 43 | 105 ± 29 | 0.20 |
Six months | 118 ± 40 | 103 ± 28 | 0.14 |
Cholesterol (mg/dL) | |||
Baseline | 188 ± 39 | 203 ± 50 | |
Three months | 194 ± 53 | 206 ± 43 | 0.46 |
Six months | 183 ± 44 | 213 ± 41 | 0.52 |
Triglycerides (mg/dL) | |||
Baseline | 179 ± 66 | 178 ± 75 | |
Three months | 169 ± 60 | 168 ± 58 | 0.19 |
Six months | 172 ± 67 | 161 ± 70 | 0.09 |
HDL-C (mg/dL) | |||
Baseline | 40.3 ± 10.3 | 42.6 ± 10.1 | |
Three months | 41.5 ± 8.0 | 46.0 ± 9.2 | 0.05 |
Six months | 40.6 ± 10.4 | 47.4 ± 10.7 | 0.04 |
Uric acid (mg/dL) | |||
Baseline | 4.9 ± 1.2 | 5.0± 1.2 | |
Three months | 5.0 ± 1.3 | 4.8 ± 1.6 | 0.08 |
Six months | 4.8 ± 1.2 | 5.0 ± 1.3 | 0.10 |
HbA1c (%) | |||
Baseline | 6.8 ± 1.9 | 6.3 ± 1.2 | |
Three months | 6.5 ± 1.8 | 5.6 ± 1.2 | 0.19 |
Six months | 6.7 ± 1.9 | 5.9 ± 0.8 | 0.05 |
Parameter | Placebo Group n = 40 | Experimental Group n = 41 | p-Value |
---|---|---|---|
Lipoperoxides (µmol/L) | |||
Baseline | 0.22 ± 0.04 | 0.30 ± 0.09 | |
Three months | 0.21 ±0.06 | 0.23 ± 0.08 | 0.013 |
Six months | 0.21 ±0.03 | 0.20 ± 0.03 | 0.011 |
GPx (U/L) | |||
Baseline | 6896 ± 2235 | 5759 ± 1838 | |
Three months | 6097 ± 1318 | 7051 ± 2131 | 0.16 |
Six months | 4178 ± 1311 | 6997 ± 3839 | 0.09 |
SOD (U/mL) | |||
Baseline | 170 ± 13.3 | 181 ± 5.4 | |
Three months | 181 ± 12.4 | 184 ± 8.9 | 0.01 |
Six months | 162 ± 15.2 | 183 ± 8.8 | 0.03 |
TAS (mmol/L) | |||
Baseline | 1.3 ± 0.23 | 1.1 ± 0.17 | |
Three months | 1.1 ± 0.21 | 1.2 ± 0.15 | 0.04 |
Six months | 1.2 ± 0.15 | 1.3 ± 0.15 | 0.015 |
SOD/GPx | |||
Baseline | 0.0.27 ± 0.009 | 0.032 ± 0.005 | |
Three months | 0.031 ± 0.007 | 0.031 ± 0.007 | 0.21 |
Six months | 0.031 ± 0.011 | 0.034 ± 0.007 | 0.64 |
AOGAP | |||
Baseline | 525 ± 171 | 356 ± 169 | |
Three months | 270 ± 194 | 306 ± 222 | 0.034 |
Six months | 569 ± 213 | 461 ± 240 | 0.01 |
OSS | |||
Baseline | 1.68 ± 0.7 | 1.76 ± 0.9 | |
Three months | 1.80 ± 1.1 | 1.59 ± 1.3 | 0.06 |
Six months | 2.36 ± 1.1 | 1.45 ± 1.1 | 0.01 |
Parameter | Placebo Group n = 40 | Experimental Group n = 41 | p-Value |
---|---|---|---|
8-isoprostanes (pg/µL) | |||
Baseline | 300.6 ± 23.3 | 347.7 ± 20.0 | |
Three months | 290.2 ± 24.5 | 292.4 ± 21.8 | 0.09 |
Six months | 318.2 ± 18.7 | 239.3 ± 15.3 | 0.05 |
8-OHdG (ng/mL) | |||
Baseline | 31.1 ± 1.6 | 30 ± 2.1 | |
Three months | 29.8 ± 1.6 | 24 ± 1.7 | 0.09 |
Six months | 31.5 ± 1.4 | 20.5 ± 1.5 | 0.001 |
Parameter | Placebo Group n = 40 | Experimental Group n = 41 | p-Value |
---|---|---|---|
IL-12p70 (pg/dL) | |||
Baseline | 4.3 ± 0.3 | 2.8 ± 0.3 | |
Three months | 4.7 ± 0.4 | 4.1 ± 0.3 | 0.18 |
Six months | 4.9 ± 0.3 | 4.1 ± 0.3 | 0.20 |
TNF-α (pg/dL) | |||
Baseline | 4.7 ± 0.4 | 4.3 ± 0.4 | |
Three months | 4.6 ± 0.3 | 4.4 ± 0.4 | 0.19 |
Six months | 4.7 ± 0.3 | 4.6 ± 0.4 | 0.22 |
IL-10 (pg/dL) | |||
Baseline | 3.5 ± 0.3 | 2.2 ± 0.5 | |
Three months | 1.9 ± 0.2 | 3.8 ± 0.4 | 0.05 |
Six months | 2.9 ± 0.4 | 4.1 ± 0.4 | 0.04 |
IL-6 (pg/dL) | |||
Baseline | 8.6 ± 0.4 | 6.4 ± 0.9 | |
Three months | 6.1 ± 0.4 | 7.7 ± 0.6 | 0.09 |
Six months | 8.2 ± 0.4 | 11.1 ± 0.6 | 0.05 |
IL-1β (pg/dL) | |||
Baseline | 9.9 ± 0.5 | 8.6 ± 0.4 | |
Three months | 10.3 ± 0.3 | 9.6 ± 0.4 | 0.76 |
six months | 11.4 ± 0.3 | 10.2 ± 0.5 | 0.46 |
IL-8 (pg/dL) | |||
Baseline | 14.2 ± 0.3 | 13.5 ± 0.4 | |
Three months | 18.1 ± 0.4 | 14.8 ± 0.5 | 0.8 |
Six months | 18.9 ± 0.4 | 16.5 ± 0.4 | 0.59 |
PCR (mg/dL) | |||
Baseline | 0.52 ± 0.08 | 0.60 ± 0.09 | |
Three months | 0.52 ± 0.12 | 0.53 ± 0.01 | 0.5 |
Six months | 0.46 ± 0.08 | 0.52 ± 0.05 | 0.5 |
Placebo Group n = 40 | Experimental Group n = 41 | |||
---|---|---|---|---|
With MetS | Without MetS | With MetS | Without MetS | |
Baseline | 40 (100) | 0 (0) | 41 (100) | 0 (0) |
Three months | 35 (87) | 5 (13) | 29 (70) | 12 (30) * |
Six months | 35 (87) | 5(13 | 18 (44) | 23 (56) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arista-Ugalde, T.L.; Santiago-Osorio, E.; Monroy-García, A.; Rosado-Pérez, J.; Aguiñiga-Sánchez, I.; Cadena-Iñiguez, J.; Gavia-García, G.; Mendoza-Núñez, V.M. Antioxidant and Anti-Inflammatory Effect of the Consumption of Powdered Concentrate of Sechium edule var. nigrum spinosum in Mexican Older Adults with Metabolic Syndrome. Antioxidants 2022, 11, 1076. https://doi.org/10.3390/antiox11061076
Arista-Ugalde TL, Santiago-Osorio E, Monroy-García A, Rosado-Pérez J, Aguiñiga-Sánchez I, Cadena-Iñiguez J, Gavia-García G, Mendoza-Núñez VM. Antioxidant and Anti-Inflammatory Effect of the Consumption of Powdered Concentrate of Sechium edule var. nigrum spinosum in Mexican Older Adults with Metabolic Syndrome. Antioxidants. 2022; 11(6):1076. https://doi.org/10.3390/antiox11061076
Chicago/Turabian StyleArista-Ugalde, Taide Laurita, Edelmiro Santiago-Osorio, Alberto Monroy-García, Juana Rosado-Pérez, Itzen Aguiñiga-Sánchez, Jorge Cadena-Iñiguez, Graciela Gavia-García, and Víctor Manuel Mendoza-Núñez. 2022. "Antioxidant and Anti-Inflammatory Effect of the Consumption of Powdered Concentrate of Sechium edule var. nigrum spinosum in Mexican Older Adults with Metabolic Syndrome" Antioxidants 11, no. 6: 1076. https://doi.org/10.3390/antiox11061076
APA StyleArista-Ugalde, T. L., Santiago-Osorio, E., Monroy-García, A., Rosado-Pérez, J., Aguiñiga-Sánchez, I., Cadena-Iñiguez, J., Gavia-García, G., & Mendoza-Núñez, V. M. (2022). Antioxidant and Anti-Inflammatory Effect of the Consumption of Powdered Concentrate of Sechium edule var. nigrum spinosum in Mexican Older Adults with Metabolic Syndrome. Antioxidants, 11(6), 1076. https://doi.org/10.3390/antiox11061076