Multicentric Standardization of Protocols for the Diagnosis of Human Mitochondrial Respiratory Chain Defects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Procedure
- (i)
- Sample collection (expected time: 15 min)
- (ii)
- Tissue homogenization, cell lysate and mitochondria-enriched preparation (expected time: 15 min–1 h)
- (iii)
- Protein measurement (expected time: 1 h)
- (iv)
- MRC enzyme assessment (expected time: 6 h)
- (v)
- CS enzyme quantification
- (vi)
- Database, online work, quality controls and result analysis
3. Results and Discussion
4. Conclusions
- Mitochondrial respiratory chain enzymatic assays are relevant analytical tools in research and diagnosis with high inter-laboratory variability.
- Updated and functional standardized protocols, normality ranges and troubleshooting methods are herein provided to overcome the most common experimental challenges.
- This Spanish multicentric study joins the previous French and Italian initiatives to encourage other countries to establish common international analytical standards.
- Additional analyses of clinical, genetic and pathological measures should be performed to better understand the contribution of MRC defects to human disease.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marí, M.; Colell, A. Mitochondrial Oxidative and Nitrosative Stress as a Therapeutic Target in Diseases. Antioxidants 2021, 10, 314. [Google Scholar] [CrossRef] [PubMed]
- Ježek, P. Mitochondrial Redox Regulations and Redox Biology of Mitochondria. Antioxidants 2021, 10, 1921. [Google Scholar] [CrossRef]
- Vafai, S.B.; Mootha, V.K. Mitochondrial disorders as windows into an ancient organelle. Nature 2012, 491, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Vuda, M.; Kamath, A. Drug induced mitochondrial dysfunction: Mechanisms and adverse clinical consequences. Mitochondrion 2016, 31, 63–74. [Google Scholar] [CrossRef]
- Munnich, A.; de Lonlay, P.; Rötig, A.; Rustin, P. Mitochondrial disorders. Bull. Acad. Natl. Med. 2009, 193, 19–41, discussion 41–43. [Google Scholar] [PubMed]
- Wibom, R.; Hagenfeldt, L.; von Döbeln, U. Measurement of ATP production and respiratory chain enzyme activities in mitochondria isolated from small muscle biopsy samples. Anal. Biochem. 2002, 311, 139–151. [Google Scholar] [CrossRef]
- Cossarizza, A.; Ferraresi, R.; Troiano, L.; Roat, E.; Gibellini, L.; Bertoncelli, L.; Nasi, M.; Pinti, M. Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry. Nat. Protoc. 2009, 4, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Graham, B.H. Measurement of Mitochondrial Oxygen Consumption Using a Clark Electrode. Methods Mol. Biol. 2011, 837, 63–72. [Google Scholar] [CrossRef]
- Troiano, L.; Ferraresi, R.; Lugli, E.; Nemes, E.; Roat, E.; Nasi, M.; Pinti, M.; Cossarizza, A. Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nat. Protoc. 2007, 2, 2719–2727. [Google Scholar] [CrossRef] [PubMed]
- Pesta, D.; Gnaiger, E. High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 2012, 810, 25–58. [Google Scholar] [PubMed]
- Acin-Perez, R.; Silva, P.F.; Peleato, M.L.; Pérez-Martos, A.; Enriquez, J.A. Respiratory Active Mitochondrial Supercomplexes. Mol. Cell 2008, 32, 529–539. [Google Scholar] [CrossRef]
- Buján, N.; Arias, A.; Montero, R.; García-Villoria, J.; Lissens, W.; Seneca, S.; Espinós, C.; Navas, P.; De Meirleir, L.; Artuch, R.; et al. Characterization of CoQ10 biosynthesis in fibroblasts of patients with primary and secondary CoQ10 deficiency. J. Inherit. Metab. Dis. 2013, 37, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Casademont, J.; Perea, M.; López, S.; Beato, A.; Miró, O.; Cardellach, F. Enzymatic diagnosis of oxidative phosphorylation defects on muscle biopsy: Better on tissue homogenate or on a mitochondria-enriched suspension? Med. Sci. Monit. 2004, 10, CS49–CS53. [Google Scholar] [PubMed]
- Gellerich, F.N.; Mayr, J.A.; Reuter, S.; Sperl, W.; Zierz, S. The problem of interlab variation in methods for mitochondrial disease diagnosis: Enzymatic measurement of respiratory chain complexes. Mitochondrion 2004, 4, 427–439. [Google Scholar] [CrossRef]
- Medja, F.; Allouche, S.; Frachon, P.; Jardel, C.; Malgat, M.; Mousson de Camaret, B.; Slama, A.; Lunardi, J.; Mazat, J.P.; Lombès, A. Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis. Mitochondrion 2009, 9, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Spinazzi, M.; Casarin, A.; Pertegato, V.; Salviati, L.; Angelini, C. Assessment of mitochondrial respiratory chain enzymatic activities on tissues and cultured cells. Nat. Protoc. 2012, 7, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Barrientos, A. In vivo and in organello assessment of OXPHOS activities. Methods 2002, 26, 307–316. [Google Scholar] [CrossRef]
- Rustin, P.; Chretien, D.; Bourgeron, T.; Gérard, B.; Rotig, A.; Saudubray, J.; Munnich, A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta 1994, 228, 35–51. [Google Scholar] [CrossRef]
- Pallotti, F.; Lenaz, G. Chapter 1 Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol. 2001, 65, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Rice, J.E.; Lindsay, J.G. Chapter 4: Subcellular fractionation of mitochondria. In Subcellular Fractionation: A practical Approach, 1st ed.; Graham, J.M., Rickwood, D., Eds.; Oxford University Press: Oxford, UK, 1997; pp. 107–142. [Google Scholar]
- Gnaiger, E. Polarographic oxygen sensors, the oxygraph, and high-resolution respirometry to assess mitochondrial function. In Drug-Induced Mitochondrial Dysfunction, 1st ed.; Dykens, J., Will, Y., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; Volume 12, pp. 327–352. [Google Scholar]
- Miró, O.; Jarreta, D.; Casademont, J.; Barrientos, A.; Rodríguez, B.; Gómez, M.; Nunes, V.; Urbano-Márquez, A.; Cardellach, F. Absence of mitochondrial dysfunction in polymyalgia rheumatica. Evidence based on a simultaneous molecular and biochemical approach. Scand. J. Rheumatol. 1999, 28, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Chretien, D.; Bénit, P.; Chol, M.; Lebon, S.; Rötig, A.; Munnich, A.; Rustin, P. Assay of mitochondrial respiratory chain complex I in human lymphocytes and cultured skin fibroblasts. Biochem. Biophys. Res. Commun. 2003, 301, 222–224. [Google Scholar] [CrossRef]
- Casademont, J.; Garrabou, G.; Miró, O.; López, S.; Pons, A.; Bernardo, M.; Cardellach, F. Neuroleptic treatment effect on mitochondrial electron transport chain: Peripheral blood mononuclear cells analysis in psychotic patients. J. Clin. Psychopharmacol. 2007, 27, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Queraltó, J.M.; Antoja, F.; Cortés, M.; Doménech, M.V.; Fuentes, J.; Llagostera, M.J.; Llangostera, M.; Ramón, F.; Rojo, I. Bases estadísticas de la teoría de valores de referencia. Rev. Soc. Esp. Quím. Clín. 1983, 2, 95–105. [Google Scholar]
- Bereiter-Hahn, J. Mitochondrial Dynamics in Aging and Disease. Prog. Mol. Biol. Transl. Sci. 2014, 127, 93–131. [Google Scholar] [CrossRef] [PubMed]
Difference | French Network | Spanish Network | Aim | |
---|---|---|---|---|
Homogenization | Glass-glass potters | Teflon-glass potters | Avoiding MRC damage | |
Protein quantification | BCA or Lowry | BCA | Avoiding Mannitol interference in protein quantification | |
Time for MRC assays | One day | Feasible in one day but divided into two days (or as much as MRC assays) by using aliquots | Adapting protocols into laboratory standards | |
MRC Complex III measurement | Decylubiquinol reduction through dithionite | Decylubiquinol reduction through sodium borohydride | Longer and more stable reagent reduction | |
MRC Complex III measurement | No detergent into the reaction mix | Tween 20 | Linear kinetic ranges | |
MRC Complex III measurement | No sample dilution | 3-fold sample dilution | Linear kinetic ranges | |
MRC Complex IV measurement | No sample dilution | 3-fold sample dilution | Linear kinetic ranges | |
MRC analysis | No specific analysis time interval | Standardized and specific analysis time intervals for each assay | Result consistency | |
Common control sample | Site-specific | Common to all centers | Allowing inter-site result comparison and site-specific problem detection | |
Online batch reagent register | Non specified | Batch reagent recorded and compared among groups | Allowing inter-site result comparison and batch-specific problem detection | |
Critical Steps | Recommendation | |||
Sample Collection | It is critical to minimize time from sample collection to cryopreservation and fast ice-cold thawing before homogenization | |||
Sample Preparation | Homogenization of tissue in fragments weighing at least 50 mg; otherwise, sample fractions are lost through the homogenization process | |||
Extensive training in homogenization to obtain reliable measurements | ||||
Protein quantification and sample dilution | Protein measurement allowed sample dilution to 2 mg/mL in mannitol prior to MRC measurements to meet the same kinetic requirements | |||
MRC enzyme measurement | Temperature stability maintained at 37 °C (human physiologic conditions) | |||
Introducing control samples in protein quantification and MRC assays | ||||
When possible, analysis of patients and control samples in parallel | ||||
Online network: cloud databases to register reference ranges of human samples, control samples and reagent traceability |
CI | CII | CIII | CIV | CI + III | CII + III | CS | |
---|---|---|---|---|---|---|---|
Wavelength (nm) | 340 | 600 | 550 | 550 | 550 | 550 | 412 |
Buffer | 50 mM KP pH7.5 | 25 mM KP pH 7.5 | 25 mM KP pH 7.5 | 50 mM KP pH 7.0 | 50 mM KP pH 7.5 | 20 mM KP pH 7.5 | 100 mM Tris-HCl pH 8.1 |
Substrates | 100 µM NADH 100 µM DQ | 20 mM Succinate 50 µM DCPIP 100µM DQ | 75 µM Cytochrome C 100 µM DQH2 | 100 µM Reduced Cytochrome C | 200 µM NADH 100 µM Cytochrome C | 20 mM Succinate 100 µM Cytochrome C | 300 µM Acetyl-CoA 100 µM DTNB 500 µM Oxaloacetate |
Other reagents | BSA 3.75 mg/mL | BSA 2 mg/mL | 0.1 mM EDTA 0.025% Tween 20 v/v 0.5 mM KCN | BSA 1 mg/mL 1 mM KCN | BSA 2 mg/mL | 0.1% Triton X-100 | |
Specific inhibitor | 12.5 µM Rotenone | 1 mM KCN | Aa 10 µg/ml | 12.5 µM Rotenone | 1 mM KCN | ||
Muscle homogenate | 40 µg protein | 40 µg protein | 3-fold diluted 20 µg protein | 3-fold diluted 40 µg protein | 40 µg protein | 40 µg protein | 40 µg protein |
Preincubation time | 5 min | 5 min | 5 min | 5 min | 5 min | 5 min | 5 min |
Baseline reaction | - | 3 min | - | - | - | Control without sample | 4 min |
Initiator of the reaction | 100 µM NADH | 100 µM DQ | 100 µM DQH2 | Sample | 200 µM NADH | 100 µM Cytochrome C | 500 µM Oxaloacetate |
Total assay time(selected interval) | 3 min (consider 1–3) | 3 min (consider 0–3) | 3 min (consider 0–1.5) | 3 min (consider 0–3) | 3 min (consider 0–1.5) | 3 min (consider 0–3) | 4 min (consider 0–3) |
ε (mmol−1 cm−1) | 6.2 | 19.2 | 18.5 | 18.5 | 18.5 | 18.5 | 13.6 |
Calculation factor | 4032.3 | 1302.1 | 8108.1 | 4054.2 | 1351.4 | 1351.4 | 1838.2 |
Complex | Activity | IBC U737 | HCL U722 | 12O U723 | VH U701 | UPO U729 | Paris Lab 1 | Angers Lab 2 | Caen Lab 3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(n = 119) | (n = 29) | (n = 25) | (n = 14) | (n = 75) | (n = 89) | (n = 39) | (n = 26) | ||||||||||
Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV | ||
I | Specific | 37.99 ± 14.86 | 39.1 | 25.09 ± 9.09 | 36.2 | 74.12 ± 19.95 | 26.9 | 27.20 ± 5.82 | 21.4 | 32.52 ± 11.33 | 34.8 | 42 ± 16 | 38.1 | 42 ± 8 | 19.0 | 56 ± 31 | 55.4 |
Relative to CS | 0.23 ± 0.07 | 30.4 | 0.22 ± 0.04 | 18.2 | 0.37 ± 0.07 | 18.9 | 0.16 ± 0.03 | 18.8 | 0.21 ± 0.04 | 19.0 | 0.19 ± 0.05 | 26.3 | 0.19 ± 0.05 | 26.3 | 0.27 ± 0.06 | 22.2 | |
II | Specific | 62.46 ± 22.54 | 36.1 | 40.60 ± 8.78 | 21.6 | 86.03 ± 17.34 | 20.2 | 50.37 ± 13.41 | 26.6 | 34.32 ± 9.03 | 26.3 | 61 ± 22 | 36.1 | 68 ± 20 | 29.4 | 79 ± 38 | 48.1 |
Relative to CS | 0.37 ± 0.08 | 21.6 | 0.32 ± 0.13 | 40.6 | 0.43 ± 0.06 | 14.0 | 0.29 ± 0.03 | 10.3 | 0.20 ± 0.02 | 10.0 | 0.29 ± 0.07 | 24.1 | 0.27 ± 0.07 | 25.9 | 0.40 ± 0.11 | 27.5 | |
III | Specific | 164.21 ± 46.29 | 28.2 | 129.77 ± 44.82 | 34.5 | 222.94 ± 54.77 | 24.6 | 101.44 ± 19.82 | 19.5 | 142.45 ± 43.90 | 30.8 | 166 ± 72 | 43.4 | 301 ± 77 | 25.6 | 252 ± 119 | 47.2 |
Relative to CS | 0.92 ± 0.24 | 26.1 | 1.23 ± 0.20 | 16.3 | 1.08 ± 0.16 | 14.8 | 0.59 ± 0.14 | 23.7 | 0.95 ± 0.27 | 28.4 | 0.76 ± 0.25 | 32.9 | 1.21 ± 0.31 | 25.6 | 1.33 ± 0.46 | 34.6 | |
IV | Specific | 135.15 ± 53.34 | 39.5 | 88.47 ± 31.63 | 35.8 | 273.31 ± 54.10 | 19.8 | 80.87 ± 33.15 | 41.0 | 132.09 ± 29.47 | 22.3 | 184 ± 64 | 34.8 | 210 ± 42 | 20.0 | 205 ± 98 | 47.8 |
Relative to CS | 0.81 ± 0.28 | 34.6 | 0.72 ± 0.13 | 18.1 | 1.53 ± 0.20 | 13.1 | 0.43 ± 0.14 | 32.6 | 0.80 ± 0.12 | 15.0 | 0.90 ± 0.24 | 26.6 | 0.86 ± 0.21 | 24.4 | 1.02 ± 0.32 | 31.4 | |
I + III | Specific | 21.41 ± 12.20 | 57.0 | 15.61 ± 6.92 | 44.3 | 38.17 ± 6.80 | 17.8 | 16.22 ± 4.88 | 30.1 | 19.36 ± 5.62 | 29.0 | 32 ± 16 | 50.0 | NA | NA | NA | NA |
Relative to CS | 0.13 ± 0.06 | 46.1 | 0.10 ± 0.03 | 30.0 | 0.20 ± 0.03 | 15.0 | 0.07 ± 0.03 | 42.9 | 0.12 ± 0.03 | 25.0 | NA | NA | NA | NA | NA | NA | |
II + III | Specific | 36.33 ± 10.57 | 29.1 | 25.73 ± 5.53 | 21.5 | 46.03 ± 7.35 | 16.0 | 24.21 ± 2.75 | 11.4 | 31.68 ± 6.18 | 19.5 | 49 ± 16 | 32.7 | 48 ± 13 | 27.1 | 77 ± 46 | 59.7 |
Relative to CS | 0.21 ± 0.06 | 28.6 | 0.21 ± 0.08 | 38.1 | 0.19 ± 0.03 | 15.8 | 0.12 ± 0.03 | 25.0 | 0.21 ± 0.04 | 19.0 | NA | NA | NA | NA | NA | NA | |
CS | Specific | 172.02 ± 47.6 | 27.7 | 121.48 ± 30.23 | 24.9 | 196.19 ± 39.28 | 20.0 | 191.55 ± 60.88 | 31.8 | 160.87 ± 27.02 | 16.8 | 220 ± 74 | 33.6 | 278 ± 52 | 18.7 | 202 ± 102 | 50.5 |
Problem | Cause | Solution |
---|---|---|
Low MRC enzymatic activities | Excessive homogenization deteriorates sample stability | Normalize by citrate synthase and, if possible, repeat homogenization |
Incorrect protein quantification with overestimation of real value | Normalize by citrate synthase and, if possible, repeat protein quantification | |
Temperature of spectrophotometer is below 37 °C | Check temperature of the spectrophotometer | |
Different wavelength than required for the assay | Check wavelength requirement of the specific assay | |
Reaction medium or required reagent for the assay has been deteriorated | Check reagent storage: protection from light, cold storage, too long time since preparation | |
Not enough sample has been added to the assay | Duplicate or triplicate sample amount | |
Excessive sample has been added to the assay (usually reaction will not be linear) | Decrease by half or third sample amount | |
Low Complex I activity | NADH has been oxidized | Check macroscopic appearance of stored NADH (NADH should be dry and white) |
Inhibition is not efficient | Check proper Rotenone addition and mixture into the cuvette (appropriate handling and pipetting) | |
Low Complex II activity | Lack of electron acceptor (reaction product) | Check DCPIP expiration date |
Low Complex III activity | Lack of electron donor (substrate product) | Check decylubiquinol expiration date |
Inhibition is not efficient | Check proper antimycin a addition into cuvette (appropriate handling and pipetting) | |
Low Complex IV activity | Lack of electron donator (substrate product) | Has been reduced cytochrome c extemporaneously prepared? |
Check if absorbance of reduced cytochrome c is still in the proper range (90–95% oxidized one) | ||
Change of cytochrome c batch | ||
Low Complex I + III activity | Inhibition is not efficient | Check proper rotenone addition into cuvette (appropriate handling and pipetting) |
Low citrate synthase | Reaction medium or required reagent for the assay has been deteriorated | Check acetyl coenzyme a, oxaloacetate and DTNB integrity |
High MRC enzymatic activities | Incorrect protein quantification (below real value) increased calculations | Normalize by CS and, if possible, repeat protein quantification |
Fibroblasts | PBMC | ||||||
---|---|---|---|---|---|---|---|
IBC U737 | French Group | HCL U722 | |||||
(n = 28) | (n = 50) | (n = 11) | |||||
Complex | Activity | Mean ± SD | CV | Mean ± SD | CV | Mean ± SD | CV |
I | Specific | NA | NA | NA | NA | 28.99 ± 8.36 | 28.8 |
Relative to CS | NA | NA | NA | NA | 1.18 ± 0.34 | 28.8 | |
II | Specific | 29 ± 6 | 20.7 | 27 ± 8 | 29.6 | 19.42 ± 1.81 | 9.3 |
Relative to CS | 0.64 ± 0.11 | 17.1 | 0.36 ± 0.10 | 27.8 | 0.85 ± 0.14 | 16.5 | |
III | Specific | 36 ± 12 | 33.3 | 55 ± 17 | 30.9 | 28.04 ± 4.31 | 15.4 |
Relative to CS | 0.78 ± 0.28 | 35.9 | 0.79 ± 0.25 | 31.6 | 1.37 ± 0.20 | 14.6 | |
IV | Specific | 45 ± 12 | 26.6 | 83 ± 15 | 18.1 | 16.44 ± 3.04 | 18.5 |
Relative to CS | 1.00 ± 0.15 | 15 | 1.12 ± 0.22 | 19.6 | 0.63 ± 0.11 | 17.5 | |
I + III | Specific | 28 ± 14 | 50 | 24 ± 7 | 29.2 | NA | NA |
Relative to CS | 0.55 ± 0.17 | 30.9 | NA | NA | NA | NA | |
II + III | Specific | 16 ± 4 | 25 | 30 ± 7 | 23.3 | NA | NA |
Relative to CS | 0.33 ± 0.1 | 30.3 | NA | NA | NA | NA | |
CS | Specific | 51 ± 11 | 21.6 | 79 ± 18 | 22.8 | 24.30 ± 7.61 | 31.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujan, N.; Morén, C.; García-García, F.J.; Blázquez, A.; Carnicer, C.; Cortés, A.B.; González, C.; López-Gallardo, E.; Lozano, E.; Moliner, S.; et al. Multicentric Standardization of Protocols for the Diagnosis of Human Mitochondrial Respiratory Chain Defects. Antioxidants 2022, 11, 741. https://doi.org/10.3390/antiox11040741
Bujan N, Morén C, García-García FJ, Blázquez A, Carnicer C, Cortés AB, González C, López-Gallardo E, Lozano E, Moliner S, et al. Multicentric Standardization of Protocols for the Diagnosis of Human Mitochondrial Respiratory Chain Defects. Antioxidants. 2022; 11(4):741. https://doi.org/10.3390/antiox11040741
Chicago/Turabian StyleBujan, Nuria, Constanza Morén, Francesc J. García-García, Alberto Blázquez, Clara Carnicer, Ana Belén Cortés, Cristina González, Ester López-Gallardo, Ester Lozano, Sonia Moliner, and et al. 2022. "Multicentric Standardization of Protocols for the Diagnosis of Human Mitochondrial Respiratory Chain Defects" Antioxidants 11, no. 4: 741. https://doi.org/10.3390/antiox11040741
APA StyleBujan, N., Morén, C., García-García, F. J., Blázquez, A., Carnicer, C., Cortés, A. B., González, C., López-Gallardo, E., Lozano, E., Moliner, S., Gort, L., Tobías, E., Delmiro, A., Martin, M. Á., Fernández-Moreno, M. Á., Ruiz-Pesini, E., Garcia-Arumí, E., Rodríguez-Aguilera, J. C., & Garrabou, G. (2022). Multicentric Standardization of Protocols for the Diagnosis of Human Mitochondrial Respiratory Chain Defects. Antioxidants, 11(4), 741. https://doi.org/10.3390/antiox11040741