The Greening of Anthocyanins: Eco-Friendly Techniques for Their Recovery from Agri-Food By-Products
Abstract
:1. Introduction
2. Green Solvents for Anthocyanin Extraction from Agri-Food By-Products
2.1. Water
2.2. Bio-Derived Solvents
2.3. Ethanol
2.4. Glycerol
2.5. NaDES
3. Green Techniques for Anthocyanin Extraction from Agri-Food By-Products
3.1. Ultrasound-Assisted Extraction
3.2. Pressurized Liquid Extraction
3.3. Microwave Assisted Extraction
3.4. Supercritical Fluid Extraction
3.5. Electric Treatments
3.6. Other Techniques
4. Concluding Remarks and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Towards a Green Economy in Europe—EU Environmental Policy Targets and Objectives 2010–2050—European Environment Agency. Available online: https://www.eea.europa.eu/publications/towards-a-green-economy-in-europe (accessed on 17 February 2022).
- Sagar, N.A.; Pareek, S.; Sharma, S.; Yahia, E.M.; Lobo, M.G. Fruit and Vegetable Waste: Bioactive Compounds, Their Extraction, and Possible Utilization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 512–531. [Google Scholar] [CrossRef] [PubMed]
- Arruda, H.S.; Silva, E.K.; Peixoto Araujo, N.M.; Pereira, G.A.; Pastore, G.M.; Marostica Junior, M.R. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021, 26, 2632. [Google Scholar] [CrossRef] [PubMed]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Phenols, Polyphenols and Tannins: An Overview. In Plant Secondary Metabolites; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1–24. ISBN 978-0-470-98855-8. [Google Scholar]
- Dangles, O.; Fenger, J.-A. The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition. Molecules 2018, 23, 1970. [Google Scholar] [CrossRef]
- Melo, P.S.; de Arrivetti, L.O.R.; de Alencar, S.M.; Skibsted, L.H. Antioxidative and Prooxidative Effects in Food Lipids and Synergism with α-Tocopherol of Açaí Seed Extracts and Grape Rachis Extracts. Food Chem. 2016, 213, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Giusti, M.M.; Wrolstad, R.E. Acylated Anthocyanins from Edible Sources and Their Applications in Food Systems. Biochem. Eng. J. 2003, 14, 217–225. [Google Scholar] [CrossRef]
- Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Antimicrobial Activity of Anthocyanins and Catechins against Foodborne Pathogens Escherichia Coli and Salmonella. Food Control 2019, 106, 106712. [Google Scholar] [CrossRef]
- Speer, H.; D’Cunha, N.M.; Alexopoulos, N.I.; McKune, A.J.; Naumovski, N. Anthocyanins and Human Health—A Focus on Oxidative Stress, Inflammation and Disease. Antioxidants 2020, 9, 366. [Google Scholar] [CrossRef]
- D’Cunha, N.M.; Georgousopoulou, E.N.; Dadigamuwage, L.; Kellett, J.; Panagiotakos, D.B.; Thomas, J.; McKune, A.J.; Mellor, D.D.; Naumovski, N. Effect of Long-Term Nutraceutical and Dietary Supplement Use on Cognition in the Elderly: A 10-Year Systematic Review of Randomised Controlled Trials. Br. J. Nutr. 2018, 119, 280–298. [Google Scholar] [CrossRef]
- He, J.; Giusti, M.M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green Solvents for Green Technologies. J. Chem. Technol. Biotechnol. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbuhler, K. What Is a Green Solvent? A Comprehensive Framework for the Environmental Assessment of Solvents. Green Chem. 2007, 8, 927–934. [Google Scholar] [CrossRef]
- Koller, G.; Fischer, U.; Hungerbühler, K. Assessing Safety, Health, and Environmental Impact Early during Process Development. Ind. Eng. Chem. Res. 2000, 39, 960–972. [Google Scholar] [CrossRef]
- The WFO Plant List|World Flora Online. Available online: https://wfoplantlist.org/plant-list (accessed on 22 September 2022).
- Katsampa, P.; Valsamedou, E.; Grigorakis, S.; Makris, D.P. A Green Ultrasound-Assisted Extraction Process for the Recovery of Antioxidant Polyphenols and Pigments from Onion Solid Wastes Using Box–Behnken Experimental Design and Kinetics. Ind. Crops Prod. 2015, 77, 535–543. [Google Scholar] [CrossRef]
- Li, R.; Hettiarachchy, N.; Rayaprolu, S.; Eswaranandam, S.; Howe, B.; Davis, M.; Jha, A. Phenolics and Antioxidant Activity of Saskatoon Berry (Amelanchier Alnifolia) Pomace Extract. J. Med. Food 2014, 17, 384–392. [Google Scholar] [CrossRef]
- Gigliobianco, M.R.; Cortese, M.; Peregrina, D.V.; Villa, C.; Lupidi, G.; Pruccoli, L.; Angeloni, C.; Tarozzi, A.; Censi, R.; Di Martino, P. Development of New Extracts of Crocus Sativus L. By-Product from Two Different Italian Regions as New Potential Active Ingredient in Cosmetic Formulations. Cosmetics 2021, 8, 51. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Rosa, A.; Montoro, P.; Fenu, M.A.; Pizza, C. Antioxidant Activity, Cytotoxic Activity and Metabolic Profiling of Juices Obtained from Saffron (Crocus Sativus L.) Floral by-Products. Food Chem. 2016, 199, 18–27. [Google Scholar] [CrossRef]
- Vardakas, A.T.; Shikov, V.T.; Dinkova, R.H.; Mihalev, K.M. Optimisation of the Enzyme-Assisted Extraction of Polyphenols from Saffron (Crocus Sativus L.) Tepals. Acta Sci. Pol. Technol. Aliment. 2021, 20, 359–367. [Google Scholar] [CrossRef]
- Pappas, V.M.; Athanasiadis, V.; Palaiogiannis, D.; Poulianiti, K.; Bozinou, E.; Lalas, S.I.; Makris, D.P. Pressurized Liquid Extraction of Polyphenols and Anthocyanins from Saffron Processing Waste with Aqueous Organic Acid Solutions: Comparison with Stirred-Tank and Ultrasound-Assisted Techniques. Sustainability 2021, 13, 12578. [Google Scholar] [CrossRef]
- Stelluti, S.; Caser, M.; Demasi, S.; Scariot, V. Sustainable Processing of Floral Bio-Residues of Saffron (Crocus Sativus L.) for Valuable Biorefinery Products. Plants 2021, 10, 523. [Google Scholar] [CrossRef]
- Sang, J.; Sang, J.; Ma, Q.; Hou, X.; Li, C. Extraction Optimization and Identification of Anthocyanins from Nitraria Tangutorun Bobr. Seed Meal and Establishment of a Green Analytical Method of Anthocyanins. Food Chem. 2017, 218, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.F.; Benvenutti, L.; Burin, V.M.; Gomes, T.M.; Ferreira, S.R.S.; Zielinski, A.A.F. An Eco-Friendly Pressure Liquid Extraction Method to Recover Anthocyanins from Broken Black Bean Hulls. Innov. Food Sci. Emerg. Technol. 2021, 67, 102587. [Google Scholar] [CrossRef]
- Gadioli Tarone, A.; Keven Silva, E.; Dias de Freitas Queiroz Barros, H.; Baú Betim Cazarin, C.; Roberto Marostica Junior, M. High-Intensity Ultrasound-Assisted Recovery of Anthocyanins from Jabuticaba by-Products Using Green Solvents: Effects of Ultrasound Intensity and Solvent Composition on the Extraction of Phenolic Compounds. Food Res. Int. 2021, 140, 110048. [Google Scholar] [CrossRef] [PubMed]
- Benvenutti, L.; Zielinski, A.A.F.; Ferreira, S.R.S. Pressurized Aqueous Solutions of Deep Eutectic Solvent (DES): A Green Emergent Extraction of Anthocyanins from a Brazilian Berry Processing by-Product. Food Chem. X 2022, 13, 100236. [Google Scholar] [CrossRef]
- Gigliobianco, M.R.; Cortese, M.; Nannini, S.; Di Nicolantonio, L.; Peregrina, D.V.; Lupidi, G.; Vitali, L.A.; Bocchietto, E.; Di Martino, P.; Censi, R. Chemical, Antioxidant, and Antimicrobial Properties of the Peel and Male Flower By-Products of Four Varieties of Punica Granatum L. Cultivated in the Marche Region for Their Use in Cosmetic Products. Antioxidants 2022, 11, 768. [Google Scholar] [CrossRef]
- Kalantari, S.; Roufegarinejad, L.; Pirsa, S.; Gharekhani, M. Green Extraction of Bioactive Compounds of Pomegranate Peel Using β-Cyclodextrin and Ultrasound. Main Group Chem. 2020, 19, 61–80. [Google Scholar] [CrossRef]
- Turrini, F.; Malaspina, P.; Giordani, P.; Catena, S.; Zunin, P.; Boggia, R. Traditional Decoction and PUAE Aqueous Extracts of Pomegranate Peels as Potential Low-Cost Anti-Tyrosinase Ingredients. Appl. Sci. 2020, 10, 2795. [Google Scholar] [CrossRef]
- dos Santos, S.S.; Magalhães, F.d.S.; Paraíso, C.M.; Ogawa, C.Y.L.; Sato, F.; Junior, O.d.O.S.; Visentainer, J.V.; Madrona, G.S.; Reis, M.H.M. Enhanced Conditions for Anthocyanin Extraction from Blackberry Pomace under Ultrasound Irradiation. J. Food Process Eng. 2022, e14077. [Google Scholar] [CrossRef]
- Doulabi, M.; Golmakani, M.-T.; Ansari, S. Evaluation and Optimization of Microwave-Assisted Extraction of Bioactive Compounds from Eggplant Peel by-Product. J. Food Process. Preserv. 2020, 44, e14853. [Google Scholar] [CrossRef]
- Bamba, B.S.B.; Shi, J.; Tranchant, C.C.; Xue, S.J.; Forney, C.F.; Lim, L.-T. Influence of Extraction Conditions on Ultrasound-Assisted Recovery of Bioactive Phenolics from Blueberry Pomace and Their Antioxidant Activity. Molecules 2018, 23, 1685. [Google Scholar] [CrossRef]
- Kühn, S.; Temelli, F. Recovery of Bioactive Compounds from Cranberry Pomace Using Ternary Mixtures of CO2 + ethanol + water. J. Supercrit. Fluids 2017, 130, 147–155. [Google Scholar] [CrossRef]
- Lončarić, A.; Celeiro, M.; Jozinović, A.; Jelinić, J.; Kovač, T.; Jokić, S.; Babić, J.; Moslavac, T.; Zavadlav, S.; Lores, M. Green Extraction Methods for Extraction of Polyphenolic Compounds from Blueberry Pomace. Foods 2020, 9, 1521. [Google Scholar] [CrossRef] [PubMed]
- Varo, M.A.; Jacotet-Navarro, M.; Serratosa, M.P.; Mérida, J.; Fabiano-Tixier, A.-S.; Bily, A.; Chemat, F. Green Ultrasound-Assisted Extraction of Antioxidant Phenolic Compounds Determined by High Performance Liquid Chromatography from Bilberry (Vaccinium Myrtillus L.) Juice By-Products. Waste Biomass Valorization 2019, 10, 1945–1955. [Google Scholar] [CrossRef]
- Fu, X.; Wang, D.; Belwal, T.; Xie, J.; Xu, Y.; Li, L.; Zou, L.; Zhang, L.; Luo, Z. Natural Deep Eutectic Solvent Enhanced Pulse-Ultrasonication Assisted Extraction as a Multi-Stability Protective and Efficient Green Strategy to Extract Anthocyanin from Blueberry Pomace. LWT 2021, 144, 111220. [Google Scholar] [CrossRef]
- Al Bittar, S.; Périno-Issartier, S.; Dangles, O.; Chemat, F. An Innovative Grape Juice Enriched in Polyphenols by Microwave-Assisted Extraction. Food Chem. 2013, 141, 3268–3272. [Google Scholar] [CrossRef]
- Bosiljkov, T.; Dujmić, F.; Cvjetko Bubalo, M.; Hribar, J.; Vidrih, R.; Brnčić, M.; Zlatic, E.; Radojčić Redovniković, I.; Jokić, S. Natural Deep Eutectic Solvents and Ultrasound-Assisted Extraction: Green Approaches for Extraction of Wine Lees Anthocyanins. Food Bioprod. Process 2017, 102, 195–203. [Google Scholar] [CrossRef]
- Otero-Pareja, M.J.; Casas, L.; Fernández-Ponce, M.T.; Mantell, C.; Ossa, E.J.M.d.l. Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules 2015, 20, 9686–9702. [Google Scholar] [CrossRef]
- Poveda, J.M.; Loarce, L.; Alarcón, M.; Díaz-Maroto, M.C.; Alañón, M.E. Revalorization of Winery By-Products as Source of Natural Preservatives Obtained by Means of Green Extraction Techniques. Ind. Crops Prod. 2018, 112, 617–625. [Google Scholar] [CrossRef]
- Posadino, A.M.; Biosa, G.; Zayed, H.; Abou-Saleh, H.; Cossu, A.; Nasrallah, G.K.; Giordo, R.; Pagnozzi, D.; Porcu, M.C.; Pretti, L.; et al. Protective Effect of Cyclically Pressurized Solid–Liquid Extraction Polyphenols from Cagnulari Grape Pomace on Oxidative Endothelial Cell Death. Molecules 2018, 23, 2105. [Google Scholar] [CrossRef]
- Eyiz, V.; Tontul, I.; Turker, S. Optimization of Green Extraction of Phytochemicals from Red Grape Pomace by Homogenizer Assisted Extraction. J. Food Meas. Charact. 2020, 14, 39–47. [Google Scholar] [CrossRef]
- Loarce, L.; Oliver-Simancas, R.; Marchante, L.; Díaz-Maroto, M.C.; Alañón, M.E. Modifiers Based on Natural Deep Eutectic Mixtures to Enhance Anthocyanins Isolation from Grape Pomace by Pressurized Hot Water Extraction. LWT 2021, 149, 111889. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.; Silva, S.; Costa, E.; Pereira, R.N.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M. Anthocyanin Recovery from Grape By-Products by Combining Ohmic Heating with Food-Grade Solvents: Phenolic Composition, Antioxidant, and Antimicrobial Properties. Molecules 2021, 26, 3838. [Google Scholar] [CrossRef]
- Jeong, K.M.; Zhao, J.; Jin, Y.; Heo, S.R.; Han, S.Y.; Yoo, D.E.; Lee, J. Highly Efficient Extraction of Anthocyanins from Grape Skin Using Deep Eutectic Solvents as Green and Tunable Media. Arch. Pharm. Res. 2015, 38, 2143–2152. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Tobiszewski, M. The Application of Green Solvents in Separation Processes, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-805297-6. [Google Scholar]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Caser, M.; Demasi, S.; Stelluti, S.; Donno, D.; Scariot, V. Crocus Sativus L. Cultivation in Alpine Environments: Stigmas and Tepals as Source of Bioactive Compounds. Agronomy 2020, 10, 1473. [Google Scholar] [CrossRef]
- Metivier, R.P.; Francis, F.J.; Clydesdale, F.M. Solvent Extraction of Anthocyanins From Wine Pomace. J. Food Sci. Off. Publ. Inst. Food Technol. 1980, 45, 1099–1100. [Google Scholar] [CrossRef]
- Tzima, K.; Kallithraka, S.; Kotseridis, Y.; Makris, D.P. A Comparative Evaluation of Aqueous Natural Organic Acid Media for the Efficient Recovery of Flavonoids from Red Grape (Vitis Vinifera) Pomace. Waste Biomass Valorization 2015, 6, 391–400. [Google Scholar] [CrossRef]
- Szente, L.; Szejtli, J. Cyclodextrins as Food Ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Li, Z.; Smith, K.H.; Stevens, G.W. The Use of Environmentally Sustainable Bio-Derived Solvents in Solvent Extraction Applications—A Review. Chin. J. Chem. Eng. 2016, 24, 215–220. [Google Scholar] [CrossRef]
- Cañadas, R.; González-Miquel, M.; González, E.J.; Díaz, I.; Rodríguez, M. Evaluation of Bio-Based Solvents for Phenolic Acids Extraction from Aqueous Matrices. J. Mol. Liq. 2021, 338, 116930. [Google Scholar] [CrossRef]
- Prat, D.; Hayler, J.; Wells, A. A Survey of Solvent Selection Guides. Green Chem. 2014, 16, 4546–4551. [Google Scholar] [CrossRef]
- Manochio, C.; Andrade, B.R.; Rodriguez, R.P.; Moraes, B.S. Ethanol from Biomass: A Comparative Overview. Renew. Sustain. Energy Rev. 2017, 80, 743–755. [Google Scholar] [CrossRef]
- Öhgren, K.; Bengtsson, O.; Gorwa-Grauslund, M.F.; Galbe, M.; Hahn-Hägerdal, B.; Zacchi, G. Simultaneous Saccharification and Co-Fermentation of Glucose and Xylose in Steam-Pretreated Corn Stover at High Fiber Content with Saccharomyces Cerevisiae TMB3400. J. Biotechnol. 2006, 126, 488–498. [Google Scholar] [CrossRef]
- Hamelinck, C.N.; van Hooijdonk, G.; Faaij, A.P. Ethanol from Lignocellulosic Biomass: Techno-Economic Performance in Short-, Middle- and Long-Term. Biomass Bioenergy 2005, 28, 384–410. [Google Scholar] [CrossRef]
- Alder, C.M.; Hayler, J.D.; Henderson, R.K.; Redman, A.M.; Shukla, L.; Shuster, L.E.; Sneddon, H.F. Updating and Further Expanding GSK’s Solvent Sustainability Guide. Green Chem. 2016, 18, 3879–3890. [Google Scholar] [CrossRef]
- Viganó, J.; de Aguiar, A.C.; Veggi, P.C.; Sanches, V.L.; Rostagno, M.A.; Martínez, J. Techno-Economic Evaluation for Recovering Phenolic Compounds from Acai (Euterpe Oleracea) by-Product by Pressurized Liquid Extraction. J. Supercrit. Fluids 2022, 179, 105413. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G.; Monteagudo-Arrebola, M.J.; Dobado, J.A.; Isac-García, J. Green and Bio-Based Solvents. Top. Curr. Chem. 2018, 376, 18. [Google Scholar] [CrossRef]
- Gu, Y.; Jérôme, F. Glycerol as a Sustainable Solvent for Green Chemistry. Green Chem. 2010, 12, 1127–1138. [Google Scholar] [CrossRef]
- Mourtzinos, I.; Prodromidis, P.; Grigorakis, S.; Makris, D.P.; Biliaderis, C.G.; Moschakis, T. Natural Food Colorants Derived from Onion Wastes: Application in a Yoghurt Product. Electrophoresis 2018, 39, 1975–1983. [Google Scholar] [CrossRef]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel Lactic Acid-Based Natural Deep Eutectic Solvents: Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Common Native Greek Medicinal Plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar] [CrossRef]
- Fanali, C.; Gallo, V.; Della Posta, S.; Dugo, L.; Mazzeo, L.; Cocchi, M.; Piemonte, V.; De Gara, L. Choline Chloride–Lactic Acid-Based NADES As an Extraction Medium in a Response Surface Methodology-Optimized Method for the Extraction of Phenolic Compounds from Hazelnut Skin. Molecules 2021, 26, 2652. [Google Scholar] [CrossRef] [PubMed]
- Prabowo, W.C.; Agustina, R.; Nur, Y.; Hidayati, R.; Rahmawati, D.; Arifuddin, M.; Ambarwati, N.S.S.; Purwoko, R.Y.; Mun’im, A.; Ahmad, I. Green and Optimum Extraction of Total Polyphenols Content from Mitragyna Speciosa Korth. Havil Leaves Using Microwave- Assisted Natural Deep Eutectic Solvent Extraction. Pharmacogn. J. 2022, 14, 11. [Google Scholar] [CrossRef]
- Rodríguez-Juan, E.; Rodríguez-Romero, C.; Fernández-Bolaños, J.; Florido, M.C.; Garcia-Borrego, A. Phenolic Compounds from Virgin Olive Oil Obtained by Natural Deep Eutectic Solvent (NADES): Effect of the Extraction and Recovery Conditions. J. Food Sci. Technol. 2021, 58, 552–561. [Google Scholar] [CrossRef]
- Cui, Z.; Enjome Djocki, A.V.; Yao, J.; Wu, Q.; Zhang, D.; Nan, S.; Gao, J.; Li, C. COSMO-SAC-Supported Evaluation of Natural Deep Eutectic Solvents for the Extraction of Tea Polyphenols and Process Optimization. J. Mol. Liq. 2021, 328, 115406. [Google Scholar] [CrossRef]
- Vorobyova, V.; Skiba, M.; Miliar, Y.; Frolenkova, S. Enhanced Phenolic Compounds Extraction from Apricot Pomace by Natural Deep Eutectic Solvent Combined with Ultrasonic-Assisted Extraction. J. Chem. Technol. Metall 2021, 13, 919–931. [Google Scholar]
- Alhadid, A.; Mokrushina, L.; Minceva, M. Modeling of Solid–Liquid Equilibria in Deep Eutectic Solvents: A Parameter Study. Molecules 2019, 24, 2334. [Google Scholar] [CrossRef]
- Martins, M.A.R.; Pinho, S.P.; Coutinho, J.A.P. Insights into the Nature of Eutectic and Deep Eutectic Mixtures. J. Solut. Chem. 2019, 48, 962–982. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Gutiérrez, M.C.; Ferrer, M.L.; Mateo, C.R.; del Monte, F. Freeze-Drying of Aqueous Solutions of Deep Eutectic Solvents: A Suitable Approach to Deep Eutectic Suspensions of Self-Assembled Structures. Langmuir 2009, 25, 5509–5515. [Google Scholar] [CrossRef] [PubMed]
- Popovic, B.M.; Micic, N.; Potkonjak, A.; Blagojevic, B.; Pavlovic, K.; Milanov, D.; Juric, T. Novel Extraction of Polyphenols from Sour Cherry Pomace Using Natural Deep Eutectic Solvents—Ultrafast Microwave-Assisted NADES Preparation and Extraction. Food Chem. 2022, 366, 130562. [Google Scholar] [CrossRef] [PubMed]
- Gomez, F.J.V.; Espino, M.; Fernández, M.A.; Silva, M.F. A Greener Approach to Prepare Natural Deep Eutectic Solvents. ChemistrySelect 2018, 3, 6122–6125. [Google Scholar] [CrossRef]
- Bajkacz, S.; Adamek, J. Development of a Method Based on Natural Deep Eutectic Solvents for Extraction of Flavonoids from Food Samples. Food Anal. Methods 2018, 11, 1330–1344. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Bubalo, M.C.; Ćurko, N.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Green Extraction of Grape Skin Phenolics by Using Deep Eutectic Solvents. Food Chem. 2016, 200, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Hayyan, M.; Hashim, M.A.; Hayyan, A.; Al-Saadi, M.A.; AlNashef, I.M.; Mirghani, M.E.S.; Saheed, O.K. Are Deep Eutectic Solvents Benign or Toxic? Chemosphere 2013, 90, 2193–2195. [Google Scholar] [CrossRef]
- Hayyan, M.; Mbous, Y.P.; Looi, C.Y.; Wong, W.F.; Hayyan, A.; Salleh, Z.; Mohd-Ali, O. Natural Deep Eutectic Solvents: Cytotoxic Profile. SpringerPlus 2016, 5, 913. [Google Scholar] [CrossRef]
- Marchel, M.; Cieśliński, H.; Boczkaj, G. Deep Eutectic Solvents Microbial Toxicity: Current State of Art and Critical Evaluation of Testing Methods. J. Hazard. Mater. 2022, 425, 127963. [Google Scholar] [CrossRef]
- Radošević, K.; Ćurko, N.; Srček, V.G.; Bubalo, M.C.; Tomašević, M.; Ganić, K.K.; Redovniković, I.R. Natural Deep Eutectic Solvents as Beneficial Extractants for Enhancement of Plant Extracts Bioactivity. LWT 2016, 73, 45–51. [Google Scholar] [CrossRef]
- Benvenutti, L.; Sanchez-Camargo, A.d.P.; Zielinski, A.A.F.; Ferreira, S.R.S. NADES as Potential Solvents for Anthocyanin and Pectin Extraction from Myrciaria Cauliflora Fruit By-Product: In Silico and Experimental Approaches for Solvent Selection. J. Mol. Liq. 2020, 315, 113761. [Google Scholar] [CrossRef]
- Rastogi, N.K. Opportunities and Challenges in Application of Ultrasound in Food Processing. Crit. Rev. Food Sci. Nutr. 2011, 51, 705–722. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Zhao, S.; Baik, O.-D.; Choi, Y.J.; Kim, S.-M. Pretreatments for the Efficient Extraction of Bioactive Compounds from Plant-Based Biomaterials. Crit. Rev. Food Sci. Nutr. 2014, 54, 1283–1297. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Runnqvist, H.; Bak, S.A.; Hansen, M.; Styrishave, B.; Halling-Sørensen, B.; Björklund, E. Determination of Pharmaceuticals in Environmental and Biological Matrices Using Pressurised Liquid Extraction—Are We Developing Sound Extraction Methods? J. Chromatogr. A 2010, 1217, 2447–2470. [Google Scholar] [CrossRef]
- Ekezie, F.-G.C.; Sun, D.-W.; Cheng, J.-H. Acceleration of Microwave-Assisted Extraction Processes of Food Components by Integrating Technologies and Applying Emerging Solvents: A Review of Latest Developments. Trends Food Sci. Technol. 2017, 67, 160–172. [Google Scholar] [CrossRef]
- Khan, M.K.; Ahmad, K.; Hassan, S.; Imran, M.; Ahmad, N.; Xu, C. Effect of Novel Technologies on Polyphenols during Food Processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 361–381. [Google Scholar] [CrossRef]
- da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical Fluid Extraction of Bioactive Compounds. TrAC Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef]
- Puértolas, E.; Barba, F.J. Electrotechnologies Applied to Valorization of By-Products from Food Industry: Main Findings, Energy and Economic Cost of Their Industrialization. Food Bioprod. Process 2016, 100, 172–184. [Google Scholar] [CrossRef]
- Boussetta, N.; Turk, M.; De Taeye, C.; Larondelle, Y.; Lanoisellé, J.L.; Vorobiev, E. Effect of High Voltage Electrical Discharges, Heating and Ethanol Concentration on the Extraction of Total Polyphenols and Lignans from Flaxseed Cake. Ind. Crops Prod. 2013, 49, 690–696. [Google Scholar] [CrossRef]
- Boussetta, N.; Vorobiev, E. Extraction of Valuable Biocompounds Assisted by High Voltage Electrical Discharges: A Review. Comptes Rendus Chim. 2014, 17, 197–203. [Google Scholar] [CrossRef]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C. Modeling and Kinetics Study of Conventional and Assisted Batch Solvent Extraction. Chem. Eng. Res. Des. 2014, 92, 1169–1186. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G.; Pataro, G. Applications of Pulsed Electric Field Treatments for the Enhancement of Mass Transfer from Vegetable Tissue. Food Eng. Rev. 2010, 2, 109–130. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Xi, J. Recent Advances in High Voltage Electric Discharge Extraction of Bioactive Ingredients from Plant Materials. Food Chem. 2019, 277, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.A.; Molina, G.; Arruda, H.S.; Pastore, G.M. Optimizing the Homogenizer-Assisted Extraction (HAE) of Total Phenolic Compounds from Banana Peel. J. Food Process Eng. 2017, 40, e12438. [Google Scholar] [CrossRef]
- Kulshrestha, S.A.; Sastry, S.K. Changes in Permeability of Moderate Electric Field (MEF) Treated Vegetable Tissue over Time. Innov. Food Sci. Emerg. Technol. 2010, 11, 78–83. [Google Scholar] [CrossRef]
Plant Species | Common Name | By-Product | By-Product Origin | Green Solvent | Green Technique | Extraction Conditions | Type of Anthocyanin | Extraction Yield | Ref. |
---|---|---|---|---|---|---|---|---|---|
Allium cepa L. | Red onion | Solid wastes | Industrial processing | Glycerol | UAE | Solid–liquid ratio 1:88 (g/mL), glycerol 83% (w/v), 80 °C, 60 min, 140 W, 35 W/L, 37 kHz | Cyanidin-derivatives | 2.09 CGE mg/g dw | [17] |
Amelanchier alnifolia Nutt. ex M.Roem. | Saskatoon | Pomace | Juice production | Ethanol | UAE | 5 g of sample, 25 mL of EtOH 70%, 10 min, twice. Final extraction with 25 mL of 0.15 N HCl | Cyanidin-, Delphinidin-derivatives | TMA = 2.6 ± 0.1 mg CGE/g dw | [18] |
Crocus sativus L. | Saffron | Tepals | Flower processing | Ethanol | MAE | 4.5 g of sample, 20 mL EtOH 70%, 70 °C, 30 min, 2.45 GHz | Delphinidin-, Malvidin-, Petunidin-derivatives | 1.86 mg DGE/g dw for sample from Marche region (Italy) 0.35 mg DGE/g dw for sample from Piemonte region (Italy) | [19] |
Glycerol | MAE | 4.5 g of sample, 20 mL Glycerol, 70 °C, 30 min, 2.45 GHz | Delphinidin-, Malvidin-, Petunidin-derivatives | 0.86 mg DGE/g dw for sample from Marche region (Italy) 1.00 mg DGE/g dw for sample from Piemonte region (Italy) | [19] | ||||
Solvent free | Cold pressing | Press | Delphinidin-, Petunidin-derivatives | 1075.9 ± 20.2 mg/L from 24 h post-harvesting tepals. 1316.7 ± 109.8 mg/L from 48 h post-harvesting tepals | [20] | ||||
Water | EAE | Solid–liquid ratio 10:1 (v/w), HCl (pH = 4), acidified binary combination of cellulolase/hemicellulase (1:1), enzyme mixture dose (0.12–0.15%), 50 °C, 145–185 min | n.s. | TMA = 2 mg CGE/g dw | [21] | ||||
MAE | 4.5 g of sample, 20 mL water, 70 °C, 30 min, 2.45 GHz | Delphinidin-, Malvidin-, Petunidin-derivatives | 1.33 mg DGE/g dw for sample from Marche region (Italy) 1.18 mg DGE/g dw for sample from Piemonte region (Italy) | [19] | |||||
PLE | Solid–liquid ratio 1:40 (g/mL), LA 5% (w/v), 120 °C, 10 min | Delphinidin-, Petunidin-derivatives | 2.00 mg/g dw | [22] | |||||
UAE | Solid–liquid ratio 1:50 g/mL, water, 21 °C, 15 min, 23 kHZ | n.s. | 4.13 ± 1.37 mg GGE/g dw | [23] | |||||
UAE + SE | UAE = Solid–liquid ratio 1:40 g/mL, LA 5% (w/v), <37 °C, 15 min, 550 W, 37 Hz, SE = 80 °C, 180 min, 500 rpm | Delphinidin-, Petunidin-derivatives | 3.11 mg/g dw | [22] | |||||
Nitraria tangutorun Bobrov. | - | Seed meal | Seed oil factories | Ethanol | UAE | 1 g of sample, 15 mL EtOH 47.49%, 70 °C, 25.3 min, 300 W, 30 kHz | Cyanidin-, Delphinidin-, Pelargonidin-derivatives | 0.65 mg CGE/g dw | [24] |
Phaseolus vulgaris L. | Black bean | Hulls | Harvesting and processing | Ethanol | PLE | 5 g of sample, EtOH:CA 0.1 M = 30:70 (v/v), 60 °C, 26 min, flow rate 4 mL/min | Delphinidin-, Malvidin-derivatives | 3.96 ± 0.20 mg CGE/g dw | [25] |
UAE | Solid–liquid ratio 1:20 g/mL, EtOH:CA0.1 M 30:70 (v/v), 60 °C, 26 min, 55 kHZ | Cyanidin-, Delphinidin-, Malvidin-derivatives | 3.28 ± 0.22 mg CGE/g dw | [25] | |||||
Plinia cauliflora (Mart.) Kausel | Jabuticaba | Peel | Juice, jam and liquor productions | Ethanol | UAE | Solid–liquid ratio 1:25 g/mL, EtOH 50%, 3 min, 3.7 W/cm2, 19 kHz | n.s. | 287.00 ± 12 mg/L | [26] |
NaDES | PLE | 5 g of sample, [(ChCl:Pro = 1:2):water = 47:53] (v/v), pH 4.5, 90 °C, 5.3 mL/min | Cyanidin-derivative | TMA = 1.70 ± 0.06 mg CGE/g dw | [27] | ||||
5 g of sample, [(ChCl:MA = 1:1):water = 47:53] (v/v), pH 1.5, 90 °C, 10 MPa, 5.3 mL/min | Cyanidin-derivative | TMA = 1.60 ± 0.09 mg CGE/g dw | [27] | ||||||
Water | PLE | pH = 6.7 or pH = 1.5, 90 °C, 10 MPa, 5.3 mL/min | Cyanidin-derivative | 1.13 mg/g dw | [27] | ||||
Punica granatum L. | Pomegranate | Male flowers | Orchards management | Ethanol | UAE | Solid–liquid ratio 1:100 g/mL, EtOH 30%, 50 °C, 15 min, 59.2 W/cm2 | Cyanidin-, Pelargonidin-derivatives | Different concentrations of the same variety harvested in different years | [28] |
Peel | Industrial processing | Ethanol | UAE | Solid–liquid ratio 1:100 g/mL, EtOH 30%, 50 °C, 15 min, 59.2 W/cm2 | Cyanidin-, Pelargonidin-derivatives | Different concentrations of the same variety harvested in different years | [28] | ||
Fruit processing | Water | UAE | Solid–liquid ratio 1:1 g/mL, β-Cyclodextrin 1.8%, 55.7 °C, 15.38 min, 100 W, 40 kHz, dark conditions | n.s. | 0.52 mg CGE/g dw | [29] | |||
Juice production | Water | UAE | Solid–liquid ratio 1:40 g/mL, <65 °C, 10 min, 200 W, 26 kHz, pulse duration and pulse interval ratio, 4:1 | n.s. | 0.6 ± 0.1 CGE/g dw (var. Akko) 0.05 ± 0.02 mg CGE/g dw (var. Wonderful) | [30] | |||
Rubus spp. | Blackberry | Pomace | Juice and jam productions | Water | UAE | Solid–liquid ratio 25:1 mg/L, 750 W, 20 kHz, 10 min, 40% US amplitude | Cyanidin-, Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 1.39 mg CGE/g dw | [31] |
Solanum melongena L. var. serpentinum | Eggplant | Peels | Canning factory | Ethanol | MAE | Solid–liquid ratio 1: 6.42 g/mL, EtOH 55.56%, 5.78 min, 298.84 W, pH 4.57 | n.s. | 8.54 mg CGE/L | [32] |
Vaccinium angustifolium Aiton | Blueberry | Pomace | Berry processing | Ethanol | UAE | Solid–liquid ratio 1:20 g/mL, EtOH 50%, 40 °C, 90 min, 64 W, 35 kHz, pH 3.3 | Cyanidin, Delphinidin, Malvidin, Petunidin | n.s. | [33] |
Vaccinium macrocarpon Aiton | Cranberry | Pomace | Juice production | Water | SFE | 2 g of sample, CO2:H2O = 50:50 (%, w/w), 50 °C, 4 h, flow rate 0.915 mL/min, 1 L CO2/min, 40 Mpa | Cyanidin-, Malvidin-, Peonidin-derivatives | 2.45 mg CGE/g dw | [34] |
Vaccinium myrtillus L. | Bilberry | Pomace | Juice production | Ethanol | HVED | Solid–liquid ratio 1:50 g/mL, EtOH 50%, HCl 1%, 25 °C, 15 min, 30 kV, 100 Hz | Cyanidin-, Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 1.09 mg/g dw | [35] |
PEF | Solid–liquid ratio 1:50 (g/mL), EtOH 50%, HCl 1%, 20 kV/cm, 100 pulse | Cyanidin-, Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 1.62 mg/g dw | [35] | |||||
UAE | Solid–liquid ratio 1:50 (g/mL), EtOH 50% + HCl 1%, 80 °C, 15 min, 35 kHz | Cyanidin-, Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 0.95 mg/g dw | [35] | |||||
Cake | Juice production | Water | UAE | solid–liquid ratio 5:1 g/L, 20 °C < T < 40 °C, 60 min, 16.7 W/cm2 stirring 300 rpm | Cyanidin-, Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 5.34 mg/g dw | [36] | ||
Vaccinum spp. | Blueberry | Pomace | Juice production | NaDES | UAE | Solid–liquid ratio 1:60 g/mL, [(ChCl:OA = 1:1):water = 70:30] (w/w), 76 °C, 3.2 min, 325 W, 20 kHz | Cyanidin-, Delphinidin-, Malvidin-, Petunidin-derivatives | 24.27 ± 0.05 mg CGE/g dw | [37] |
Vitis vinifera L. | Red grape | Cake | Wine making | Solvent free | MAE | 400 g of sample, 20 min, 1 W/g, 2.45 GHz | Cyanidin-, Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 4.49 ± 0.01 mg MGE/g dw | [38] |
Lees | Win making and juice production | NaDES | UAE | Solid–liquid ratio 1:10 g/mL, [(ChCl:MA = 1:1): water = 64.6:35.4] (v/v), 35 °C, 30.6 min, 341.5 W, 37 kHz | Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 6.55 mg MGE/g dw | [39] | ||
Pomace | Wine making | Ethanol | SFE | 35 g of sample, EtOH 20%, 55 °C, 3 h, 25 g CO2/min, 100 bar | Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 0.30 ± 0.1 mg MGE/g dw (Petit Verdot) 3.8 ± 0.1 MGE/g dw (Tintilla) 3.20 ± 0.3 MGE/g dw (Syrah) 0.10 ± 0.1 MGE/g dw (Cabernet) 0.20 ± 0.1 MGE/g dw (Merlot) 2.00 ± 0.2 MGE/g dw (Tempranillo) | [40] | ||
PLE | EtOH 50%, 120 °C, 90 min, flow rate 5 g/min, 90 bar | Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 16.00 ± 1.0 mg MGE/g dw (Petit Verdot) 49.70 ± 2.8 mg MGE/g dw (Tintilla) 38.30 ± 0.6 mg MGE/g dw (Syrah) 11.10 ± 1.2 mg MGE/g dw (Cabernet) 10.10 ± 0.1 mg MGE/g (Merlot) 30.90 ± 1.0 mg MGE/g dw (Tempranillo) | [40] | |||||
UAE | Solid–liquid ratio 1:4 g/mL, EtOH 44%, <50 °C, 3 min (15 s on–5 s off), 500 W, 20 KHz | n.s. | 187.57 ± 4.69 mg/g | [41] | |||||
Naviglio® extractor | 4 kg of sample, 12.2 kg EtOH 40%, 21 cycles, 1 min 25 s × cycle, total time 38 min (12 min in static phase, 26 min in dynamic phase) | Malvidin-, Peonidin-derivatives | 4.00 g/L ± 0.05 | [42] | |||||
Wine making and juice or “pekmez”production | Glycerol | HAE | Solid–liquid ratio 1:22.4 g/mL, Glycerol 50% (w/v), 1000 rpm × 30 s, 15,000 rpm × 30 s | Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 1.39 mg CGE/g dw | [43] | |||
Wine making | NaDES | PLE | 2 g of sample + 1 g of diatomaceous earth, [(ChCl:OA = 1:1):water = 30:60] (w/w), 60 °C, 10 min, 2 cycles, 1500 psi | Malvidin-, Peonidin-, Petunidin-derivatives | 11.23 ± 1.36 mg/L | [44] | |||
UMAE | Solid–liquid ratio 0.3 g/mL, [(ChCl:CA = 2:1):water = 70:30] (v/v), UAE:50 W, 40 kHz, 10 min, MAE: 300 W, 10 min | Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 1.77 mg/g dw | [45] | |||||
MAE | 0.3 g of sample, [(ChCl:CA = 2:1):water = 75:25] (v/v), 100 W, 10 min | Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | ~0.60 mg/g dw | [45] | |||||
UAE | 0.3 g of sample, [(ChCl:CA = 2:1):water = 75:25] (v/v), 50 W, 40 kHz, 10 min | Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | ~0.30 mg/g dw | [45] | |||||
Water | OHAE | 2.5 g of sample, 5 mL NaCl 0.1 M, 13 s, 30 V/cm, 25 kHz, 25 mL water or CA 1% or LA 1%, stirring 30 min | Cyanidin-, Delphinidin-, Malvidin-, Peonidin-, Petunidin-derivatives | 0.055 mg/g dw for water, 0.18 mg/g dw for CA 1% or LA 1% | [46] | ||||
PLE | 8 g sample, 2 g of dispersing agent, 120 °C, 1500 psi, 10 min, 2 cycles | n.s. | 33.07 ± 1.14 mg/g | [41] | |||||
Skin | Wine making | NaDES | UAE | Solid–liquid ratio 1.2:10 g/mL, [(CA:Maltose = 4:1):water = 76.20:23.8] (w/w), RT, 9.23 min | Cyanidin-, Delphinidin-, Malvidin-, Peonidin-derivatives | 63.36 ± 1.51 mg CDGE/g dw | [47] | ||
Stem | Wine making | Ethanol | UAE | Solid–liquid ratio 1:4 g/mL, EtOH 44%, <50 °C, 3 min (15 s on–5 s off), 500 W, 20 KHz | n.s. | 26.87 ± 2.00 mg/g | [41] | ||
Water | PLE | 8 g sample, 2 g of dispersing agent, 120 °C, 1500 psi, 10 min, 2 cycles | n.s. | 0.15 ± 0.01 mg/g | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lianza, M.; Marincich, L.; Antognoni, F. The Greening of Anthocyanins: Eco-Friendly Techniques for Their Recovery from Agri-Food By-Products. Antioxidants 2022, 11, 2169. https://doi.org/10.3390/antiox11112169
Lianza M, Marincich L, Antognoni F. The Greening of Anthocyanins: Eco-Friendly Techniques for Their Recovery from Agri-Food By-Products. Antioxidants. 2022; 11(11):2169. https://doi.org/10.3390/antiox11112169
Chicago/Turabian StyleLianza, Mariacaterina, Lorenzo Marincich, and Fabiana Antognoni. 2022. "The Greening of Anthocyanins: Eco-Friendly Techniques for Their Recovery from Agri-Food By-Products" Antioxidants 11, no. 11: 2169. https://doi.org/10.3390/antiox11112169
APA StyleLianza, M., Marincich, L., & Antognoni, F. (2022). The Greening of Anthocyanins: Eco-Friendly Techniques for Their Recovery from Agri-Food By-Products. Antioxidants, 11(11), 2169. https://doi.org/10.3390/antiox11112169