Phenolic Compounds and Antioxidant Capacity of Sea Cucumber (Cucumaria frondosa) Processing Discards as Affected by High-Pressure Processing (HPP)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Procurement Materials
2.2. Sample Preparation
2.3. Extraction of Free, Esterified, and Insoluble-Bound Phenolics
2.4. Total Phenolic Content (TPC)
2.5. Total Flavonoid Content (TFC)
2.6. ABTS Radical Scavenging Activity
2.7. DPPH Radical Scavenging Activity
2.8. Hydroxyl Radical Scavenging Activity
2.9. Metal Chelation Activity
2.10. Cupric Ion-Induced Human Low-Density Lipoprotein (LDL) Peroxidation
2.11. Peroxyl and Hydroxyl Radical-Induced Supercoiled DNA Strand Scission
2.12. Anti-Tyrosinase Activity
2.13. Antiglycation Activity
2.14. UHPLC-QTOF-MS/MS Analysis
2.15. Statistical Analysis
3. Results and Discussions
3.1. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
3.2. Antioxidant Activity
3.3. Cupric Ion-Induced Human Low-Density Lipoprotein (LDL) Peroxidation
3.4. DNA Strand Scission Inhibition Activity Induced by Hydroxyl and Peroxyl Radicals
3.5. Anti-Tyrosinase Activity
3.6. Antiglycation Activity
3.7. Identification and Quantification of Phenolic Compounds
C# | Compounds | [M − H]− (m/z) | RT (min)-UV | MS2 Ion Fragments | HPP-Treated | Untreated | ||||
---|---|---|---|---|---|---|---|---|---|---|
F | E | IB | F | E | IB | |||||
1 | p-Hydroxybenzoic acid * | 137 | 3.52 | 121 | p | p | p | p | ||
2 | Cinnamic acid * | 147 | 42.17 | 103, 131, 135 | p | p | p | p | p | |
3 | Protocatechuic acid * | 153 | 2.5 | 109 | p | p | p | p | p | |
4 | p-Coumaric acid * | 163 | 6.78 | 119 | p | p | p | p | p | p |
5 | Vanillic acid * | 167 | 4.56 | 105, 108, 121, 123 | p | p | p | p | p | |
6 | Gallic acid * | 169 | 0.43 | 125 | p | p | p | p | p | p |
7 | Caffeic acid * | 179 | 5.15 | 135 | p | p | ||||
8 | Homovanillic acid | 181 | 0.37 | 181, 137 | p | |||||
9 | Hydroxygallic acid | 187 | 13.5 | 125, 169 | p | p | p | p | p | p |
10 | Isoferulic acid | 193 | 46.69 | 133, 179 | p | |||||
11 | Syringic acid * | 197 | 5.36 | 109, 123, 153, 163, 179 | p | p | p | p | p | p |
12 | p-Coumaroyl glycolic acid | 221 | 42.29 | 147, 175, 179 | p | p | ||||
13 | Sinapinic acid * | 223 | 9.17 | 175, 179, 208 | p | p | p | |||
14 | Ellagic acid * | 301 | 47.86 | 229, 257 | p | p | p | p | p | p |
15 | Chlorogenic acid * | 353 | 5.32 | 179, 191, 207 | p | p | p | p | ||
16 | Caffeoyl glucoside | 387 | 45.08 | 341 | p | p | ||||
17 | Chicoric acid | 473 | 44.2 | 311, 293, 219, 179, 135 | p | |||||
18 | Catechin * | 289 | 4.99 | 203, 245 | p | p | p | p | p | p |
19 | Quercetin * | 301 | 38.28 | 121, 151, 179, 255, 257, 273 | p | p | p | p | p | p |
20 | p-Hydroxybenzaldehyde | 121 | 5.06 | 92 | p | p | p | p | p | p |
21 | p-Hydroxycoumarin | 161 | 2.07 | 105, 121 | p | |||||
22 | Scopoletin | 191 | 43.15 | 147 | p | |||||
23 | Leachianol F | 471 | 41.65 | 121, 153, 287, 349, 453 | p | |||||
Total number of compounds | 18 | 14 | 16 | 14 | 11 | 13 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bordbar, S.; Anwar, F.; Saari, N. High-value components and bioactives from sea cucumbers for functional foods—A review. Mar. Drugs 2011, 9, 1761–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, A.; Dave, D.; Shahidi, F. Northern sea cucumber (Cucumaria frondosa): A potential candidate for functional food, nutraceutical, and pharmaceutical sector. Mar. Drugs 2020, 18, 274. [Google Scholar] [CrossRef] [PubMed]
- Gajdosechova, Z.; Palmer, C.H.; Dave, D.; Jiao, G.; Zhao, Y.; Tan, Z.; Chisholm, J.; Zhang, J.; Stefanova, R.; Hossain, A.; et al. Arsenic speciation in sea cucumbers: Identification and quantitation of water-extractable species. Environ. Pollut. 2020, 266, 115190. [Google Scholar] [CrossRef] [PubMed]
- Pranweerapaiboon, K.; Apisawetakan, S.; Nobsathian, S.; Itharat, A.; Sobhon, P.; Chaithirayanon, K. An ethyl-acetate fraction of Holothuria scabra modulates inflammation in vitro through inhibiting the production of nitric oxide and pro-inflammatory cytokines via NF-κB and JNK pathways. Inflammopharmacology 2020, 28, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Dave, D.; Trenholm, S.; Ramakrishnan, V.V.; Murphy, W. Effect of drying on nutritional composition of atlantic sea cucumber (Cucumaria frondosa) viscera derived from Newfoundland fisheries. Processes 2021, 9, 703. [Google Scholar] [CrossRef]
- Senadheera, T.R.L.; Dave, D.; Shahidi, F. Antioxidant potential and physicochemical properties of protein hydrolysates from body parts of North Atlantic sea cucumber (Cucumaria frondosa). Food Prod. Process. Nutr. 2021, 3, 3. [Google Scholar] [CrossRef]
- Oh, W.Y.; Ambigaipalan, P.; Shahidi, F. Quercetin and its ester derivatives inhibit oxidation of food, LDL and DNA. Food Chem. 2021, 364, 130394. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Bioactives in spices, and spice oleoresins: Phytochemicals and their beneficial effects in food preservation and health promotion. J. Food Bioact. 2018, 3, 8–75. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, F.; Hossain, A. Preservation of aquatic food using edible films and coatings containing essential oils: A review. Crit. Rev. Food Sci. Nutr. 2020, 62, 66–105. [Google Scholar] [CrossRef]
- Hassan, O.; Chang, T.; Hossain, A. Changes in the secondary compounds of persimmon leaves as a defense against circular leaf spot caused by Plurivorosphaerella nawae. PLoS ONE 2020, 15, e0230286. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J.D. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int. J. Mol. Sci. 2018, 19, 1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silveira, T.F.F.; Cristianini, M.; Kuhnle, G.G.; Ribeiro, A.B.; Filho, J.T.; Godoy, H.T. Anthocyanins, non-anthocyanin phenolics, tocopherols and antioxidant capacity of açaí juice (Euterpe oleracea) as affected by high pressure processing and thermal pasteurization. Innov. Food Sci. Emerg. Technol. 2019, 55, 88–96. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, R.; Zhang, M. Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products. Int. J. Food Sci. Technol. 2017, 52, 3–12. [Google Scholar] [CrossRef]
- Zhong, Y.; Khan, M.A.; Shahidi, F. Compositional Characteristics and Antioxidant Properties of Fresh and Processed Sea Cucumber (Cucumaria frondosa). J. Agric. Food Chem. 2007, 55, 1188–1192. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; de Camargo, A.C.; Shahidi, F. Phenolic Compounds of Pomegranate Byproducts (Outer Skin, Mesocarp, Divider Membrane) and Their Antioxidant Activities. J. Agric. Food Chem. 2016, 64, 6584–6604. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics With Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Yeo, J.D.; Shahidi, F. Effect of hydrothermal processing on changes of insoluble-bound phenolics of lentils. J. Funct. Foods 2017, 38, 716–722. [Google Scholar] [CrossRef]
- Hossain, A.; Moon, H.K.; Kim, J.-K. Antioxidant properties of Korean major persimmon (Diospyros kaki) leaves. Food Sci. Biotechnol. 2018, 27, 177–184. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; Shahidi, F. Antioxidant potential of date (Phoenix dactylifera L.) seed protein hydrolysates and carnosine in food and biological systems. J. Agric. Food Chem. 2015, 63, 864–871. [Google Scholar] [CrossRef]
- Rahman, M.J.; de Camargo, A.C.; Shahidi, F. Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. J. Funct. Foods 2017, 35, 622–634. [Google Scholar] [CrossRef]
- Muddathir, A.M.; Yamauchi, K.; Batubara, I.; Mohieldin, E.A.M.; Mitsunaga, T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. S. Afr. J. Bot. 2017, 109, 9–15. [Google Scholar] [CrossRef]
- Hu, X.; Wang, M.; Shahidi, F. Antiglycative and anti-inflammatory effects of lipophilized tyrosol derivatives. Food Prod. Process. Nutr. 2020, 2, 28. [Google Scholar] [CrossRef]
- Andrés, V.; Villanueva, M.J.; Tenorio, M.D. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage. Food Chem. 2016, 192, 328–335. [Google Scholar] [CrossRef]
- Zuluaga, C.; Martínez, A.; Fernández, J.; López-Baldó, J.; Quiles, A.; Rodrigo, D. Effect of high pressure processing on carotenoid and phenolic compounds, antioxidant capacity, and microbial counts of bee-pollen paste and bee-pollen-based beverage. Innov. Food Sci. Emerg. Technol. 2016, 37, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Ergin, M.A.; Işlek, C.; Çeter, T.; Alpas, H. High hydrostatic pressure extraction of phenolic compounds from Maclura pomifera fruits. Afr. J. Biotechnol. 2012, 11, 930–937. [Google Scholar]
- Zhou, J.; Ma, Y.; Jia, Y.; Pang, M.; Cheng, G.; Cai, S. Phenolic profiles, antioxidant activities and cytoprotective effects of different phenolic fractions from oil palm (Elaeis guineensis Jacq.) fruits treated by ultra-high pressure. Food Chem. 2019, 288, 68–77. [Google Scholar] [CrossRef]
- Althunibat, O.Y.; Hashim, R.B.; Taher, M.; Mohd Daud, J.; Ikeda, M.-A.; Zali, B.I. In Vitro Antioxidant and Antiproliferative Activities of Three Malaysian Sea Cucumber Species. Eur. J. Sci. Res. 2009, 37, 376–387. [Google Scholar]
- Mamelona, J.; Pelletier, É.; Girard-Lalancette, K.; Legault, J.; Karboune, S.; Kermasha, S. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chem. 2007, 104, 1040–1047. [Google Scholar] [CrossRef]
- De Ancos, B.; Rodrigo, M.J.; Sánchez-Moreno, C.; Pilar Cano, M.; Zacarías, L. Effect of high-pressure processing applied as pretreatment on carotenoids, flavonoids and vitamin C in juice of the sweet oranges “Navel” and the red-fleshed “Cara Cara”. Food Res. Int. 2020, 132, 109105. [Google Scholar] [CrossRef]
- Husni, A.; Shin, I.S.; You, S.G.; Chung, D. Antioxidant properties of water and aqueous ethanol extracts and their crude saponin fractions from a far-eastern sea cucumber, Stichopus japonicus. Food Sci. Biotechnol. 2009, 18, 419–424. [Google Scholar]
- Paciulli, M.; Medina Meza, I.G.; Rinaldi, M.; Ganino, T.; Pugliese, A.; Rodolfi, M.; Barbanti, D.; Morbarigazzi, M.; Chiavaro, E. Improved physicochemical and structural properties of blueberries by high hydrostatic pressure processing. Foods 2019, 8, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, A.; Moon, H.K.; Kim, J.-K. Effect of pre-treatment and extraction conditions on the antioxidant properties of persimmon (Diospyros kaki) leaves. Biosci. Biotechnol. Biochem. 2017, 81, 2079–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, C.; Moreira, C.F.F.; Lavinas, F.C.; Lopes, M.L.M.; Fialho, E.; Valente-Mesquita, V.L. Effect of high hydrostatic pressure on phenolic compounds, ascorbic acid and antioxidant activity in cashew apple juice. High Press. Res. 2010, 30, 507–513. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18, 757–781. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millet grains. J. Funct. Foods 2011, 3, 159–170. [Google Scholar] [CrossRef]
- Panzella, L.; Napolitano, A. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances. Cosmetics 2019, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Zengin, G.; Uysal, S.; Ceylan, R.; Aktumsek, A. Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Ind. Crops Prod. 2015, 70, 1–6. [Google Scholar] [CrossRef]
- Khan, M.; Liu, H.; Wang, J.; Sun, B. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Res. Int. 2020, 130, 108933. [Google Scholar] [CrossRef]
- Błaszczak, W.; Latocha, P.; Jez, M.; Wiczkowski, W. The impact of high-pressure processing on the polyphenol profile and anti-glycaemic, anti-hypertensive and anti-cholinergic activities of extracts obtained from kiwiberry (Actinidia arguta) fruits. Food Chem. 2021, 343, 128421. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, F.; Wang, M. Antioxidant and antiglycation activity of selected dietary polyphenols in a cookie model. J. Agric. Food Chem. 2014, 62, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, X.; Zhong, Y.J.; Perera, N.; Shahidi, F. Antiglycation activity of lipophilized epigallocatechin gallate (EGCG) derivatives. Food Chem. 2016, 190, 1022–1026. [Google Scholar] [CrossRef] [PubMed]
- Alper, M.; Günes, M. Evaluation of cytotoxic, apoptotic effects and phenolic compounds of sea cucumber Holothuria tubulosa (Gmelin, 1791) extracts. Turk. J. Vet. Anim. Sci. 2020, 44, 641–655. [Google Scholar] [CrossRef]
- Telahigue, K.; Ghali, R.; Nouiri, E.; Labidi, A.; Hajji, T. Antibacterial activities and bioactive compounds of the ethyl acetate extract of the sea cucumber Holothuria forskali from Tunisian coasts. J. Mar. Biol. Assoc. U.K. 2020, 100, 229–237. [Google Scholar] [CrossRef]
- Dakrory, A.I.; Fahmy, S.R.; Soliman, A.M.; Mohamed, A.S.; Amer, S.A.M. Protective and curative effects of the sea cucumber Holothuria atra extract against DMBA-induced Hepatorenal diseases in rats. Biomed Res. Int. 2015, 2015, 563652. [Google Scholar] [CrossRef] [Green Version]
- Esmat, A.Y.; Said, M.M.; Soliman, A.A.; El-Masry, K.S.H.; Badiea, E.A. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats. Nutrition 2013, 29, 258–267. [Google Scholar] [CrossRef]
Assays | Free | Esterified | Insoluble-Bound | |||
---|---|---|---|---|---|---|
Untreated | HPP-Treated | Untreated | HPP-Treated | Untreated | HPP-Treated | |
ARSA (mg TE/100 g) | 589.18 ± 2.18 a | 565.43 ± 2.06 b | 89.67 ± 0.94 a | 76.54 ± 0.75 b | 109.03 ± 0.98 a | 94.76 ± 0.58 b |
DRSA (mg TE/100 g) | 330.56 ± 1.68 b | 346.48 ± 1.06 a | 39.76 ± 0.52 b | 43.72 ± 0.75 a | 66.78 ± 0.76 b | 72.76 ± 0.58 a |
HRSA (mg TE/100 g) | 598.33 ± 1.58 | 598.93 ± 1.05 | 131.89 ± 0.82 | 132.37 ± 0.75 | 226.76 ± 1.5 b | 254.3 ± 0.58 a |
MCA (mg EDTAE/100 g) | 18.68 ± 0.28 b | 25.67 ± 1.05 a | 4.09 ± 0.2 b | 11.78 ± 0.75 a | 6.45 ± 0.42 | 7.27 ± 0.58 |
C# | Compounds | [M − H]− (m/z) | HPP-Treated | Untreated | ||||
---|---|---|---|---|---|---|---|---|
F | E | IB | F | E | IB | |||
1 | p-Hydroxybenzoic acid | 137 | 1.4 ± 0.03 | 0.49 ± 0.08 | 1.35 ± 0.03 | 0.46 ± 0.06 | ||
2 | Cinnamic acid | 147 | 3.24 ± 0.28 * | 1.54 ± 0.22 | 2.58 ± 0.15 | 1.51 ± 0.16 | ||
3 | Protocatechuic acid | 153 | 3.69 ± 0.24 * | 1.39 ± 0.1 * | 2.05 ± 0.18 * | 2.68 ± 0.26 | 1.12 ± 0.08 | 1.46 ± 0.08 |
4 | p-Coumaric acid | 163 | 2.89 ± 0.08 | 1.38 ± 0.05 * | 2.88 ± 0.2 * | 2.81 ± 0.01 | 1.11 ± 0.1 | 1.8 ± 0.12 |
5 | Vanillic acid | 167 | 1.37 ± 0.12 | 0.73 ± 0.1 | 0.95 ± 0.06 | 0.7 ± 0.06 | 0.89 ± 0.1 | |
6 | Gallic acid | 169 | 3.22 ± 0.32 * | 0.89 ± 0.12 | 1.55 ± 0.15 | 2.48 ± 0.18 | 0.85 ± 0.1 | 1.51 ± 0.22 |
7 | Caffeic acid | 179 | 1.01 ± 0.09 | 1.02 ± 0.16 | ||||
8 | Homovanillic acid | 181 | 1.03 ± 0.06 | |||||
9 | Hydroxygallic acid | 187 | 3.25 ± 0.34 * | 0.53 ± 0.04 | 2.42 ± 0.18 * | 2.24 ± 0.26 | 0.51 ± 0.08 | 1.89 ± 0.12 |
10 | Isoferulic acid | 193 | 0.76 ± 0.15 | |||||
11 | Syringic acid | 197 | 2.55 ± 0.1 | 0.34 ± 0.1 | 1.34 ± 0.05 | 2.5 ± 0.08 | 0.34 ± 0.05 | 1.3 ± 0.08 |
12 | p-Coumaroyl glycolic acid | 221 | 0.25 ± 0.1 | 0.66 ± 0.18 | ||||
13 | Sinapinic acid | 223 | 2.5 ± 0.18 * | 0.57 ± 0.12 | 1.79 ± 0.2 | |||
14 | Ellagic acid | 301 | 1.66 ± 0.15 | 0.54 ± 0.15 | 2.13 ± 0.28 | 1.61 ± 0.1 | 0.51 ± 0.12 | 2.1 ± 0.24 |
15 | Chlorogenic acid | 353 | 2.47 ± 0.18 | 3.06 ± 0.08 * | 2.4 ± 0.05 | 2.46 ± 0.1 | ||
16 | Caffeoyl glucoside | 387 | 2.47 ± 0.12 | 2.41 ± 0.16 | ||||
17 | Chicoric acid | 473 | 0.73 ± 0.16 | |||||
18 | Catechin | 289 | 5.8 ± 0.58 * | 1.2 ± 0.08 * | 2.33 ± 0.32 | 4.38 ± 0.36 | 0.85 ± 0.1 | 2.33 ± 0.16 |
19 | Quercetin | 301 | 3.05 ± 0.32 | 0.73 ± 0.18 | 1.7 ± 0.2 | 3.02 ± 0.14 | 0.7 ± 0.06 | 1.66 ± 0.1 |
20 | p-Hydroxybenzaldehyde | 121 | 1.81 ± 0.08 | 0.72 ± 0.06 | 0.81 ± 0.18 | 1.75 ± 0.1 | 0.71 ± 0.12 | 0.75 ± 0.08 |
21 | p-Hydroxycoumarin | 161 | 0.8 ± 0.16 | |||||
22 | Scopoletin | 191 | 1.56 ± 0.16 | |||||
23 | Leachianol F | 471 | 0.63 ± 0.05 | |||||
Total | 44.58 | 10.56 | 25.92 | 33.97 | 7.86 | 20.67 | ||
Total phenolic content | 81.06 | 62.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, A.; Yeo, J.; Dave, D.; Shahidi, F. Phenolic Compounds and Antioxidant Capacity of Sea Cucumber (Cucumaria frondosa) Processing Discards as Affected by High-Pressure Processing (HPP). Antioxidants 2022, 11, 337. https://doi.org/10.3390/antiox11020337
Hossain A, Yeo J, Dave D, Shahidi F. Phenolic Compounds and Antioxidant Capacity of Sea Cucumber (Cucumaria frondosa) Processing Discards as Affected by High-Pressure Processing (HPP). Antioxidants. 2022; 11(2):337. https://doi.org/10.3390/antiox11020337
Chicago/Turabian StyleHossain, Abul, JuDong Yeo, Deepika Dave, and Fereidoon Shahidi. 2022. "Phenolic Compounds and Antioxidant Capacity of Sea Cucumber (Cucumaria frondosa) Processing Discards as Affected by High-Pressure Processing (HPP)" Antioxidants 11, no. 2: 337. https://doi.org/10.3390/antiox11020337
APA StyleHossain, A., Yeo, J., Dave, D., & Shahidi, F. (2022). Phenolic Compounds and Antioxidant Capacity of Sea Cucumber (Cucumaria frondosa) Processing Discards as Affected by High-Pressure Processing (HPP). Antioxidants, 11(2), 337. https://doi.org/10.3390/antiox11020337