Oxidative Stress Evaluation in Dogs Affected with Canine Monocytic Ehrlichiosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animals
2.3. Collection of Blood Samples
2.4. Samples Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neer, T.M.; Breitschwerdt, E.B.; Greene, R.T.; Lappin, M.R. Consensus statement on ehrlichial disease of small animals from the infectious disease study group of the ACVIM: American College of Veterinary Internal Medicine. J. Vet. Intern. Med. 2002, 16, 309–315. [Google Scholar]
- Sainz, A.; Roura, X.; Miro, G.; Estrada-Pena, A.; Kohn, B.; Harrus, S.; Solano-Gallego, L. Guideline for veterinary practitioners on canine ehrlichiosis and anaplasmosis in Europe. Parasites Vectors 2015, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Sykes, E. Ehrlichiosis. In Canine and Feline Infectious Diseases, 1st ed.; Elsevier Saunders: St. Louis, MO, USA, 2014; pp. 278–289. [Google Scholar]
- Bremer, W.G.; Schaefer, J.J.; Wagner, E.R.; Ewing, S.A.; Rikihisa, Y.; Needham, G.R.; Jittapalapong, S.; Moore, D.L.; Stich, R.W. Transstadial and intrastadial experimental transmission of Ehrlichia canis by male Rhipicephalus sanguineus. Vet. Parasitol. 2005, 131, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Bulla, C.; Kiomi Takahira, R.; Pessoa Araújo, J., Jr.; AparecidaTrinca, L.; Souza Lopes, R.; Wiedmeyer, C.E. The relationship between the degree of thrombocytopenia and infection with Ehrlichia canis in an endemic area. Vet. Res. 2004, 35, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Sangione, L.A. Rickéttsias. In Parasitologia in Medicina Veterinária; Monteiro, S.G., Ed.; Roca: São Paulo, Brazil, 2011; pp. 169–179. [Google Scholar]
- Bottari, N.B.; Crivellenti, L.Z.; Borin-Crivellenti, S.; Oliveira, J.R.; Coelho, S.B.; Contin, C.M.; Tatsch, E.; Moresco, R.N.; Santana, A.E.; Tonin, A.A.; et al. Iron metabolism and oxidative profile of dogs naturally infected by Ehrlichia canis: Acute and subclinical disease. Microb. Pathog. 2016, 92, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, A.S.; Munhoz, T.D.; Faria, J.L.M.; Vargas-Hérnandez, G.; Machado, R.Z.; Almeida, T.C.; Moresco, R.N.; Stefani, L.M.; Tinucci-Costa, M.T. Increase nitric oxide and oxidative stress in dogs experimentally infected by Ehrlichia canis: Effect on the pathogenesis of the disease. Vet. Microbiol. 2013, 164, 366–369. [Google Scholar] [CrossRef]
- Pugliese, M.; Sfacteria, A.; Oliva, G.; Falcone, A.; Gizzarelli, M.; Passantino, A. Clinical Significance of R-OOHs, OXY, SHp and HMGB-1 in Canine Leishmaniosis. Animals 2021, 11, 754. [Google Scholar] [CrossRef]
- Rubio, C.P.; Yilmaz, Z.; Martínez-Subiela, S.; Kocaturk, M.; Hernández-Ruiz, J.; Yalcin, E.; Tvarijonaviciute, A.; Escribano, D.; Ceron, J.J. Serum antioxidant capacity and oxidative damage in clinical and subclinical canine ehrlichiosis. Res. Vet. Sci. 2017, 115, 301–306. [Google Scholar] [CrossRef]
- Çiftci, G.; Pekmezci, D.; Güzel, M.; Çenesiz, S.; Ural, K.; Aysul, N.; Kazak, F. Determination of serum oxidative stress, antioxidant capacity and protein profiles in dogs naturally infected with Ehrlichia canis. Acta Parasitol. 2021, 66, 1341–1348. [Google Scholar] [CrossRef]
- Harrus, S.; Waner, T. Diagnosis of canine monocytotropic ehrlichiosis (Ehrlichia canis): An overview. Vet. J. 2011, 187, 292–296. [Google Scholar] [CrossRef]
- Gaunt, S.; Beall, M.; Stillman, B.; Lorentzen, L.; Diniz, P.; Chandrashekar, R.; Breitschwerdt, E. Experimental infection and co-infection of dogs with Anaplasma platys and Ehrlichia canis: Hematologic, serologic and molecular findings. Parasites Vectors 2010, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Tafuri, S.; Marullo, A.; Ciani, F.; Della Morte, R.; Montagnaro, S.; Fiorito, F.; De Martino, L. Reactive oxygen metabolites in alpha-herpesvirus-seropositive Mediterranean bufaloes (Bubalus bubalis): A preliminary study. Pol. J. Vet. Sci. 2018, 21, 639–642. [Google Scholar]
- Douglas, J.; Weiss, K.; Wardrop, J. Schalm’s Veterinary Hematology, 6th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Elsevier: New York, NY, USA, 2008. [Google Scholar]
- Valbuena, G.; Walker, D.H. The endothelium as a target for infections. Annu. Rev. Pathol. 2006, 1, 171–198. [Google Scholar] [CrossRef]
- Walker, D.H.; Ismail, N. Emerging and re-emerging rickettsioses: Endothelial cell infection and early disease events. Nat. Rev. Microbiol. 2008, 6, 375–386. [Google Scholar] [CrossRef]
- Sahni, S.K.; Rydkina, E. Host-cell interactions with pathogenic Rickettsia species. Future Microbiol. 2009, 4, 323–339. [Google Scholar] [CrossRef] [Green Version]
- Rydkina, E.; Sahni, A.; Silverman, D.J.; Sahni, S.K. Rickettsia rickettsii infection of cultured human endothelial cells induces heme oxygenase 1 expression. Infect. Immun. 2000, 70, 4045–4052. [Google Scholar] [CrossRef] [Green Version]
- Sen, C.K.; Packer, L. Thiol homeostasis and supplements in physical exercise. Am. J. Clin. Nutr. 2000, 72, 653S–669S. [Google Scholar] [CrossRef] [Green Version]
- Ulrich, K.; Jakob, U. The role of thiols in antioxidant systems. Free Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef]
- Cremers, C.M.; Jakob, U. Oxidant sensing by reversible disulfide bond formation. J. Biol. Chem. 2013, 288, 26489–26496. [Google Scholar] [CrossRef] [Green Version]
- Markovic, I.; Stantchev, T.S.; Fields, K.H.; Tiffany, L.J.; Tomiç, M.; Weiss, C.D.; Broder, C.C.; Strebel, K.; Clouse, K.A. Thiol/disulfide exchange is a prerequisite for CXCR4-tropic HIV-1 envelope-mediated T-cell fusion during viral entry. Blood 2004, 103, 1586–1594. [Google Scholar] [CrossRef] [Green Version]
- Dulger, A.C.; Aslan, M.; Nazligul, Y.; Horoz, M.; Bolukbas, C.; Bolukbas, F.F.; Celik, H.; Kocyigit, A. Peripher-al lymphocyte DNA damage and oxidative status after eradication therapy in patients infected with Helicobacter pylori. Pol. Arch. Med. Wewn. 2011, 121, 428–432. [Google Scholar]
- Duygu, F.; Karsen, H.; Aksoy, N.; Taskin, A. Relationship of oxidative stress in hepatitis B infection activity with HBV DNA and fibrosis. Ann. Lab. Med. 2012, 32, 113–118. [Google Scholar] [CrossRef]
- Usta, M.; Aras, Z.; Tas, A. Oxidant and antioxidant in patients with Brucella canis. parameters in patients with Brucella canis. Clin. Biochem. 2012, 45, 366–367. [Google Scholar] [CrossRef]
- Naviaux, R.K. Metabolic features of the cell danger response. Mitochondrion 2014, 16, 7–17. [Google Scholar] [CrossRef]
- Da Silva, G.C.; Benitez Ado, N.; Girotto, A.; Taroda, A.; Vidotto, M.C.; Garcia, J.L.; de Freitas, J.C.; Arlington, S.H.; Vidotto, O. Occurrence of Ehrlichia canis and Anaplasma platys in household dogs from northern Parana. Rev. Bras. Parasitol. Vet. 2012, 21, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Milanjeet, H.S.; Singh, N.K.; Singh, N.D.; Singh, C.; Rath, S.S. Molecular prevalence and risk factors for the occurrence of canine monocytic ehrlichiosis. Vet. Med. 2014, 59, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Mylonakis, M.E.; Day, M.J.; Siarkou, V.; Vernau, W.; Koutinas, A.F. Absence of myelofibrosis in dogs with myelosuppression induced by Ehrlichia canis infection. J. Comp. Pathol. 2010, 142, 328–331. [Google Scholar] [CrossRef]
- Taylor, M.A.; Coop, R.L.; Wall, R. Veterinary Parasitology, 3rd ed.; Blackwell: Oxford, IA, USA, 2007. [Google Scholar]
- Waner, T.; Harrus, S.; Jongejan, F.; Keysary, A.; Cornelissen, A.W. Significance of serological testing for ehrlichial diseases in dogs with special emphasis on the diagnosis of canine monocytic ehrlichiosis caused by Ehrlichia canis. Vet. Parasitol. 2001, 95, 1–15. [Google Scholar] [CrossRef]
- Jordan, P.A.; Stevens, J.M.; Hubbard, G.P.; Barrett, N.E.; Sage, T.; Authi, K.S.; Gibbins, J.M. A role for the thiol isomerase protein ERP5 in platelet function. Blood 2005, 105, 1500–1507. [Google Scholar] [CrossRef]
- Margaritis, A.; Priora, R.; Frosali, S.; Di Giuseppe, D.; Summa, D.; Coppo, L.; Di Stefano, A.; Di Simplicio, P. The role of protein sulfhydryl groups and protein disulfides of the platelet surface in aggregation processes involving thiol exchange reactions. Pharmacol. Res. 2011, 63, 77–84. [Google Scholar] [CrossRef]
- Jordan, P.A.; Gibbins, J.M. Extracellular disulfide exchange and the regulation of cellular function. Antioxid. Redox Signal. 2006, 8, 312–324. [Google Scholar] [CrossRef]
Variable | Unit | CME | CTR | p-Value | ||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
R-OOHs | (U CARR) | 211.9 | 89.9 | 247.2 | 79 | Ns |
OXY | (μmol HCLO/mL) | 454.2 | 177 | 419.2 | 191 | Ns |
SHp | (μmol/L) | 63.6 | 16.8 | 267.1 | 139.8 | <0.01 |
OSi | % | 76.6 | 80 | 49.2 | 20.1 | 0.02 |
Variable | Unit | CME | CTR | Reference Ranges [15,16] | p-Value | ||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
RBC | (106/μL) | 6.18 | 2 | 5.9 | 2 | 5.6–8.7 | Ns |
Hgb | (ng/mL) | 12.9 | 1.9 | 15 | 2 | 14.7–17.7 | 0.049 |
PCV | (%) | 38.2 | 5 | 43 | 6 | 42–53 | 0.048 |
WBC | (103/μL) | 13.2 | 4.4 | 10 | 1.9 | 4.6–10.6 | 0.044 |
PLT | (103/μL) | 127 | 115 | 290 | 99 | 150–400 | <0.01 |
BUN | (mg/dL) | 32.6 | 12.8 | 24.4 | 9.7 | 5–21 | 0.045 |
CREA | (mg/dL) | 1.4 | 0.5 | 1.2 | 0.4 | 0.3–1.2 | Ns |
AST | (U/L) | 43.5 | 28.4 | 35.6 | 23.2 | 0–40 | Ns |
ALT | (U/L) | 39.4 | 18.4 | 34.8 | 16.6 | 0–40 | Ns |
ALB | (g/dL) | 3.5 | 0.62 | 3.7 | 0.48 | 3.0–4.4 | Ns |
GLOB | (g/dL) | 3 | 0.01 | 2.7 | 0.48 | 1.8–3.9 | Ns |
TP | (g/dL) | 6 | 0.2 | 6.4 | 0.5 | 6.4–7.9 | Ns |
R-OOHs | OXY | SHp | OSi | |
---|---|---|---|---|
R-OOHs | - | −0.27 | −0.48 * | 0.81 ** |
OXY | −0.27 | - | 0.66 ** | −0.72 ** |
SHp | −0.48 * | 0.66 ** | - | 0.66 ** |
OSi | 0.81 ** | −0.72 ** | 0.66 ** | - |
RBC | Hgb | PCV | WBC | PLT | ALT | AST | BUN | CREA | ALB | GLOB | TP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R-OOHs | 0.26 | 0.57 | 0.97 | 0.73 | 0.92 | 0.05 | −0.04 | 0.35 | 0.33 | −0.21 | 0.01 | −0.17 |
OXY | −0.19 | −0.06 | −0.02 | 0.33 | 0.35 | −0.12 | 0.28 | 0.13 | 0.25 | −0.11 | 0.30 | −0.39 |
SHp | −0.31 | −0.45 * | −0.34 | −0.30 | 0.02 | 0.02 | 0.03 | 0.08 | −0.15 | 0.03 | −0.05 | 0.34 |
OSi | 0.04 | 0.04 | 0.15 | −0.2 | −0.61 * | 0.19 | −0.11 | 0.09 | 0.06 | 0.26 | 0.27 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pugliese, M.; Biondi, V.; Merola, G.; Landi, A.; Passantino, A. Oxidative Stress Evaluation in Dogs Affected with Canine Monocytic Ehrlichiosis. Antioxidants 2022, 11, 328. https://doi.org/10.3390/antiox11020328
Pugliese M, Biondi V, Merola G, Landi A, Passantino A. Oxidative Stress Evaluation in Dogs Affected with Canine Monocytic Ehrlichiosis. Antioxidants. 2022; 11(2):328. https://doi.org/10.3390/antiox11020328
Chicago/Turabian StylePugliese, Michela, Vito Biondi, Giordana Merola, Alessandra Landi, and Annamaria Passantino. 2022. "Oxidative Stress Evaluation in Dogs Affected with Canine Monocytic Ehrlichiosis" Antioxidants 11, no. 2: 328. https://doi.org/10.3390/antiox11020328
APA StylePugliese, M., Biondi, V., Merola, G., Landi, A., & Passantino, A. (2022). Oxidative Stress Evaluation in Dogs Affected with Canine Monocytic Ehrlichiosis. Antioxidants, 11(2), 328. https://doi.org/10.3390/antiox11020328