Incorporation of Dietary Methyl Sulfonyl Methane into the Egg Albumens of Laying Hens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds and Experimental Design
2.2. Laying Performance Parameters and Egg Quality
2.3. MSM Content in Egg Albumen
2.4. Corticosterone and Malondialdehyde in Egg Yolk
2.5. Antioxidant Markers in Serum Samples
2.6. Statistical Analysis
3. Results
3.1. Laying Performance and Egg Quality
3.2. MSM Deposition in Egg Albumen
3.3. Corticosterone and MDA in Yolk Samples
3.4. Markers for Antioxidant and Oxidative Stress in Serum Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karabay, A.Z.; Aktan, F.; Sunguroğlu, A.; Buyukbingol, Z. Methylsulfonylmethane modulates apoptosis of LPS/IFN-γ-activated RAW 264.7 macrophage-like cells by targeting p53, Bax, Bcl-2, cytochrome c and PARP proteins. Immunopharmacol. Immunotoxicol. 2014, 36, 379–389. [Google Scholar] [PubMed]
- Wong, T.; Bloomer, R.J.; Benjamin, R.L.; Buddington, R.K. Small intestinal absorption of methylsulfonylmethane (MSM) and accumulation of the sulfur moiety in selected tissues of mice. Nutrients 2018, 10, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, T.W.; Dawson, H.J.; Lackey, H.B. Natural occurring levels of dimethyl sulfoxide in selected fruits, vegetables, grains, and beverages. J. Agric. Food Chem. 1981, 29, 1089–1091. [Google Scholar] [CrossRef] [PubMed]
- Steely, J.S. Chemiluminescence detection of sulfur compounds in cooked milk. In Sulfur Compounds in Foods; ACS Publications: Washington, DC, USA, 1994; pp. 22–36. [Google Scholar]
- Magnuson, B.A.; Appleton, J.; Ryan, B.; Matulka, R.A. Oral developmental toxicity study of methylsulfonylmethane in rats. Food Chem. Toxicol. 2007, 45, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Bohlooli, S.; Mohammadi, S.; Amirshahrokhi, K.; Mirzanejad-Asl, H.; Yosefi, M.; Mohammadi-Nei, A.; Chinifroush, M.M. Effect of methylsulfonylmethane pretreatment on acetaminophen induced hepatotoxicity in rats. Iran. J. Basic Med. Sci. 2013, 16, 896–900. [Google Scholar]
- Anthonavage, M.; Benjamin, R.; Withee, E. Effects of oral supplementation with methylsulfonylmethane on skin health and wrinkle reduction. Nat. Med. J. 2015, 7, 1–21. [Google Scholar]
- Butawan, M.; Benjamin, R.L.; Bloomer, R.J. Methylsulfonylmethane: Applications and safety of a novel dietary supplement. Nutrients 2017, 9, 290. [Google Scholar] [CrossRef]
- Bloomer, R.J. Serum MSM concentrations following one month of MSM treatment in healthy men. Clin. Pharmacol. Biopharm. 2015, 4, 1000135. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration Frequency of Use of Cosmetic Ingredients. FDA Database 2016. Available online: https://www.fda.gov/media/109262/download (accessed on 25 February 2022).
- Yan, H.L.; Cao, S.C.; Hu, Y.D.; Zhang, H.F.; Liu, J.B. Effects of methylsulfonylmethane on growth performance, immunity, antioxidant capacity, and meat quality in Pekin ducks. Poult. Sci. 2020, 99, 1069–1074. [Google Scholar] [CrossRef]
- Abdul Rasheed, M.S.; Oelschlager, M.L.; Smith, B.N.; Bauer, L.L.; Whelan, R.A.; Dilger, R.N. Dietary methylsulfonylmethane supplementation and oxidative stress in broiler chickens. Poult. Sci. 2020, 99, 914–925. [Google Scholar] [CrossRef]
- Saedi, S.; Shokri, M.; Rhim, J.W. Antimicrobial activity of sulfur nanoparticles: Effect of preparation methods. Arab. J. Chem. 2020, 13, 6580–6588. [Google Scholar] [CrossRef]
- Jiao, Y.; Park, J.H.; Kim, Y.M.; Kim, I.H. Effects of dietary methyl sulfonyl methane (MSM) supplementation on growth performance, nutrient digestibility, meat quality, excreta microbiota, excreta gas emission, and blood profiles in broilers. Poult. Sci. 2017, 96, 2168–2175. [Google Scholar] [CrossRef] [PubMed]
- Amirshahrokhi, K.; Bohlooli, S.; Chinifroush, M.M. The effect of methylsulfonylmethane on the experimental colitis in the rat. Toxicol. Appl. Pharmacol. 2011, 253, 197–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, K.I.H.; Burstein, S.H.; Layne, D.S. Dimethyl sulfone: Isolation from cows’ milk. Proc. Soc. Exp. Biol. Med. 1966, 122, 865–866. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rasheed, M.S.; Oelschlager, M.L.; Smith, B.N.; Bauer, L.L.; Whelan, R.A.; Dilger, R.N. Toxicity and tissue distribution of methylsulfonylmethane following oral gavage in broilers. Poult. Sci. 2019, 98, 4972–4981. [Google Scholar] [CrossRef] [PubMed]
- Abdul Rasheed, M.S.; Tiwari, U.P.; Jespersen, J.C.; Bauer, L.L.; Dilger, R.N. Effects of methylsulfonylmethane and neutralizing anti–IL-10 antibody supplementation during a mild Eimeria challenge infection in broiler chickens. Poult. Sci. 2020, 99, 6559–6568. [Google Scholar] [CrossRef]
- Korean Feeding Standards for Poultry National Institute of Animal Science; RDA: Suwon, Korea, 2012.
- Richmond, V.L. Incorporation of methylsulfonylmethane sulfur into guinea pig serum proteins. Life Sci. 1986, 39, 263–268. [Google Scholar] [CrossRef]
- Lim, C.I.; Choe, H.S.; Kang, C.; Lee, B.K.; Ryu, K.S. Effects of dietary organic sulfur on performance, egg quality and cell-mediated immune response of laying hens. Korean J. Poult. Sci. 2018, 45, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Borzelleca, J.F.; Sipes, I.G.; Wallace, K.B. Dossier in Support of the Generally Recognized as Safe (Gras) Status of Optimsm (Methylsulfonylmethane; Msm) as a Food Ingredient; Food and Drug Administration: Vero Beach, FL, USA, 2007. [Google Scholar]
- Kim, D.H.; Lee, Y.K.; Kim, S.H.; Lee, K.W. The impact of temperature and humidity on the performance and physiology of laying hens. Animals 2021, 11, 56. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, Y.B.; Kim, D.-H.; Lee, D.-W.; Lee, H.-G.; Jha, R.; Lee, K.-W. Dietary soluble flaxseed oils as a source of omega-3 polyunsaturated fatty acids for laying hens. Poult. Sci. 2021, 100, 101276. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Kim, D.; Lee, H.; Choi, Y.; Lee, S.; Lee, K. Effects of dietary organic and inorganic sulfur on laying performance, egg quality, ileal morphology, and antioxidant capacity in laying hens. Animals 2022, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-W.; Lee, W. Development of a validated determination of methylsulfonylmethane in dietary supplement by gas chromatography. Korean Soc. Biotechnol. Bioeng. J. 2015, 30, 141–147. [Google Scholar]
- Kalvandi, O.; Sadeghi, A.; Karimi, A. Arginine supplementation improves reproductive performance, antioxidant status, immunity and maternal antibody transmission in breeder Japanese quail under heat stress conditions. Ital. J. Anim. Sci. 2022, 21, 8–17. [Google Scholar] [CrossRef]
- Hwang, J.W.; Cheong, S.H.; Kim, Y.S.; Lee, J.W.; You, B.I.; Moon, S.H.; Jeon, B.T.; Park, P.J. Effects of dietary supplementation of oriental herbal medicine residue and methyl sulfonyl methane on the growth performance and meat quality of ducks. Anim. Prod. Sci. 2017, 57, 948–957. [Google Scholar] [CrossRef]
- Shin, J.-S.; Kim, M.-A.; Lee, S.-H. Comparison of physiological changes in broiler chicken fed with dietary processed sulfur. Korean Soc. Food Preserv. 2013, 20, 278–283. [Google Scholar] [CrossRef] [Green Version]
- Poole, T.L.; Benjamin, R.; Genovese, K.J.; Nisbet, D.J. Methylsulfonylmethane exhibits bacteriostatic inhibition of Escherichia coli, and Salmonella enterica Kinshasa, in vitro. J. Appl. Microbiol. 2019, 127, 1677–1685. [Google Scholar] [CrossRef]
- Hasegawa, T.; Ueno, S.; Kumamoto, S. Anti-inflammatory effect of methylsulfonylmethane (MSM) in mice. Jpn. Pharmacol. Ther. 2005, 33, 1217–1223. [Google Scholar]
- Downing, J.A.; Bryden, W.L. Determination of corticosterone concentrations in egg albumen: A non-invasive indicator of stress in laying hens. Physiol. Behav. 2008, 95, 381–387. [Google Scholar] [CrossRef]
- Slozhenkina, M.I.; Struk, E.A.; Ostrenko, K.C.; Ovcharova, A.N.; Yurina, N.A. The influence of water-soluble antioxidant on the productivity of chickens and hatching quality of eggs. IOP Conf. Ser. Earth Environ. Sci. 2020, 548, 082036. [Google Scholar] [CrossRef]
- Park, S.; Ahn, I.S.; Hong, S.M.; Kim, D.S.; Kwon, D.Y.; Yang, H.J. The effects of the supplementation of Opuntia humifusa water extracts and methyl sulfonyl methane on the laying productivity, egg quality and sensory characteristics. J. Korean Soc. Food Sci. Nutr. 2010, 39, 294–300. [Google Scholar] [CrossRef]
Ingredients | g per 100 g of Diet |
---|---|
Corn | 42.59 |
Soybean meal, 45% crude protein | 10.41 |
Wheat | 12.80 |
Animal fat | 1.02 |
Rice bran | 2.00 |
Corn steep liquor | 1.00 |
Rapeseed meal | 3.00 |
Dried distillers grains with solubles | 12.83 |
Molasses | 2.00 |
Liquid choline, 50% | 0.06 |
Limestone | 10.51 |
Monodicalcium phosphate | 1.02 |
NaCl | 0.24 |
Methionine, 99% | 0.07 |
Lysine sulfate, 54% | 0.10 |
Tryptophane, 10% | 0.10 |
Mineral mix 1 | 0.14 |
Vitamin mix 2 | 0.12 |
Total | 100.00 |
Nutrient composition, g/100 g | |
Nitrogen-corrected apparent metabolizable energy 3, kcal/kg | 2600 |
Dry matter 4 | 88.20 |
Crude protein 4 | 14.49 |
Crude fat 4 | 4.01 |
Crude ash 4 | 14.84 |
Calcium 3 | 4.10 |
Sulfur 4 | 0.15 |
Available phosphorus 3 | 0.28 |
Total lysine 3 | 0.65 |
Total methionine 3 | 0.32 |
Total methionine + cysteine 3 | 0.60 |
Methyl sulfonyl methane 4 | 0.03 |
Item | Dietary MSM, % | SEM 1 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | Linear | Quadratic | ||
Feed intake, g/bird | ||||||||
4 weeks | 103.59 | 99.67 | 101.13 | 101.23 | 103.63 | 0.99 | 0.656 | 0.011 |
8 weeks | 100.07 | 101.19 | 103.26 | 101.69 | 103.79 | 1.89 | 0.280 | 0.839 |
12 weeks | 107.58 | 111.05 | 107.93 | 105.89 | 112.02 | 1.98 | 0.587 | 0.422 |
Egg production, % | ||||||||
4 weeks | 72.62 | 79.17 | 79.91 | 78.63 | 79.37 | 2.97 | 0.249 | 0.284 |
8 weeks | 77.09 | 81.03 | 82.29 | 80.15 | 83.59 | 3.45 | 0.365 | 0.769 |
12 weeks | 77.30 | 80.56 | 79.63 | 77.25 | 85.37 | 2.61 | 0.163 | 0.432 |
Egg weight, g | ||||||||
4 weeks | 62.56 | 63.87 | 62.00 | 62.67 | 61.52 | 0.78 | 0.263 | 0.471 |
8 weeks | 63.76 | 63.73 | 63.70 | 64.05 | 62.02 | 0.66 | 0.217 | 0.212 |
12 weeks | 64.08 | 63.84 | 64.44 | 65.09 | 63.92 | 0.70 | 0.702 | 0.523 |
Egg mass, g/day | ||||||||
4 weeks | 45.36 | 50.53 | 49.50 | 49.24 | 48.86 | 1.83 | 0.407 | 0.191 |
8 weeks | 49.11 | 51.48 | 52.43 | 51.32 | 51.85 | 2.12 | 0.518 | 0.535 |
12 weeks | 49.38 | 51.37 | 51.33 | 50.32 | 54.66 | 1.73 | 0.121 | 0.593 |
Feed conversion ratio, kg/kg | ||||||||
4 weeks | 2.38 | 1.98 | 2.06 | 2.06 | 2.14 | 0.10 | 0.297 | 0.049 |
8 weeks | 2.12 | 1.98 | 1.97 | 2.00 | 2.01 | 0.09 | 0.587 | 0.412 |
12 weeks | 2.19 | 2.18 | 2.11 | 2.11 | 2.07 | 0.06 | 0.152 | 0.972 |
Dirty and cracked egg, % | ||||||||
4 weeks | 2.73 | 2.72 | 2.63 | 2.44 | 2.33 | 0.68 | 0.644 | 0.911 |
8 weeks | 2.98 | 2.82 | 2.32 | 1.11 | 1.87 | 0.79 | 0.132 | 0.706 |
12 weeks | 2.84 | 2.09 | 2.27 | 2.24 | 2.06 | 0.75 | 0.609 | 0.773 |
Item | Dietary MSM, % | SEM 1 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | Linear | Quadratic | ||
4 weeks | ||||||||
Relative yolk weight, % | 26.02 | 26.06 | 25.50 | 27.34 | 25.97 | 0.80 | 0.645 | 0.887 |
Relative eggshell weight, % | 9.95 | 9.47 | 10.14 | 9.79 | 9.73 | 0.27 | 0.905 | 0.862 |
Relative albumen weight, % | 64.12 | 64.54 | 64.47 | 62.87 | 64.35 | 0.89 | 0.673 | 0.860 |
Yolk color | 6.01 | 6.05 | 6.05 | 6.08 | 6.00 | 0.07 | 0.980 | 0.473 |
Haugh unit | 73.85 | 71.35 | 74.22 | 72.66 | 73.25 | 1.59 | 0.983 | 0.787 |
Eggshell strength, kg/cm2 | 4.80 | 4.77 | 4.73 | 4.64 | 4.48 | 0.17 | 0.169 | 0.627 |
Eggshell thickness, mm | 0.42 | 0.42 | 0.43 | 0.42 | 0.42 | 0.01 | 0.971 | 0.384 |
Eggshell color, unit | 28.24 | 28.01 | 27.83 | 30.46 | 27.66 | 0.80 | 0.610 | 0.442 |
8 weeks | ||||||||
Relative yolk weight, % | 26.67 | 26.49 | 26.01 | 26.86 | 26.60 | 0.36 | 0.833 | 0.393 |
Relative eggshell weight, % | 10.05 | 10.12 | 10.00 | 10.03 | 9.98 | 0.12 | 0.540 | 0.851 |
Relative albumen weight, % | 63.49 | 63.40 | 63.98 | 63.12 | 63.39 | 0.35 | 0.662 | 0.583 |
Yolk color | 6.76 | 6.70 | 6.62 | 6.75 | 6.65 | 0.08 | 0.511 | 0.640 |
Haugh unit | 75.89 | 76.22 | 76.09 | 74.91 | 76.18 | 1.05 | 0.832 | 0.837 |
Eggshell strength, kg/cm2 | 4.61 | 4.44 | 4.63 | 4.77 | 4.76 | 0.18 | 0.274 | 0.671 |
Eggshell thickness, mm | 0.41 | 0.41 | 0.41 | 0.40 | 0.40 | 0.01 | 0.150 | 0.932 |
Eggshell color, unit | 27.48 | 27.50 | 28.01 | 28.01 | 27.97 | 0.54 | 0.454 | 0.773 |
12 weeks | ||||||||
Relative yolk weight, % | 25.72 | 25.73 | 25.40 | 27.24 | 25.74 | 0.57 | 0.395 | 0.688 |
Relative eggshell weight, % | 9.96 | 9.40 | 9.92 | 9.81 | 9.67 | 0.22 | 0.827 | 0.787 |
Relative albumen weight, % | 64.32 | 64.93 | 64.67 | 62.94 | 64.66 | 0.58 | 0.477 | 0.738 |
Yolk color | 6.70 | 6.67 | 6.71 | 6.70 | 6.70 | 0.07 | 0.951 | 0.953 |
Haugh unit | 75.86 | 75.98 | 77.05 | 75.60 | 79.05 | 1.38 | 0.190 | 0.438 |
Eggshell strength, kg/cm2 | 4.51 | 3.97 | 4.50 | 4.45 | 4.23 | 0.17 | 0.865 | 0.942 |
Eggshell thickness, mm | 0.41 | 0.42 | 0.40 | 0.40 | 0.40 | 0.01 | 0.207 | 0.901 |
Eggshell color, unit | 9.96 | 9.40 | 9.92 | 9.81 | 9.67 | 0.22 | 0.827 | 0.787 |
Item 1 | Dietary MSM, % | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | Linear | Quadratic | ||
Corticosterone, pg/g | ||||||||
4 weeks | 875.27 | 807.22 | 803.05 | 825.92 | 849.40 | 139.00 | 0.962 | 0.785 |
8 weeks | 270.12 | 258.12 | 245.87 | 222.10 | 244.53 | 21.67 | 0.307 | 0.548 |
12 weeks | 407.04 | 392.19 | 395.68 | 375.02 | 383.25 | 32.30 | 0.565 | 0.865 |
MDA, nmol/g | ||||||||
4 weeks | 36.50 | 36.58 | 35.08 | 36.33 | 37.08 | 1.53 | 0.874 | 0.542 |
8 weeks | 28.82 | 29.44 | 28.93 | 28.95 | 28.43 | 1.30 | 0.777 | 0.735 |
12 weeks | 28.01 | 22.36 | 21.77 | 21.95 | 21.24 | 1.06 | <0.001 | 0.012 |
Item 1 | Dietary MSM, % | SEM 2 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.3 | 0.4 | Linear | Quadratic | ||
GPX activity, U/L | ||||||||
4 weeks | 422.39 | 443.11 | 448.94 | 442.97 | 439.11 | 57.80 | 0.858 | 0.781 |
8 weeks | 426.95 | 440.61 | 435.6 | 448.75 | 423.32 | 55.90 | 0.997 | 0.812 |
12 weeks | 458.01 | 463.67 | 489.30 | 489.87 | 487.87 | 37.95 | 0.527 | 0.765 |
SOD activity, % | ||||||||
4 weeks | 74.07 | 77.53 | 80.77 | 81.07 | 89.16 | 7.65 | 0.257 | 0.854 |
8 weeks | 74.88 | 77.05 | 79.57 | 78.67 | 77.65 | 6.03 | 0.766 | 0.741 |
12 weeks | 77.29 | 98.39 | 103.30 | 108.53 | 106.50 | 5.01 | 0.002 | 0.044 |
TAC, mM | ||||||||
4 weeks | 1.21 | 1.45 | 1.34 | 1.36 | 1.30 | 0.20 | 0.893 | 0.577 |
8 weeks | 1.04 | 1.15 | 1.29 | 1.22 | 1.36 | 0.09 | 0.018 | 0.652 |
12 weeks | 1.11 | 1.14 | 1.32 | 1.55 | 1.55 | 0.13 | 0.014 | 0.995 |
CAT, U/mL | ||||||||
4 weeks | 3.06 | 2.89 | 2.41 | 2.90 | 2.87 | 0.29 | 0.761 | 0.347 |
8 weeks | 2.60 | 3.68 | 3.46 | 3.10 | 3.47 | 0.70 | 0.661 | 0.607 |
12 weeks | 2.25 | 2.30 | 2.52 | 2.51 | 2.86 | 0.21 | 0.203 | 0.742 |
MDA, µM | ||||||||
4 weeks | 26.05 | 20.02 | 20.08 | 23.02 | 21.75 | 3.76 | 0.676 | 0.424 |
8 weeks | 25.97 | 26.61 | 25.40 | 20.34 | 19.12 | 2.19 | 0.025 | 0.430 |
12 weeks | 26.30 | 23.02 | 21.93 | 19.87 | 20.59 | 2.13 | 0.085 | 0.456 |
8-OHdG, ng/mL | ||||||||
4 weeks | 1.74 | 1.37 | 1.62 | 1.85 | 1.64 | 0.25 | 0.755 | 0.752 |
8 weeks | 2.92 | 3.63 | 3.24 | 3.31 | 3.31 | 0.32 | 0.735 | 0.530 |
12 weeks | 2.09 | 1.51 | 1.56 | 1.52 | 1.32 | 0.34 | 0.260 | 0.694 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-B.; Lee, S.-H.; Kim, D.-H.; Lee, H.-G.; Jeon, Y.-S.; Lee, S.-D.; Lee, K.-W. Incorporation of Dietary Methyl Sulfonyl Methane into the Egg Albumens of Laying Hens. Antioxidants 2022, 11, 517. https://doi.org/10.3390/antiox11030517
Kim Y-B, Lee S-H, Kim D-H, Lee H-G, Jeon Y-S, Lee S-D, Lee K-W. Incorporation of Dietary Methyl Sulfonyl Methane into the Egg Albumens of Laying Hens. Antioxidants. 2022; 11(3):517. https://doi.org/10.3390/antiox11030517
Chicago/Turabian StyleKim, Yoo-Bhin, Sang-Hyeok Lee, Da-Hye Kim, Hyun-Gwan Lee, Yong-Sung Jeon, Sung-Dae Lee, and Kyung-Woo Lee. 2022. "Incorporation of Dietary Methyl Sulfonyl Methane into the Egg Albumens of Laying Hens" Antioxidants 11, no. 3: 517. https://doi.org/10.3390/antiox11030517
APA StyleKim, Y.-B., Lee, S.-H., Kim, D.-H., Lee, H.-G., Jeon, Y.-S., Lee, S.-D., & Lee, K.-W. (2022). Incorporation of Dietary Methyl Sulfonyl Methane into the Egg Albumens of Laying Hens. Antioxidants, 11(3), 517. https://doi.org/10.3390/antiox11030517