A Comprehensive Analysis of the Role of Oxidative Stress in the Pathogenesis and Chemoprevention of Oral Submucous Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection and Data Extraction
3. Results
3.1. Overview of the Search Process
3.2. Laboratory-Based Studies
3.2.1. Pathogenesis of OSMF (Role of Betel Nut/Arecoline, Copper, and Eugenol)
3.2.2. Oxidative Stress Biomarkers in the Pathogenesis of OSMF
3.2.3. Other Molecular Markers in OSMF
3.2.4. Potential Therapeutic Agents for OSMF
3.3. Clinical Studies
Chemopreventive Effects of Nutrient Antioxidants as a Potential OSMF Treatment
4. Discussion
4.1. Oxidative Stress Biomarkers Is OSMF
4.2. Chemopreventive Effects of Nutrient Antioxidants as an Efficacious Treatment for OSMF
4.3. Strengths and Limitations
4.4. Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pindborg, J.J.; Murti, P.R.; Bhonsle, R.B.; Gupta, P.C.; Daftary, D.K.; Mehta, F.S. Oral submucous fibrosis as a precancerous condition. Scand. J. Dent. Res. 1984, 92, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.H.; Wang, T.H.; Shieh, T.M.; Tseng, Y.H. Oral Submucous Fibrosis: A Review on Etiopathogenesis, Diagnosis, and Therapy. Int. J. Mol. Sci. 2019, 20, 2940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nair, U.J.; Obe, G.; Friesen, M.; Goldberg, M.T.; Bartsch, H. Role of lime in the generation of reactive oxygen species from betel-quid ingredients. Environ. Health Perspect. 1992, 98, 203–205. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [Green Version]
- Frei, B.; Stocker, R.; Ames, B.N. Antioxidant defenses and lipid peroxidation in human blood plasma. Proc. Natl. Acad. Sci. USA 1988, 85, 9748–9752. [Google Scholar] [CrossRef] [Green Version]
- Sardaro, N.; Della Vella, F.; Incalza, M.A.; DI Stasio, D.; Lucchese, A.; Contaldo, M.; Laudadio, C.; Petruzzi, M. Oxidative Stress and Oral Mucosal Diseases: An Overview. In Vivo 2019, 33, 289–296. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Review of Areca (Betel) Nut and Tobacco Use in the Pacific: A Technical Report; WHO Regional Office for the Western Pacific: Manila, Philippines, 2012.
- Gupta, S.; Reddy, M.V.; Harinath, B.C. Role of oxidative stress and antioxidants in aetiopathogenesis and management of oral submucous fibrosis. Indian J. Clin. Biochem. 2004, 19, 138–141. [Google Scholar] [CrossRef] [Green Version]
- Jeng, J.H.; Kuo, M.L.; Hahn, L.J.; Kuo, M.Y. Genotoxic and non-genotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. J. Dent. Res. 1994, 73, 1043–1049. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Mohammad, S.; Pant, A.P.; Saimbi, C.S.; Srivastava, R. Therapeutic interventions in oral submucous fibrosis: An experimental and clinical study. J. Oral Maxillofac. Surg. 2015, 14, 278–290. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.C.; Ho, Y.S.; Lee, J.J.; Kok, S.H.; Hahn, L.J.; Jeng, J.H. Prevention of the areca nut extract-induced unscheduled DNA synthesis of gingival keratinocytes by vitamin C and thiol compounds. Oral Oncol. 2002, 38, 258–265. [Google Scholar] [CrossRef]
- Chang, M.C.; Chan, C.P.; Chen, Y.J.; Hsien, H.C.; Chang, Y.C.; Yeung, S.Y.; Jeng, P.Y.; Cheng, R.H.; Hahn, L.J.; Jeng, J.H. Areca nut components stimulate ADAM17, IL-1α, PGE2 and 8-isoprostane production in oral keratinocyte: Role of reactive oxygen species, EGF and JAK signaling. Oncotarget 2016, 7, 16879–16894. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.C.; Ho, Y.S.; Lee, P.H.; Chan, C.P.; Lee, J.J.; Hahn, L.J.; Wang, Y.J.; Jeng, J.H. Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: Association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis 2001, 22, 1527–1535. [Google Scholar] [CrossRef] [Green Version]
- Jeng, J.H.; Wang, Y.J.; Chang, W.H.; Wu, H.L.; Li, C.H.; Uang, B.J.; Kang, J.J.; Lee, J.J.; Hahn, L.J.; Lin, B.R.; et al. Reactive oxygen species are crucial for hydroxychavicol toxicity toward KB epithelial cells. Cell. Mol. Life Sci. 2004, 61, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.H.; Yang, S.F.; Lee, S.S.; Chang, Y.C. Augmented heme oxygenase-1 expression in areca quid chewing-associated oral submucous fibrosis. Oral Dis. 2009, 15, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Chen, Y.J.; Chang, H.H.; Chan, C.P.; Yeh, C.Y.; Wang, Y.L.; Cheng, R.H.; Hahn, L.J.; Jeng, J.H. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling. PLoS ONE 2014, 9, e101959. [Google Scholar] [CrossRef] [PubMed]
- Illeperuma, R.P.; Kim, D.K.; Park, Y.J.; Son, H.K.; Kim, J.Y.; Kim, J.; Lee, D.Y.; Kim, K.Y.; Jung, D.W.; Tilakaratne, W.M.; et al. Areca nut exposure increases secretion of tumor-promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes. Int. J. Cancer 2015, 137, 2545–2557. [Google Scholar] [CrossRef] [Green Version]
- Pant, I.; Rao, S.G.; Kondaiah, P. Role of areca nut induced JNK/ATF2/Jun axis in the activation of TGF-β pathway in precancerous Oral Submucous Fibrosis. Sci. Rep. 2016, 6, 34314. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yao, M.; Zhu, X.; Li, Q.; He, J.; Chen, L.; Wang, W.; Zhu, C.; Shen, T.; Cao, R.; et al. YAP-induced endothelial-mesenchymal transition in oral submucous fibrosis. J. Dent. Res. 2019, 98, 920–929. [Google Scholar] [CrossRef]
- Khan, I.; Pant, I.; Narra, S.; Radhesh, R.; Ranganathan, K.; Rao, S.G.; Kondaiah, P. Epithelial atrophy in oral submucous fibrosis is mediated by copper (II) and arecoline of areca nut. J. Cell. Mol. Med. 2015, 19, 2397–2412. [Google Scholar] [CrossRef] [Green Version]
- Jeng, J.H.; Hahn, L.J.; Lu, E.J.; Wang, Y.J.; Kuo, M.Y. Eugenol triggers different pathobiological effects on human oral mucosal fibroblasts 1. J. Dent. Res. 1994, 73, 1050–1055. [Google Scholar] [CrossRef]
- Thangjam, G.S.; Kondaiah, P. Regulation of oxidative-stress responsive genes by arecoline in human keratinocytes. J. Periodontal Res. 2009, 44, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Tejasvi, M.A.; Bangi, B.B.; Geetha, P.; Avinash, C.A.; Chittaranjan, B.; Bhayya, H.; Donempudi, P. Estimation of serum superoxide dismutase and serum malondialdehyde in oral submucous fibrosis: A clinical and biochemical study. J. Cancer Res. Ther. 2014, 1, 722. [Google Scholar]
- Shakunthala, G.K.; Annigeri, R.G.; Arunkumar, S. Role of oxidative stress in the pathogenesis of oral submucous fibrosis: A preliminary prospective study. Contemp. Clin. Dent. 2015, 6 (Suppl. S1), S172. [Google Scholar] [CrossRef] [PubMed]
- Paulose, S.; Rangdhol, V.; Ramesh, R.; Jeelani, S.A.; Brooklyin, S. Estimation of serum malondialdehyde and assessment of DNA damage using comet assay in patients with oral submucous fibrosis. J. Investig. Clin. Dent. 2016, 7, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Kapgate, T.D.; Bhowate, R.R.; Dangore, S.; Meshram, M.; Lohe, V.K. Effect of Turmeric on Serum Malondialdehyde in Oral Submucous Fibrosis. Int. J. Cur. Res. Rev. 2020, 12, 129. [Google Scholar] [CrossRef]
- Khanna, S.; Udas, A.C.; Kumar, G.K.; Suvarna, S.; Karjodkar, F.R. Trace elements (copper, zinc, selenium and molybdenum) as markers in oral sub mucous fibrosis and oral squamous cell carcinoma. J. Trace Elem. Med. Biol. 2013, 27, 307–311. [Google Scholar] [CrossRef]
- Chitra, S.; Balasubramaniam, M.; Hazra, J. Effect of α-tocopherol on salivary reactive oxygen species and trace elements in oral submucous fibrosis. Ann. Clin. Biochem. 2012, 49, 262–265. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.H.; Venkatesh, R.; More, C.B. Determination of role of ceruloplasmin in oral potentially malignant disorders and oral malignancy—A cross-sectional study. Oral Dis. 2017, 23, 1066–1071. [Google Scholar] [CrossRef]
- Sadaksharam, J. Significance of serum nitric oxide and superoxide dismutase in oral submucous fibrosis and squamous cell carcinoma: A comparative study. Contemp. Clin. Dent. 2018, 9, 283. [Google Scholar] [CrossRef]
- Nandakumaar, A.; Nataraj, P.; James, A.; Krishnan, R.; Mahesh, K.M. Estimation of Salivary 8-Hydroxydeoxyguanosine (8-OHdG) as a Potential Biomarker in Assessing Progression towards Malignancy: A Case-Control Study. Asian Pac. J. Cancer Prev. 2020, 21, 2325–2329. [Google Scholar] [CrossRef]
- Senghore, T.; Li, Y.F.; Sung, F.C.; Tsai, M.H.; Hua, C.H.; Liu, C.S.; Huang, R.J.; Yeh, C.C. Biomarkers of Oxidative Stress Associated with the Risk of Potentially Malignant Oral Disorders. Anticancer Res. 2018, 38, 5211–5216. [Google Scholar] [CrossRef] [PubMed]
- Meera, S.; Sarangarajan, R.; Rajkumar, K. 8-Isoprostane: A salivary oxidative stress biomarker for oral submucous fibrosis and oral squamous cell carcinoma. J. Oral Maxillofac. Pathol. 2020, 24, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Divyambika, C.V.; Sathasivasubramanian, S.; Vani, G.; Vanishree, A.J.; Malathi, N. Correlation of Clinical and Histopathological Grades in Oral Submucous Fibrosis Patients with Oxidative Stress Markers in Saliva. Indian J. Clin. Biochem. 2018, 33, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Bathi, R.J.; Rao, R.; Mutalik, S. GST null genotype and antioxidants: Risk indicators for oral pre-cancer and cancer. Indian J. Dent. Res. 2009, 20, 298–303. [Google Scholar]
- Madhulatha, G.; Das, S.; Venkateswarlu, N.; Pujar, A.; Jyothy, A.; Munshi, A. GSTM1 and GSTT1 null polymorphism and antioxidant levels in oral submucous fibrosis, leukoplakia and oral cancer patients among a South Indian Population. J. Oral Maxillofac. Surg. Med. Pathol. 2018, 30, 169–174. [Google Scholar] [CrossRef]
- Aggarwal, A.; Shetti, A.; Keluskar, V.; Bagewadi, A. Estimation of serum beta carotene levels in patients with oral submucous fibrosis in India. J. Oral Sci. 2011, 53, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Rathod, Y.G.; Kulkarni, S.P.; Khairnar, M.R.; Joshi, P.N.; Patle, B.K.; Pagare, J.S. Estimation of serum beta-carotene level in patients suffering from oral submucous fibrosis. J. Exp. Ther. 2018, 12, 267–271. [Google Scholar]
- Gurudath, S.; Ganapathy, K.; Sujatha, D.; Pai, A.; Ballal, S.; Ml, A. Estimation of superoxide dismutase and glutathione peroxidase in oral submucous fibrosis, oral leukoplakia and oral cancer—A comparative study. Asian Pac. J. Cancer Prev. 2012, 13, 4409–4412. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Mukherjee, S.; Mitra, S.; Singhal, P. Comparative Evaluation of Mitochondrial Antioxidants in Oral Potentially Malignant Disorders. Kurume Med. J. 2020, 66, 15–27. [Google Scholar] [CrossRef]
- Lee, S.S.; Chen, Y.J.; Tsai, C.H.; Huang, F.M.; Chang, Y.C. Elevated transglutaminase-2 expression mediates fibrosis in areca quid chewing-associated oral submucocal fibrosis via reactive oxygen species generation. Clin. Oral Investig. 2016, 20, 1029–1034. [Google Scholar] [CrossRef]
- Anuradha, C.D.; Shyamala Devi, C.S. Studies on the hematological profile and trace elements in oral submucous fibrosis. J. Clin. Biochem. Nutr. 1995, 19, 9–17. [Google Scholar] [CrossRef]
- Rai, V.; Bose, S.; Saha, S.; Chakraborty, S. Evaluation of oxidative stress and the microenvironment in oral submucous fibrosis. Heliyon 2019, 5, e01502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulasekaran, C.; Devi, M.; Dhivya, K.; Vijayalakshmi, D.; Sathishkumar, M.; Madhanmohan, A. Immunohistochemical detection of 8-hydroxydeoxyguanosine: A biomarker of oxidative DNA damage in oral submucous fibrosis. J. Oral Maxillofac. Pathol. 2020, 24, 536–541. [Google Scholar] [PubMed]
- Pitiyage, G.N.; Lim, K.P.; Gemenitzidis, E.; Teh, M.T.; Waseem, A.; Prime, S.S.; Tilakaratne, W.M.; Fortune, F.; Parkinson, E.K. Increased secretion of tissue inhibitors of metalloproteinases 1 and 2 (TIMPs -1 and -2) in fibroblasts are early indicators of oral sub-mucous fibrosis and ageing. J. Oral Pathol. Med. 2012, 41, 454–462. [Google Scholar] [CrossRef]
- Hou, X.; Liu, R.; Huang, C.; Jiang, L.; Zhou, Y.; Chen, Q. Cyclophilin A was revealed as a candidate marker for human oral submucous fibrosis by proteomic analysis. Cancer Biomark. 2017, 20, 345–356. [Google Scholar] [CrossRef]
- Yadav, K.D.; Patil, B.A.; Raheel, S.A.; Abuderman, A.; Patil, S.; Gaballah, K.; Kujan, O. Serum uric acid levels in patients with oral cancer, leukoplakia and submucous fibrosis: A cross-sectional study. Transl. Cancer Res. 2020, 9, 3084–3091. [Google Scholar] [CrossRef]
- Chang, J.Z.; Yang, W.H.; Deng, Y.T.; Chen, H.M.; Kuo, M.Y. Thrombin-stimulated connective tissue growth factor (CTGF/CCN2) production in human buccal mucosal fibroblasts: Inhibition by epigallocatechin-3-gallate. Head Neck 2012, 34, 1089–1094. [Google Scholar] [CrossRef]
- Chang, J.Z.; Yang, W.H.; Deng, Y.T.; Chen, H.M.; Kuo, M.Y. EGCG blocks TGFβ1-induced CCN2 by suppressing JNK and p38 in buccal fibroblasts. Clin. Oral Investig. 2013, 17, 455–461. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Chen, H.M.; Chang, J.Z.; Chiang, C.P.; Deng, Y.T.; Kuo, M.Y. Arecoline stimulated early growth response-1 production in human buccal fibroblasts: Suppression by epigallocatechin-3-gallate. Head Neck 2015, 37, 493–497. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Chen, H.M.; Lin, H.Y.; Yang, H.; Chang, J.Z. Epigallocatechin-3-gallate inhibits transforming-growth-factor-β1-induced collagen synthesis by suppressing early growth response-1 in human buccal mucosal fibroblasts. J. Formos. Med. 2017, 116, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, Y.P.; Wu, K.J.; Chen, H.M.; Deng, Y.T. Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: Suppression by epigallocatechin-3-gallate. J. Formos. Med. 2018, 117, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Illeperuma, R.P.; Kim, J. The Protective Effect of Antioxidants in Areca Nut Extract-Induced Oral Carcinogenesis. Asian Pac. J. Cancer Prev. 2020, 21, 2447–2452. [Google Scholar] [CrossRef]
- Francis, T.; Priya, V.V.; Gayathri, R.A. comparative study on the efficacy of lycopene and quercetin in oral submucous fibrosis cell lines. Drug Invent. Today 2019, 12, 1349–1351. [Google Scholar]
- Deng, Y.T.; Chen, H.M.; Cheng, S.J.; Chiang, C.P.; Kuo, M.Y. Arecoline-stimulated connective tissue growth factor production in human buccal mucosal fibroblasts: Modulation by curcumin. Oral Oncol. 2009, 45, e99–e105. [Google Scholar] [CrossRef] [PubMed]
- You, Y.; Huang, Y.; Wang, D.; Li, Y.; Wang, G.; Jin, S.; Zhu, X.; Wu, B.; Du, X.; Li, X. Angiotensin (1-7) inhibits arecoline-induced migration and collagen synthesis in human oral myofibroblasts via inhibiting NLRP3 inflammasome activation. J. Cell. Physiol. 2019, 234, 4668–4680. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Ahmed, J.A. comparative study on efficacy of different treatment modalities of oral submucous fibrosis evaluated by clinical staging in population of Southern Rajasthan. J. Cancer Res. Ther. 2015, 11, 113–118. [Google Scholar] [CrossRef]
- Saran, G.; Umapathy, D.; Misra, N.; Channaiah, S.G.; Singh, P.; Srivastava, S.; Shivakumar, S.A. Comparative study to evaluate the efficacy of lycopene and curcumin in oral submucous fibrosis patients: A randomized clinical trial. Indian J. Dent. Res. 2018, 29, 303–312. [Google Scholar] [CrossRef]
- Patil, S.R.; Yadav, S.; Al-Zoubi, I.A.; Maragathavalli, G.; Sghaireen, M.G.; Gudipaneni, R.K.; Alam, M.K. Comparative study of the efficacy of newer antioxitands lycopene and oxitard in the treatment of oral submucous fibrosis. Pesqui. Bras. Odontopediatria Clín. Integr. 2018, 16, 4059. [Google Scholar] [CrossRef] [Green Version]
- Johny, J.; Bhagvandas, S.C.; Mohan, S.P.; Punathil, S.; Moyin, S.; Bhaskaran, M.K. Comparison of Efficacy of Lycopene and Lycopene-Hyaluronidase Combination in the Treatment of Oral Submucous Fibrosis. J. Pharm. Bioallied Sci. 2019, 11, S260–S264. [Google Scholar] [CrossRef]
- Piyush, P.; Mahajan, A.; Singh, K.; Ghosh, S.; Gupta, S. Comparison of therapeutic response of lycopene and curcumin in oral submucous fibrosis: A randomized controlled trial. Oral Dis. 2019, 25, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Bagewadi, A.; Keluskar, V.; Singh, M. Efficacy of lycopene in the management of oral submucous fibrosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 103, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Karemore, T.V.; Motwani, M. Evaluation of the effect of newer antioxidant lycopene in the treatment of oral submucous fibrosis. Indian J. Dent. Res. Off. Publ. Indian Soc. Dent. Res. 2012, 23, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Arakeri, G.; Patil, S.; Maddur, N.; Rao Us, V.; Subash, A.; Patil, S.; Gao, S.; Brennan, P.A. Long-term effectiveness of lycopene in the management of oral submucous fibrosis (OSMF): A 3-years follow-up study. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2020, 49, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Gowda, B.B.K.; Yathish, T.R.; Sinhasan, S.; Naik, H.; Somayaji, P.; Anand, D. The response of oral submucous fibrosis to lycopene—A carotenoid antioxidant. A clinicopathological study. J. Clin. Diagn. Res. 2011, 5, 882–888. [Google Scholar]
- Rao, P.K. Efficacy of alpha lipoic acid in adjunct with intralesional steroids and hyaluronidase in the management of oral submucous fibrosis. J. Cancer Res. Ther. 2010, 6, 508–510. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, Y.; Li, F.; Zhu, Y.; Chen, Y.; Yang, S.; Sun, G. Allicin as a possible adjunctive therapeutic drug for stage II oral submucous fibrosis: A preliminary clinical trial in a Chinese cohort. Int. J. Oral Maxillofac. Surg. 2015, 44, 1540–1546. [Google Scholar] [CrossRef]
- Baptist, J.; Shakya, S.; Ongole, R. Rebamipide to Manage Stomatopyrosis in Oral Submucous Fibrosis. J. Contemp. Dent. Pract. 2016, 17, 1009–1012. [Google Scholar] [CrossRef]
- Kalkur, C.; Sattur, A.P.; Guttal, K.S.; Lakshman, A.R. “Introducing Modified Dakkak and Bennett Grading System for Indian Food in Oral Submucous Fibrosis”: A Dharwad Study. J. Diet. Suppl. 2019, 16, 207–214. [Google Scholar] [CrossRef]
- Kholakiya, Y.; Jose, A.; Rawat, A.; Nagori, S.A.; Jacob, S.; Roychoudhury, A. Surgical management of oral submucous fibrosis with “Seagull-nasolabial flap” combined with short-term oral pentoxifylline for preventing relapse. J. Stomatol. Oral Maxillofac. Surg. 2020, 121, 512–516. [Google Scholar] [CrossRef]
- Patil, S.; Halgatti, V.; Maheshwari, S.; Santosh, B.S. Comparative study of the efficacy of herbal antioxdants oxitard and aloe vera in the treatment of oral submucous fibrosis. J. Clin. Exp. Dent. 2014, 6, e265–e270. [Google Scholar] [CrossRef]
- Patil, S.; Al-Zarea, B.K.; Maheshwari, S.; Sahu, R. Comparative evaluation of natural antioxidants spirulina and aloe vera for the treatment of oral submucous fibrosis. J. Oral Biol. Craniofacial Res. 2015, 5, 11–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.; Hebbale, M.; Mhapuskar, A.; Ul Nisa, S.; Thopte, S.; Singh, S. Effectiveness of Aloe Vera and Antioxidant along with Physiotherapy in the Management of Oral Submucous Fibrosis. J. Contemp. Dent. Pract. 2016, 17, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudarshan, R.; Annigeri, R.G.; Sree Vijayabala, G. Aloe vera in the treatment for oral submucous fibrosis—A preliminary study. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol. 2012, 41, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Santosh, B.S.; Maheshwari, S.; Deoghare, A.; Chhugani, S.; Rajesh, P.R. Efficacy of oxitard capsules in the treatment of oral submucous fibrosis. J. Cancer Res. Ther. 2015, 11, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Anuradha, A.; Patil, B.; Asha, V.R. Evaluation of efficacy of Aloe vera in the treatment of oral submucous fibrosis—A clinical study. J. Oral Pathol. Med. 2017, 46, 50–55. [Google Scholar] [CrossRef]
- Nerkar Rajbhoj, A.; Kulkarni, T.M.; Shete, A.; Shete, M.; Gore, R.; Sapkal, R.A. Comparative Study to Evaluate Efficacy of Curcumin and Aloe Vera Gel along with Oral Physiotherapy in the Management of Oral Submucous Fibrosis: A Randomized Clinical Trial. Asian Pac. J. Cancer Prev. 2021, 22, 107–112. [Google Scholar] [CrossRef]
- Rai, B.; Kaur, J.; Jacobs, R.; Singh, J. Possible action mechanism for curcumin in pre-cancerous lesions based on serum and salivary markers of oxidative stress. J. Oral Sci. 2010, 52, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Rai, A.; Kaur, M.; Gombra, V.; Hasan, S.; Kumar, N. Comparative evaluation of curcumin and antioxidants in the management of oral submucous fibrosis. J. Investig. Clin. Dent. 2019, 10, e12464. [Google Scholar] [CrossRef]
- Yadav, M.; Aravinda, K.; Saxena, V.S.; Srinivas, K.; Ratnakar, P.; Gupta, J.; Sachdev, A.S.; Shivhare, P. Comparison of curcumin with intralesional steroid injections in Oral Submucous Fibrosis—A randomized, open-label interventional study. J. Oral Biol. Craniofacial Res. 2014, 4, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, S.; Arora, P. Effect of curcumin in management of potentially Malignant disorders-A comparative study. Onkol. Radioter. 2019, 13, 1–4. [Google Scholar]
- Shetty, P.; Shenai, P.; Chatra, L.; Rao, P.K. Efficacy of spirulina as an antioxidant adjuvant to corticosteroid injection in management of oral submucous fibrosis. Indian J. Dent. Res. 2013, 24, 347. [Google Scholar] [CrossRef] [PubMed]
- Bale, R.; Kattappagari, K.K.; Vidya, D.; Vuddandi, S.; Gummalla, C.; Baddam, V.R. Oral submucous fibrosis: A quantitative assessment of serum malondialdehyde, superoxide dismutase and correlation with clinical staging. J. Oral Maxillofac. Pathol. 2017, 21, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parl, F.F. Glutathione S-transferase genotypes and cancer risk. Cancer Lett. 2005, 221, 123–129. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boone, C.W.; Kelloff, G.J.; Freedman, L.S. Intraepithelial and postinvasive neoplasia as a stochastic continuum of clonal evolution, and its relationship to mechanisms of chemopreventive drug action. J. Cell. Biochem. 1993, 53, 14–25. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Guruprasad, R.; Nair, P.P.; Singh, M.; Singh, M.; Singh, M.P.; Jain, A. Serum vitamin C and iron levels in oral submucous fibrosis. Indian J. Dent. 2014, 5, 21–25. [Google Scholar] [CrossRef]
- Pipalia, P.R.; Annigeri, R.G.; Mehta, R. Clinicobiochemical evaluation of turmeric with black pepper and Nigella sativa in management of oral submucous fibrosis—a double-blind, randomized preliminary study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 705–712. [Google Scholar] [CrossRef]
- Jeng, J.H.; Ho, Y.S.; Chan, C.P.; Wang, Y.J.; Hahn, L.J.; Lei, D.; Hsu, C.C.; Chang, M.C. Areca nut extract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes. Carcinogenesis 2000, 21, 1365–1370. [Google Scholar] [CrossRef]
- Patel, P.N.; Thennavan, A.; Sen, S.; Chandrashekar, C.; Radhakrishnan, R. Translational approach utilizing COX-2, p53, and MDM2 expressions in malignant transformation of oral submucous fibrosis. J. Oral Sci. 2015, 57, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Tang, Z. Immunopathogenesis of oral submucous fibrosis by chewing the areca nut. J. Leukoc. Biol. 2022, 111, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Chua, N.Q.E.; Dang, S.; Davis, A.; Chong, K.W.; Prime, S.S.; Cirillo, N. Molecular Mechanisms of Malignant Transformation of Oral Submucous Fibrosis by Different Betel Quid Constituents-Does Fibroblast Senescence Play a Role? Int. J. Mol. Sci. 2022, 23, 1637. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.H.; Wang, Y.P.; Chang, J.Y.; Pan, Y.H.; Chang, M.C.; Jeng, J.H. Genetic Susceptibility and Protein Expression of Extracellular Matrix Turnover-Related Genes in Oral Submucous Fibrosis. Int. J. Mol. Sci. 2020, 21, 8104. [Google Scholar] [CrossRef] [PubMed]
Author/s, Year | Relevant Biomarker (s) | OSMF Samples or Model | Intervention | Control/Comparison | Study Type |
---|---|---|---|---|---|
Aggarwal et al., 2011 | beta-carotene | blood samples from OSMF patients | — | age- and sex-matched controls | biochemical |
Anuradha and Devi, 1995 | haemoglobin; ceruloplasmin; iron; copper; zinc | blood samples from OSMF patients; staged | — | age- and sex-matched healthy controls | biochemical |
Avinash et al., 2014 | MDA; SOD | blood samples from OSMF patients | — | healthy subjects | biochemical |
Bathi et al., 2009 | GSH; ceruloplasmin; MDA; GSTM1; GSTT1 | blood samples from OSMF patients | — | age-, sex-, and SES-matched controls | biochemical |
Bale et al., 2017 | MDA; SOD | blood samples from OSMF patients; staged | — | non-symptomatic OSMF | biochemical |
Banerjee et al., 2020 | SOD2, Catalase, GLRX2, GSH, GPx, TXN2 | mitochondria purified samples taken from OSMF patients | — | mitochondrial antioxidants in healthy controls and OPMD | biochemical |
Chang et al., 2001 | GSH; H2O2; mitochondrial membrane potential | oral OSF fibroblasts and oral KB epithelial cells treated with AN extracts and arecoline | — | baseline data (untreated control) | cell culture |
Chang et al., 2002 | unscheduled DNA synthesis | gingival keratinocytes treated with AN extracts | Vit C, GSH, NAC, Deferoxamine | untreated control, other treatments | cell culture |
Chang et al., 2013 | TGFβ1-induced CCN2 synthesis | buccal mucosal fibroblasts | EGCG; JNK, p38 MAPK, and ALK5 inhibitors | untreated control | cell culture |
Chang et al., 2014 | PGE2, COX-2, CYP1A1, HO-1 | gingival keratinocytes exposed to AN extracts | piper betle leaf (PBL) extract, hydroxychavicol, dicoumarol, curcumin | untreated control, other treatments | cell culture |
Chang et al., 2016 | 8-isoprostane, IL-1α; ADAM 17; PGE2; COX2 | primary human gingival keratinocytes treated with AN extracts and arecoline | α-naphthoflavone, aspirin, catalase; MEK, JAK, and Src inhibitors | untreated control, other treatments | cell culture |
Chitra et al., 2012 | LPO; conjugated dienes; HO; SOD; H2O2; copper; calcium; magnesium; potassium; iron | saliva samples from OSMF patients | — | age- and sex-matched healthy controls | biochemical |
Deng et al., 2009 | CCN2 | OSMF tissue samples; normal buccal mucosal fibroblasts treated with arecoline | NAC, curcumin | normal oral mucosa; untreated control | IHC, cell culture |
Divyambika et al., 2018 | LPO; GSH; SOD; GPx; Vit A, C and E | saliva samples from OSMF patients | — | age- and sex-matched healthy controls | biochemical |
Francis et al., 2019 | — | OSMF cell lines | lycopene; quercetin | — | cell culture |
Gupta et al., 2004 ^ | MDA; ROS | blood samples from OSMF patients; graded | — | healthy controls | biochemical |
Gurudath et al., 2012 | SOD, GPx | blood samples from OSMF patients | — | age- and sex-matched healthy subjects | biochemical |
Guruprasad et al., 2014 | Vitamin C; iron | blood samples from OSMF patients | — | healthy patients | biochemical |
Hou et al., 2017 | Cyclophilin A (CYPA) via 2D gel electrophoresis/mass spectrometry | tissue biopsy from OSMF patients | — | normal mucosal tissue | biochemical |
Hsieh et al., 2015 | Egr1 | OSMF tissues; buccal mucosal fibroblasts treated with arecoline | NAC; EGCG; JNK, ERK inhibitors | untreated control | IHC, cell culture |
Hsieh et al., 2017 | Egr1, COL1A1, COL1A2 | buccal mucosa fibroblast cultures stimulated with TGF-β | EGCG; ERK, JNK, p38 MAPK, ALK5, inhibitors | untreated control | cell culture |
Hsieh et al., 2018 | TGFβ; ROS; CCN2, Egr-1 | human buccal mucosal fibroblasts treated with arecoline | EGCG; TGFβ inhibitor; antioxidant | untreated control | cell culture |
Illeperuma et al., 2015 | ROS; GRO-α, IL6, IL8; DNA double strand breaks, 8-oxoG | OSMF tissues; immortalised human normal oral keratinocytes and AN-exposed fibroblasts | antioxidants; NOX1 and 4 silencing | normal oral mucosa; untreated controls | IHC, cell culture |
Jeng et al., 2004 | mitochondrial membrane potential depolarization; GSH; ROS | oral KB epithelial cells treated with hydroxychavicol | NAC, SOD, catalase | untreated and DMSO-treated cells | cell culture |
Jeng et al., 1994a | GSH, ATP, xanthine oxidase | normal oral mucosal fibroblasts treated with eugenol | — | untreated control | cell culture |
Jeng et al., 1994b | DNA strand break | oral mucosal fibroblasts incubated with different BQ constituents | GSH, cysteine, mannitol, catalase, SOD | untreated controls | cell culture |
Kapgate et al., 2020 | MDA | blood samples from OSMF patients | turmeric | healthy subjects | biochemical |
Khan et al., 2015 | ROS, catalase activity | human keratinocytes and gingival fibroblasts treated with arecoline and AN extracts | Cu; GSH, SOD, NAC | untreated controls | cell culture |
Khanna et al., 2013 | copper; zinc; selenium and molybdenum | blood samples from OSMF patients | — | healthy subjects and OSCC patients | biochemical |
Kim et al., 2020 | Gro-α, IL-6, IL-8; EMT | HPV16 E6/E7-transfected immortalised human oral keratinocytes (IHOK) | EGCG; GSH; NAC | — | cell culture |
Kulasekaran et al., 2020 | 8-OHdG | OSMF tissues (very early, early, moderately advanced, and advanced) | — | normal buccal mucosa | IHC |
Lee et al., 2016 | ROS | OSMF buccal mucosa biopsy sample; normal oral fibroblasts | GSH; NAC; EGCG | normal buccal mucosa | IHC; cell culture |
Li et al., 2019 | ROS; PERK; collagen; | OSMF tissues; HHUVECs treated with arecoline; OSMF mouse model | verteporfin | normal buccal mucosa; untreated controls | IHC, cell culture, mouse model |
Madhulatha et al., 2018 | glutathione GSTM1, GSTT1 | blood samples from OSMF patients | — | healthy subjects | biochemical |
Meera et al., 2020 | 8-isoprostane | blood and saliva samples from OSMF patients | — | OSCC and control patients | biochemical |
Nair et al., 1992 | ROS, DNA damage | Syrian golden hamsters exposed to various BQ components; OSMF patients | — | Untreated controls (no atropine); healthy subjects | Animal model, ICC |
Nandakumaar et al., 2020 | 8-OHdG | saliva samples from OSMF patients | — | age- and sex-matched healthy controls, OSCC patients | biochemical |
Pant et al., 2016 | TGF-β signaling (ATF2; pJNK); ROS | HaCaT and HPL1D epithelial cell lines exposed to AN extracts; OSMF tissues | — | normal buccal mucosa; untreated controls | cell culture, IHC |
Paulose et al., 2016 | MDA | blood samples from OSMF patients | — | age- and gender-matched healthy individuals | biochemical |
Pitiyage et al., 2012 | TIMP-1; TIMP-2 | early and advanced OSMF tissues; OSMF fibroblasts | — | age-matched healthy controls and paan users | cell culture, IHC |
Rai et al., 2010 | MDA, 8-OHdG | blood and saliva samples from OSMF patients | curcumin (1 g) | healthy patients | comparative, biochemical |
Rai et al., 2019 | 8-OHdG; 8-epi-PGF2α; Protein carbonyl | blood samples from OSMF patients | — | serum sample of healthy patients | biochemical |
Rathod et al., 2018 | beta-carotene | blood samples from OSMF patients | — | age- and gender-matched control | biochemical |
Sadaksharam, 2018 | NO; SOD | OSMF and OSCC patients | — | healthy controls | biochemical |
Senghore et al., 2018 | 8-OHdG; 8-isoprostane | blood samples from OPMD male patients | — | plasma 8-OHdG and 8-isoprostane levels in OL | biochemical |
Shah et al., 2017 | ceruloplasmin | blood samples from OSMF patients | — | blood samples from healthy controls | biochemical |
Shakunthala et al., 2015 | MDA; antioxidant activity | OSMF patients | — | age-matched controls | biochemical |
Singh et al., 2015 | COX-2 | OSMF tissues, fibroblasts from OSMF, and normal oral fibroblasts treated with arecoline | — | healthy subjects; untreated controls | cell culture, IHC |
Thangjam and Kondaiah, 2009 | heme oxygenase-1; ferritin light chain; G6PDH; GCLC; GSH; IL-1a; p38 MAPK | human keratinocyte cells (HaCaT cell line) treated with arecoline | — | untreated controls | cell culture |
Tsai et al., 2009 | Heme Oxygenase-1 | OSMF tissues; fibroblasts from OSMF and normal oral fibroblasts treated with arecoline | — | normal oral tissues; untreated controls | cell culture |
Yadav et al., 2020 | uric acid | blood samples from OSMF patients | — | healthy controls, leukoplakia, and OSCC | biochemical |
You et al., 2019 | AT1R; Mas1; NOX4; IL-Iβ; α-SMA; collagen type 1; CCN2; NLRP3; AT1R; ACE; ACE2; H2O2 | OSMF tissues; animal model of OSMF in ALL Sprague-Dawley rats; normal oral fibroblasts treated with arecoline | VE0991 | normal oral tissues; positive and negative controls | cell culture |
Author/s, Year | Antioxidant (s) | Clinical Parameters | Control/Comparison | Study Type |
---|---|---|---|---|
Anuradha et al., 2017 | systemic (juice) and topical (gel) aloe vera | BS; CF; MO; TP | hydrocortisone; hyaluronidase; antioxidant supplements | RCT |
Arakeri et al., 2020 | lycopene (4 mg/day for 3 months) | BS; MO | placebo capsule | RCT |
Baptist et al., 2016 | rebamipide (100 mg t.i.d. for 21 days) | BS | betamethasone (4 mg/mL biweekly for 4 weeks) | RCT |
Goel and Ahmed., 2015 | lycopene capsules (2 mg, b.i.d. for 6 months) | MO | no treatment; betamethasone (4 mg/mL) diluted in 1 mL of 2% xylocaine (biweekly for 6 months) | RCT |
Gowda et al., 2011 | lycopene capsules with zinc, selenium, and phytonutrients (2000 μg, b.i.d. for 3–6 months) | BS; MO; healing of ulcers; mucosal color/texture | baseline (before treatment); non placebo-controlled | RCT |
Gupta et al., 2004 ^ | beta-carotene (50 mg); Vit A palmitate (2500 IU); Vit E acetate (10 IU); Vit C; zinc manganese; copper | MO; TP | age- and sex-matched healthy controls; baseline (before treatment) | RCT |
Jiang et al., 2015 | allicin (1 mg TCM-046, 99% HPLC intralesional injection) | MO, BS | triamcinolone acetonide (intralesional injection) | RCT |
Johny et al., 2019 | lycopene (8 mg b.i.d for 3 months); lycopene (8 mg b.i.d for 3 months)/hyaluronidase (1500 IU twice/week for 3 months) | MO | placebo capsules | RCT |
Kalkur et al., 2014 | Pentoxifylline (400 mg/day) | BS, speech | standard antioxidants | RCT |
Kapoor et al., 2019 | curcumin (400 mg/day for 3 months) | pain, MO | — | RCT |
Karemore et al., 2012 | lycopene (4 mg b.i.d for 3 months) | MO | placebo capsule | RCT |
Kholakiya et al., 2020 | pentoxifylline (400 mg t.i.d for 3 months) | MO, BS, malignant transformation, relapse | — | retrospective |
Kumar et al., 2007 | lycopene (8 mg b.i.d for 6 months); curcumin (300 mg b.i.d for 6 months) | MO, BS | placebo capsule | RCT |
Patil et al., 2014 | oxitard (2 capsules/day); topical aloe vera (5 mg t.i.d for 3 months) | MO, TP, swallowing, speech, pain | — | RCT |
Patil et al., 2015a | xitard (2 capsules b.i.d for 3 months) | MO, TP, BS, pain, swallowing, speech | placebo capsules | RCT |
Patil et al., 2015b | spirulina (500 mg/day for 3 months); topical aloe vera (5 mg t.i.d for 3 months) | MO, BS, pain, ulcers/erosions/vesicles | — | RCT |
Patil et al., 2018 | oxitard (2 capsules t.i.d for 3 months); lycopene (8 mg/day for 3 months) | MO, TP, swallowing, speech, pain, BS | — | RCT |
Pipalia et al., 2016 | turmeric (400 mg)/black pepper (100 mg) (2 capsules t.i.d for 3 months); nigella sativa (2 × 500 mg capsules t.i.d for 3 months) | MO, BS, CF, TP | — | RCT |
Piyush et al., 2019 | curcumin (300 mg b.i.d for 6 months); lycopene (8 mg b.i.d for 6 months) | MO, BS, TP, CF | placebo capsules | RCT |
Rai et al., 2019 | curcumin (300 mg t.i.d for 12 weeks) | MO, BS, TP, adverse reactions | standard antioxidants | RCT |
Rajbhoj et al., 202 | aloe vera (~5 mg/day); curcumin gel (~5 mg/day) | MO, BS | — | RCT |
Rao PK. 2010 | alpha lipoic acid (once/day for 3 months) and betamethasone (1 mL) and hyaluronidase (1500 IU); once/week for 12 weeks | MO, BS | betamethasone (1 mL) and hyaluronidase (1500 IU); once/week for 12 weeks | RCT |
Saran et al., 2018 | lycopene (4 mg/day for 3 months); curcumin (300 mg t.i.d for 3 months) | MO, BS | — | RCT |
Shetty et al., 2013 | Spirulina (500 mg b.i.d) | MO, BS | placebo capsules | RCT |
Singh et al., 2016 | Aloe vera | BS, MO, CF, TP | standard antioxidant capsule | RCT |
Sudarshan, 2012 | topical aloe vera (~5 mg t.i.d for 3 months) | MO, CF, TP | standard antioxidant capsule | RCT |
Yadav et al., 2014 | curcumin (2 × 300 mg/day for 3 months) | BS, MO, TP | dexamethasone (4 mg) and hyaluronidase (1500 I.U) | RCT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saso, L.; Reza, A.; Ng, E.; Nguyen, K.; Lin, S.; Zhang, P.; Fantozzi, P.J.; Armagan, G.; Romeo, U.; Cirillo, N. A Comprehensive Analysis of the Role of Oxidative Stress in the Pathogenesis and Chemoprevention of Oral Submucous Fibrosis. Antioxidants 2022, 11, 868. https://doi.org/10.3390/antiox11050868
Saso L, Reza A, Ng E, Nguyen K, Lin S, Zhang P, Fantozzi PJ, Armagan G, Romeo U, Cirillo N. A Comprehensive Analysis of the Role of Oxidative Stress in the Pathogenesis and Chemoprevention of Oral Submucous Fibrosis. Antioxidants. 2022; 11(5):868. https://doi.org/10.3390/antiox11050868
Chicago/Turabian StyleSaso, Luciano, Ahmad Reza, Emily Ng, Kimtrang Nguyen, Sheng Lin, Pangzhen Zhang, Paolo Junior Fantozzi, Guliz Armagan, Umberto Romeo, and Nicola Cirillo. 2022. "A Comprehensive Analysis of the Role of Oxidative Stress in the Pathogenesis and Chemoprevention of Oral Submucous Fibrosis" Antioxidants 11, no. 5: 868. https://doi.org/10.3390/antiox11050868
APA StyleSaso, L., Reza, A., Ng, E., Nguyen, K., Lin, S., Zhang, P., Fantozzi, P. J., Armagan, G., Romeo, U., & Cirillo, N. (2022). A Comprehensive Analysis of the Role of Oxidative Stress in the Pathogenesis and Chemoprevention of Oral Submucous Fibrosis. Antioxidants, 11(5), 868. https://doi.org/10.3390/antiox11050868