Haloperoxidase-Catalyzed Luminol Luminescence
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Reaction Order with Respect to H2O2
3.2. Reaction Order with Respect to Cl− or Br−
3.3. EPO Catalyzes Br− but Not Cl− Oxidation
3.4. Reaction Order with Respect to Luminol
3.5. Acid Versus Alkaline Activities for MPO, EPO, and HRP
4. Discussion
5. Conclusions
- Second order with respect to H2O2, i.e., y = k × [H2O2]2 where y is luminescence velocity and [H2O2]2 is the square of the H2O2 concentration,
- First order with respect to Cl− for MPO, i.e., y = k × [Cl−]1 or y = mx + b, where y is luminescence velocity and [x] is Cl− concentration, [Cl−]1;
- First order with respect to Br− for MPO and EPO, i.e., y = k × [ Br−]1 or y = mx + b, where y is luminescence velocity and [x] is Br− concentration, [Br−]1;
- First order with respect to luminol for MPO and EPO, i.e., y = k × [luminol]1 or y = mx + b, where y is luminescence velocity and [x] is luminol concentration, [luminol]1;
- First order or linear with respect to MPO and EPO concentration.
- First order with respect to H2O2, i.e., y = k × [H2O2]1 or y = mx + b, where y is luminescence velocity and [x] is the H2O2 concentration.
- Greater than first order with respect to luminol, i.e., y = k × [luminol]1+, where y is luminescence velocity and [luminol]1+ is luminol concentration,
- First order or linear with respect to HRP concentration.
H2O2 + Cl− ― (MPO) → H2O + OCl− | Step 1 |
H2O2 + OCl− ―(non-enzymatic) → H2O + Cl− + 1O2* | Step 2 |
1O2* + microbe (luminol) → combustive dioxygenation → luminescence | Step 3 |
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, R.C. Halide dependence of the myeloperoxidase-mediated antimicrobial system of the polymorphonuclear leukocyte in the phenomenon of electronic excitation. Biochem. Biophys. Res. Commun. 1975, 63, 675–683. [Google Scholar] [CrossRef]
- Allen, R.C. The role of pH in the chemiluminescent response of the myeloperoxidase-halide-HOOH antimicrobial system. Biochem. Biophys. Res. Commun. 1975, 63, 684–691. [Google Scholar] [CrossRef]
- Klebanoff, S.J. Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J. Bacteriol. 1968, 95, 2131–2138. [Google Scholar] [CrossRef] [Green Version]
- Kasha, M.; Khan, A.U. The physics, chemistry, and biology of singlet molecular oxygen. Ann. N. Y. Acad. Sci. 1970, 171, 5–23. [Google Scholar] [CrossRef]
- Held, A.; Halko, D.; Hurst, J. Mechanisms of chlorine oxidation of hydrogen peroxide. J. Am. Chem. Soc. 1978, 100, 5732–5740. [Google Scholar] [CrossRef]
- Hurst, J.K.; Carr, P.A.G.; Hovis, F.E.; Richardson, R.J. Hydrogen peroxide oxidation by chlorine compounds. Reaction dynamics and singlet oxygen formation. Inorg. Chem. 1981, 20, 2435–2438. [Google Scholar] [CrossRef]
- Allen, R.C. Molecular oxygen (O2): Reactivity and luminescence. In Bioluminescence and Chemiluminescence: Progress & Current Applications; World Scientific: Singapore, 2002; pp. 223–232. [Google Scholar]
- Allen, R.C. Neutrophil Leukocyte: Combustive Microbicidal Action and Chemiluminescence. J. Immunol. Res. 2015, 2015, 794072. [Google Scholar] [CrossRef] [Green Version]
- Skovsen, E.; Snyder, J.W.; Lambert, J.D.; Ogilby, P.R. Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. B 2005, 109, 8570–8573. [Google Scholar] [CrossRef]
- Ożog, Ł.; Aebisher, D. Singlet oxygen lifetime and diffusion measurements. Eur. J. Clin. Exp. Med. 2018, 16, 123–126. [Google Scholar] [CrossRef]
- Allen, R.C.; Loose, L.D. Phagocytic activation of a luminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochem. Biophys. Res. Commun. 1976, 69, 245–252. [Google Scholar] [CrossRef]
- Dure, L.S.; Cormier, M.J. Studies on the bioluminescence of Balanoglossus biminiensis extracts II. Evidence for the peroxidase nature of Balanoglossid luciferase. J. Biolgical Chem. 1963, 238, 790–793. [Google Scholar] [CrossRef]
- Dure, L.S.; Cormier, M.J. Studies on the bioluminescence of Balanoglossus biminensis extracts III. A kinetic comparison of luminescent and nonluminescent peroxidation reactions and a proposed mechanism for peroxidase action. J. Biol. Chem. 1964, 239, 2351–2359. [Google Scholar] [CrossRef]
- Thorpe, G.H.G.; Kricka, L.J. Enhanced chemiluminescent reactions catalyzed by horseradish peroxidase. Methods Enzymol. 1986, 133, 331–353. [Google Scholar] [PubMed]
- Allen, R.C.; Stephens, J.T., Jr. Reduced-oxidized difference spectral analysis and chemiluminescence-based Scatchard analysis demonstrate selective binding of myeloperoxidase to microbes. Luminescence 2011, 26, 208–213. [Google Scholar] [CrossRef]
- Cormier, M.J.; Prichard, P.M. An investigation of the mechanism of the luminescent peroxidation of luminol by stopped-flow techniques. J. Biol. Chem. 1968, 243, 4706–4714. [Google Scholar] [CrossRef]
- White, E.H.; Roswell, D.F. The chemiluminescence of organic hydrazides. Acc. Chem. Res. 1970, 3, 54–62. [Google Scholar] [CrossRef]
- Mahler, H.R.; Cordes, E.H. Biological Chemistry, 2nd ed.; Harper & Row: New York, NY, USA, 1971. [Google Scholar]
- Agner, K. Crystalline Myeloperoxidase. Acta Chem. Scand. 1958, 12, 89–94. [Google Scholar] [CrossRef]
- Wever, R.; Plat, H.; Hamers, M.N. Human Eosinophil Peroxidase: A Novel Isolation Procedure, Spectral Properties and Chlorinating Activity. FEBS Lett. 1981, 123, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Keilin, D.; Hartree, E. Purification of horse-radish peroxidase and comparison of its properties with those of catalase and methaemoglobin. Biochem. J. 1951, 49, 88–104. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Seliger, H.H. Quantum yields of the luminol chemiluminescence reaction in aqueous and aprotic solvents. Photochem. Photobiol. 1972, 15, 222–237. [Google Scholar] [CrossRef]
- Allen, R.C.; Dale, D.C.; Taylor, F.B. Blood phagocyte luminescence: Gauging systemic immune activation. Methods Enzymol. 2000, 305, 591–629. [Google Scholar] [PubMed]
- Arnhold, J.; Mueller, S.; Arnold, K.; Grimm, E. Chemiluminescence intensities and spectra of luminol oxidation by sodium hypochlorite in the presence of hydrogen peroxide. J. Biolumin. Chemilumin. 1991, 6, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Agner, K. Studies of myeloperoxidase activity I. Spectrophotometry of the MPO-H2O2 compound. Acta Chem. Scand. 1963, 17, S332–S338. [Google Scholar] [CrossRef]
- Paumann-Page, M.; Furtmüller, P.G.; Hofbauer, S.; Paton, L.N.; Obinger, C.; Kettle, A.J. Inactivation of human myeloperoxidase by hydrogen peroxide. Arch. Biochem. Biophys. 2013, 539, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Floris, R.; Wever, R. Reaction of myeloperoxidase with its product HOCl. Eur. J. Biochem. 1992, 207, 697–702. [Google Scholar] [CrossRef]
- Kohler, H.; Jenzer, H. Interaction of lactoperoxidase with hydrogen peroxide. Formation of enzyme intermediates and generation of free radicals. Free. Radic. Biol. Med. 1989, 6, 323–339. [Google Scholar] [CrossRef]
- Ghibaudi, E.; Laurent, E. Unraveling the catalytic mechanism of lactoperoxidase and myeloperoxidase. A reflection on some controversial features. Eur. J. Biochem. 2003, 270, 4403–4412. [Google Scholar] [CrossRef]
- Arnhold, J.; Furtmüller, P.G.; Obinger, C. Redox properties of myeloperoxidase. Redox Rep. Commun. Free Radic. Res. 2003, 8, 179–186. [Google Scholar] [CrossRef]
- Furtmuller, P.G.; Obinger, C.; Hsuanyu, Y.; Dunford, H.B. Mechanism of reaction of myeloperoxidase with hydrogen peroxide and chloride ion. Eur. J. Biochem. 2000, 267, 5858–5864. [Google Scholar] [CrossRef]
- AL-Sa’ady, A.J.R.; Al-Bahrani, M.H.A.; Aziz, G.M. Characterization and Immobilization of Peroxidase Extracted from Horse Radish and Decolorization of Some Dyes. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 328–339. [Google Scholar] [CrossRef]
- Sbarra, A.J.; Karnovsky, M.L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J. Biol. Chem. 1959, 234, 1355–1362. [Google Scholar] [CrossRef]
- Allen, R.C.; Yevich, S.J.; Orth, R.W.; Steele, R.H. The superoxide anion and singlet molecular oxygen: Their role in the microbicidal activity of the polymorphonuclear leukocyte. Biochem. Biophys. Res. Commun. 1974, 60, 909–917. [Google Scholar] [CrossRef]
- Allen, R.C.; Stephens, J.T., Jr. Myeloperoxidase selectively binds and selectively kills microbes. Infect. Immun. 2011, 79, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Ximenes, V.F.; Ximenes, T.P.; Morgon, N.H.; de Souza, A.R. Taurine chloramine and hydrogen peroxide as a potential source of singlet oxygen for topical application. Photochem. Photobiol. 2021, 97, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Gundermann, K.D. Recent advances in research on the chemiluminescence of organic compounds. Top. Curr. Chem. 1974, 46, 61–139. [Google Scholar] [CrossRef]
- Allen, R.C. Biochemiexcitation: Chemiluminescence and the study of biological oxygenation. In Chemical and Biological Generation of Excited States; Academic Press: Cambridge, MA, USA, 1982; pp. 310–344. [Google Scholar]
H2O2 | [H2O2]2 | Velocity (v) | √v | 1/[H2O2] | 1/[H2O2]2 | 1/v | 1/√v |
---|---|---|---|---|---|---|---|
mM | mM2 | kcts/s | √(kcts/s) | 1/mM | 1/mM2 | 1/kcts/s | 1/√(kcts/s) |
6.250 | 39.062 | 739.83 | 27.20 | 0.16 | 0.026 | 0.001 | 0.037 |
3.126 | 9.769 | 614.07 | 24.78 | 0.32 | 0.102 | 0.002 | 0.040 |
1.563 | 2.444 | 333.59 | 18.26 | 0.64 | 0.409 | 0.003 | 0.055 |
0.781 | 0.610 | 130.08 | 11.41 | 1.28 | 1.639 | 0.008 | 0.088 |
0.391 | 0.153 | 44.82 | 6.69 | 2.56 | 6.537 | 0.022 | 0.149 |
0.196 | 0.038 | 12.78 | 3.57 | 5.11 | 26.149 | 0.078 | 0.280 |
0.098 | 0.010 | 3.18 | 1.78 | 10.23 | 104.597 | 0.315 | 0.561 |
0.049 | 0.002 | 0.76 | 0.87 | 20.45 | 418.388 | 1.309 | 1.144 |
0.024 | 0.001 | 0.17 | 0.41 | 40.91 | 1673.554 | 5.848 | 2.418 |
0.012 | 0.000 | 0.04 | 0.20 | 81.82 | 6694.215 | 23.810 | 4.880 |
6.250 | 39.062 | 775.88 | 27.85 | 0.16 | 0.026 | 0.001 | 0.036 |
3.126 | 9.769 | 653.23 | 25.56 | 0.32 | 0.102 | 0.002 | 0.039 |
1.563 | 2.444 | 361.17 | 19.00 | 0.64 | 0.409 | 0.003 | 0.053 |
0.781 | 0.610 | 137.72 | 11.74 | 1.28 | 1.639 | 0.007 | 0.085 |
0.391 | 0.153 | 47.91 | 6.92 | 2.56 | 6.537 | 0.021 | 0.144 |
0.196 | 0.038 | 13.46 | 3.67 | 5.11 | 26.149 | 0.074 | 0.273 |
0.098 | 0.010 | 3.58 | 1.89 | 10.23 | 104.597 | 0.279 | 0.528 |
0.049 | 0.002 | 0.82 | 0.91 | 20.45 | 418.388 | 1.214 | 1.102 |
0.024 | 0.001 | 0.19 | 0.43 | 40.91 | 1673.554 | 5.319 | 2.306 |
0.012 | 0.000 | 0.05 | 0.22 | 81.82 | 6694.215 | 20.408 | 4.518 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allen, R.C. Haloperoxidase-Catalyzed Luminol Luminescence. Antioxidants 2022, 11, 518. https://doi.org/10.3390/antiox11030518
Allen RC. Haloperoxidase-Catalyzed Luminol Luminescence. Antioxidants. 2022; 11(3):518. https://doi.org/10.3390/antiox11030518
Chicago/Turabian StyleAllen, Robert C. 2022. "Haloperoxidase-Catalyzed Luminol Luminescence" Antioxidants 11, no. 3: 518. https://doi.org/10.3390/antiox11030518