5-Methyltetrahydrofolate Attenuates Oxidative Stress and Improves Kidney Function in Acute Kidney Injury through Activation of Nrf2 and Antioxidant Defense
Abstract
:1. Introduction
2. Materials and Methods
2.1. Induction of Kidney Ischemia-Reperfusion in Rats
2.2. Biochemical and Histological Analysis
2.3. Cell Culture and siRNA Transfection
2.4. Quantitative Real-Time RT-PCR
2.5. Western Immunoblotting Analysis
2.6. Statistical Analysis
3. Results
3.1. Folic Acid (5-MTHF) Improves Kidney Function
3.2. Folic Acid (5-MTHF) Attenuates Ischemia-Reperfusion Induced Oxidative Stress
3.3. Folic Acid (5-MTHF) Stimulates Nrf2 and Antioxidant Enzyme Expression in the Kidney
3.4. Folic Acid (5-MTHF) Alleviates Cell Injury in Proximal Tubular Cells
3.5. Inhibition of Nrf2 Expression Hampers Restoration of Glutathione Level and Antioxidant Enzyme Expression by Folic Acid (5-MTHF)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tibbetts, A.S.; Appling, D.R. Compartmentalization of Mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 2010, 30, 57–81. [Google Scholar] [CrossRef] [PubMed]
- Rezk, B.M.; Haenen, G.R.; van der Vijgh, W.J.; Bast, A. Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett. 2003, 555, 601–605. [Google Scholar] [CrossRef]
- Asbaghi, O.; Ghanavati, M.; Ashtary-Larky, D.; Bagheri, R.; Rezaei Kelishadi, M.; Nazarian, B.; Nordvall, M.; Wong, A.; Dutheil, F.; Suzuki, K.; et al. Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants 2021, 10, 871. [Google Scholar] [CrossRef] [PubMed]
- Cappuccilli, M.; Bergamini, C.; Giacomelli, F.A.; Cianciolo, G.; Donati, G.; Conte, D.; Natali, T.; La Manna, G.; Capelli, I. Vitamin B Supplementation and Nutritional Intake of Methyl Donors in Patients with Chronic Kidney Disease: A Critical Review of the Impact on Epigenetic Machinery. Nutrients 2020, 12, 1234. [Google Scholar] [CrossRef] [PubMed]
- Sid, V.; Siow, Y.L.; O, K. Role of folate in nonalcoholic fatty liver disease. Can. J. Physiol. Pharmacol. 2017, 95, 1141–1148. [Google Scholar] [CrossRef]
- Kotur-Stevuljevic, J.; Simic-Ogrizovic, S.; Dopsaj, V.; Stefanovic, A.; Vujovic, A.; Ivanic-Corlomanovic, T.; Spasic, S.; Kalimanovska-Spasojevic, V.; Jelic-Ivanovic, Z. A hazardous link between malnutrition, inflammation and oxidative stress in renal patients. Clin. Biochem. 2012, 45, 1202–1205. [Google Scholar] [CrossRef]
- Lameire, N.; Van Biesen, W.; Vanholder, R. Acute renal failure. Lancet 2005, 365, 417–430. [Google Scholar] [CrossRef]
- Scholz, H.; Boivin, F.J.; Schmidt-Ott, K.M.; Bachmann, S.; Eckardt, K.U.; Scholl, U.I.; Persson, P.B. Kidney physiology and susceptibility to acute kidney injury: Implications for renoprotection. Nat. Rev. Nephrol. 2021, 17, 335–349. [Google Scholar] [CrossRef]
- Bonventre, J.V.; Yang, L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Investig. 2011, 121, 4210–4221. [Google Scholar] [CrossRef]
- Wu, M.Y.; Yiang, G.T.; Liao, W.T.; Tsai, A.P.; Cheng, Y.L.; Cheng, P.W.; Li, C.Y.; Li, C.J. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell. Physiol. Biochem. 2018, 46, 1650–1667. [Google Scholar] [CrossRef]
- Kao, M.P.; Ang, D.S.; Pall, A.; Struthers, A.D. Oxidative stress in renal dysfunction: Mechanisms, clinical sequelae and therapeutic options. J. Hum. Hypertens. 2010, 24, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Zhu, Q.; Wu, N.; Siow, Y.L.; Aukema, H.; O, K. Tyrosol attenuates ischemia-reperfusion-induced kidney injury via inhibition of inducible nitric oxide synthase. J. Agric. Food. Chem. 2013, 61, 3669–3675. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Isaak, C.K.; Siow, Y.L.; O, K. Downregulation of cystathionine beta-synthase and cystathionine gamma-lyase expression stimulates inflammation in kidney ischemia-reperfusion injury. Physiol. Rep. 2014, 2, e12251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.G.; Lee, H.K.; Cho, K.B.; Park, S.I. A Review of Natural Products for Prevention of Acute Kidney Injury. Medicina 2021, 57, 1266. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.K.; Rosner, M.H.; Okusa, M.D. Pharmacologic treatment of acute kidney injury: Why drugs haven’t worked and what is on the horizon. Clin. J. Am. Soc. Nephrol. 2007, 2, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Palevsky, P.M.; Liu, K.D.; Brophy, P.D.; Chawla, L.S.; Parikh, C.R.; Thakar, C.V.; Tolwani, A.J.; Waikar, S.S.; Weisbord, S.D. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. Am. J. Kidney Dis. 2013, 61, 649–672. [Google Scholar] [CrossRef] [PubMed]
- Fiaccadori, E.; Regolisti, G.; Cabassi, A. Specific nutritional problems in acute kidney injury, treated with non-dialysis and dialytic modalities. NDT Plus 2010, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Carcy, R.; Cougnon, M.; Poet, M.; Durandy, M.; Sicard, A.; Counillon, L.; Blondeau, N.; Hauet, T.; Tauc, M.; Didier, F.P. Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radic. Biol. Med. 2021, 169, 258–270. [Google Scholar] [CrossRef]
- Hamatani, R.; Otsu, M.; Chikamoto, H.; Akioka, Y.; Hattori, M. Plasma homocysteine and folate levels and dietary folate intake in adolescents and young adults who underwent kidney transplantation during childhood. Clin. Exp. Nephrol. 2014, 18, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Ostermann, M.; Summers, J.; Lei, K.; Card, D.; Harrington, D.J.; Sherwood, R.; Turner, C.; Dalton, N.; Peacock, J.; Bear, D.E. Micronutrients in critically ill patients with severe acute kidney injury—A prospective study. Sci. Rep. 2020, 10, 1505. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, A.; Kolankaya, D. The protective effects of ascorbic acid against renal ischemia-reperfusion injury in male rats. Ren. Fail 2009, 31, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Woo, C.W.; Prathapasinghe, G.A.; Siow, Y.L.; O, K. Hyperhomocysteinemia induces liver injury in rat: Protective effect of folic acid supplementation. Biochim. Biophys Acta 2006, 1762, 656–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.Y.; Siow, Y.L.; Au-Yeung, K.K.; House, J.; O, K. Folic acid supplementation inhibits NADPH oxidase-mediated superoxide anion production in the kidney. Am. J. Physiol. Ren. Physiol. 2011, 300, F189–F198. [Google Scholar] [CrossRef] [Green Version]
- Sarna, L.K.; Wu, N.; Wang, P.; Hwang, S.Y.; Siow, Y.L.; O, K. Folic acid supplementation attenuates high fat diet induced hepatic oxidative stress via regulation of NADPH oxidase. Can. J. Physiol. Pharmacol. 2012, 90, 155–165. [Google Scholar] [CrossRef]
- Shelton, L.M.; Park, B.K.; Copple, I.M. Role of Nrf2 in protection against acute kidney injury. Kidney Int. 2013, 84, 1090–1095. [Google Scholar] [CrossRef] [PubMed]
- Schmidlin, C.J.; Dodson, M.B.; Madhavan, L.; Zhang, D.D. Redox regulation by NRF2 in aging and disease. Free Radic. Biol. Med. 2019, 134, 702–707. [Google Scholar] [CrossRef]
- Buendia, I.; Michalska, P.; Navarro, E.; Gameiro, I.; Egea, J.; Leon, R. Nrf2-ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases. Pharmacol. Ther. 2016, 157, 84–104. [Google Scholar] [CrossRef]
- Goncalves, G.M.; Cenedeze, M.A.; Feitoza, C.Q.; Wang, P.M.; Bertocchi, A.P.; Damiao, M.J.; Pinheiro, H.S.; Antunes Teixeira, V.P.; dos Reis, M.A.; Pacheco-Silva, A.; et al. The role of heme oxygenase 1 in rapamycin-induced renal dysfunction after ischemia and reperfusion injury. Kidney Int. 2006, 70, 1742–1749. [Google Scholar] [CrossRef] [Green Version]
- Shelly, L.U. GLUTATHIONE SYNTHESIS. Biochim. Biophys. Acta 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [Green Version]
- Alhamdani, M.S. Impairment of glutathione biosynthetic pathway in uraemia and dialysis. Nephrol. Dial. Transpl. 2005, 20, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Tomas-Simo, P.; D’Marco, L.; Romero-Parra, M.; Tormos-Munoz, M.C.; Saez, G.; Torregrosa, I.; Estan-Capell, N.; Miguel, A.; Gorriz, J.L.; Puchades, M.J. Oxidative Stress in Non-Dialysis-Dependent Chronic Kidney Disease Patients. Int. J. Environ. Res. Public Health 2021, 18, 7806. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Siow, Y.L.; Isaak, C.K.; O, K. Downregulation of Glutathione Biosynthesis Contributes to Oxidative Stress and Liver Dysfunction in Acute Kidney Injury. Oxid. Med. Cell Longev. 2016, 2016, 9707292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Grigoryev, D.N.; Crow, M.T.; Haas, M.; Yamamoto, M.; Reddy, S.P.; Rabb, H. Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int. 2009, 76, 277–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nezu, M.; Souma, T.; Yu, L.; Suzuki, T.; Saigusa, D.; Ito, S.; Suzuki, N.; Yamamoto, M. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression. Kidney Int. 2017, 91, 387–401. [Google Scholar] [CrossRef]
- Pergola, P.E.; Raskin, P.; Toto, R.D.; Meyer, C.J.; Huff, J.W.; Grossman, E.B.; Krauth, M.; Ruiz, S.; Audhya, P.; Christ-Schmidt, H.; et al. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N. Engl. J. Med. 2011, 365, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Damaraju, V.L.; Cass, C.E.; Sawyer, M.B. Renal conservation of folates role of folate transport proteins. Vitam. Horm. 2008, 79, 185–202. [Google Scholar] [CrossRef]
- Yang, C.; Wijerathne, C.U.B.; Tu, G.W.; Woo, C.W.H.; Siow, Y.L.; Madduma Hewage, S.; Au-Yeung, K.K.W.; Zhu, T.; O, K. Ischemia-Reperfusion Injury Reduces Kidney Folate Transporter Expression and Plasma Folate Levels. Front Immunol. 2021, 12, 678914. [Google Scholar] [CrossRef]
- Wu, N.; Siow, Y.L.; O, K. Ischemia/reperfusion reduces transcription factor Sp1-mediated cystathionine beta-synthase expression in the kidney. J. Biol. Chem. 2010, 285, 18225–18233. [Google Scholar] [CrossRef] [Green Version]
- Wijerathne, C.U.B.; Madduma Hewage, S.; Siow, Y.L.; O, K. Kidney Ischemia-Reperfusion Decreases Hydrogen Sulfide and Increases Oxidative Stress in the Heart. Biomolecules 2020, 10, 1565. [Google Scholar] [CrossRef]
- Niederberger, K.E.; Dahms, I.; Broschard, T.H.; Boehni, R.; Moser, R. Safety evaluation of calcium L-methylfolate. Toxicol. Rep. 2019, 6, 1018–1030. [Google Scholar] [CrossRef]
- Sung, F.L.; Zhu, T.Y.; Au-Yeung, K.K.; Siow, Y.L.; O, K. Enhanced MCP-1 expression during ischemia/reperfusion injury is mediated by oxidative stress and NF-kappaB. Kidney Int. 2002, 62, 1160–1170. [Google Scholar] [CrossRef] [PubMed]
- Pavlakou, P.; Liakopoulos, V.; Eleftheriadis, T.; Mitsis, M.; Dounousi, E. Oxidative Stress and Acute Kidney Injury in Critical Illness: Pathophysiologic Mechanisms-Biomarkers-Interventions, and Future Perspectives. Oxid. Med. Cell Longev. 2017, 2017, 6193694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, J.M.; Witting, P.K. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients 2017, 9, 718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug. Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Cao, P.; Zhang, W.; Wang, G.; Zhao, X.; Gao, N.; Liu, Z.; Xu, R. Low Dose of Folic Acid Can Ameliorate Hyperhomocysteinemia-Induced Cardiac Fibrosis and Diastolic Dysfunction in Spontaneously Hypertensive Rats. Int. Heart J. 2021, 62, 627–635. [Google Scholar] [CrossRef]
- Boekhoud, L.; Koeze, J.; van der Slikke, E.C.; Bourgonje, A.R.; Moser, J.; Zijlstra, J.G.; Muller Kobold, A.C.; Bulthuis, M.L.C.; van Meurs, M.; van Goor, H.; et al. Acute Kidney Injury is Associated with Lowered Plasma-Free Thiol Levels. Antioxidants 2020, 9, 1135. [Google Scholar] [CrossRef]
- Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med. 1999, 27, 922–935. [Google Scholar] [CrossRef]
- Dai, X.; Yan, X.; Wintergerst, K.A.; Cai, L.; Keller, B.B.; Tan, Y. Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. Trends Mol. Med. 2020, 26, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Ratliff, B.B.; Abdulmahdi, W.; Pawar, R.; Wolin, M.S. Oxidant Mechanisms in Renal Injury and Disease. Antioxid. Redox. Signal. 2016, 25, 119–146. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and Its Panel on Folate, Other B Vitamins, and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academic Press: Washington, DC, USA, 1998. [CrossRef]
- Butterworth, C.E., Jr.; Tamura, T. Folic acid safety and toxicity: A brief review. Am. J. Clin. Nutr. 1989, 50, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Martin-Sanchez, D.; Ruiz-Andres, O.; Poveda, J.; Carrasco, S.; Cannata-Ortiz, P.; Sanchez-Nino, M.D.; Ruiz Ortega, M.; Egido, J.; Linkermann, A.; Ortiz, A.; et al. Ferroptosis, but Not Necroptosis, Is Important in Nephrotoxic Folic Acid-Induced AKI. J. Am. Soc. Nephrol. 2017, 28, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Chong Lee Shin, O.L.; Xu, H.; Zhao, Z.; Pei, G.; Hu, Z.; Yang, J.; Guo, Y.; Mou, J.; Sun, J.; et al. Melatonin promoted renal regeneration in folic acid-induced acute kidney injury via inhibiting nucleocytoplasmic translocation of HMGB1 in tubular epithelial cells. Am. J. Transl. Res. 2017, 9, 1694–1707. [Google Scholar] [PubMed]
- Newbury, L.J.; Wang, J.H.; Hung, G.; Hendry, B.M.; Sharpe, C.C. Inhibition of Kirsten-Ras reduces fibrosis and protects against renal dysfunction in a mouse model of chronic folic acid nephropathy. Sci. Rep. 2019, 9, 14010. [Google Scholar] [CrossRef] [PubMed]
- Mutavdzin, S.; Gopcevic, K.; Stankovic, S.; Jakovljevic Uzelac, J.; Labudovic Borovic, M.; Djuric, D. The Effects of Folic Acid Administration on Cardiac Oxidative Stress and Cardiovascular Biomarkers in Diabetic Rats. Oxid. Med. Cell Longev. 2019, 2019, 1342549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.J. Folic acid-induced animal model of kidney disease. Animal Model Exp. Med. 2021, 4, 329–342. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Accession Number |
---|---|---|---|
Rat | |||
NGAL | GATCAGAACATTCGTTCCAA | TTGCACATCGTAGCTCTGTA | NM_130741.1 |
Gclc | GCCCAATTGTTATGGCTTTG | AGTCCTCTCTCCTCCCGTGT | NM_012815.2 |
Gclm | CGAGGAGCTTCGAGACTGTAT | ACTGCATGGGACATGGTACA | NM_017305.2 |
Gss | ACAACGAGCGAGTTGGGAT | TGAGGGGAAGAGCGTGAATG | NM_012962.1 |
SOD-1 | CATTCCATCATTGGCCGTACT | CCACCTTTGCCCAAGTCATC | NM_017050.1 |
HO-1 | CGACAGCATGTCCCAGGATT | TCGCTCTATCTCCTCTTCCAGG | NM_012580.2 |
β-actin | ACAACCTTCTTGCAGCTCCTC | GACCCATACCCACCATCACA | NM_031144.3 |
Human | |||
NGAL | GAAGACAAAGACCCGCAAAAG | CTGGCAACCTGGAACAAAAG | NM_005564.5 |
Gclc | TACAGTTGAGGCCAACATGC | CTTGTTAAGGTACTGGGAAATGAG | NM_001197115.2 |
Gclm | GTTCAGTCCTTGGAGTTGCACA | CCCAGTAAGGCTGTAAATGCTC | NM_001308253.2 |
SOD-1 | CTCACTCTCAGGAGACCATTGC | CCACAAGCCAAACGACTTCCAG | NM_000454.5 |
HO-1 | CCAGGCAGAGAATGCTGAGTTC | AAGACTGGGCTCTCCTTGTTGC | NM_002133.3 |
β-actin | AGATCAAGATCATTGCTCCTCCT | GATCCACATCTGCTGGAAGG | NM_001101.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijerathne, C.U.B.; Au-Yeung, K.K.W.; Siow, Y.L.; O, K. 5-Methyltetrahydrofolate Attenuates Oxidative Stress and Improves Kidney Function in Acute Kidney Injury through Activation of Nrf2 and Antioxidant Defense. Antioxidants 2022, 11, 1046. https://doi.org/10.3390/antiox11061046
Wijerathne CUB, Au-Yeung KKW, Siow YL, O K. 5-Methyltetrahydrofolate Attenuates Oxidative Stress and Improves Kidney Function in Acute Kidney Injury through Activation of Nrf2 and Antioxidant Defense. Antioxidants. 2022; 11(6):1046. https://doi.org/10.3390/antiox11061046
Chicago/Turabian StyleWijerathne, Charith U. B., Kathy K. W. Au-Yeung, Yaw L. Siow, and Karmin O. 2022. "5-Methyltetrahydrofolate Attenuates Oxidative Stress and Improves Kidney Function in Acute Kidney Injury through Activation of Nrf2 and Antioxidant Defense" Antioxidants 11, no. 6: 1046. https://doi.org/10.3390/antiox11061046
APA StyleWijerathne, C. U. B., Au-Yeung, K. K. W., Siow, Y. L., & O, K. (2022). 5-Methyltetrahydrofolate Attenuates Oxidative Stress and Improves Kidney Function in Acute Kidney Injury through Activation of Nrf2 and Antioxidant Defense. Antioxidants, 11(6), 1046. https://doi.org/10.3390/antiox11061046