Arterial Hypertension—Oxidative Stress and Inflammation
Abstract
:1. Introduction
2. Basic Information about Disturbed Oxidant-Antioxidant Balance
3. Molecular Aspects of Oxidative Stress in Arterial Hypertension
4. Background Information on Oxidative Stress Biomarkers. Methods Used to Measure Oxidative Stress and Inflammation in the Studies Cited
5. Effects of Diet and Supplementation on Oxidative Stress and Inflammation and Their Correlation with Blood Pressure
5.1. Antioxidant and Anti-Inflammatory Effects of Pomegranate Juice and Its Influence on Blood Pressure
5.2. Impact of Daily Blueberry or Strawberry Consumption on Blood Pressure in Pre- and Stage 1-Hypertensive Postmenopausal Women
5.3. Effects of Chia Supplementation on Blood Pressure and Its Antioxidant and Anti-Inflammatory Properties
6. Pharmacological Therapy of Arterial Hypertension and Its Effects on Oxidative Stress and Inflammation
6.1. Characterization of ACE-I and ARBs; Antioxidant and Anti-Inflammatory Properties of Selected Examples
6.2. Characteristics of Beta-Blockers and Antioxidant and Anti-Inflammatory Properties Using Metoprolol and Nebivolol as Examples
6.3. Characteristics of Calcium Channel Blockers and Thiazides/Thiazide-like Diuretics; Comparison of Their Antioxidant and Anti-Inflammatory Properties
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 1953–2041, Erratum in J. Hypertens. 2019, 37, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flack, J.M.; Adekola, B. Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc. Med. 2020, 30, 160–164. [Google Scholar] [CrossRef]
- Muñoz-Durango, N.; Fuentes, C.A.; Castillo, A.E.; González-Gómez, L.M.; Vecchiola, A.; Fardella, C.E.; Kalergis, A.M. Role of the Renin-Angiotensin-Aldosterone System beyond Blood Pressure Regulation: Molecular and Cellular Mechanisms Involved in End-Organ Damage during Arterial Hypertension. Int. J. Mol. Sci. 2016, 17, 797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, J.; Kurschat, C.; Reuter, H. Arterial Hypertension. Dtsch Arztebl Int. 2018, 115, 557–568. [Google Scholar] [CrossRef]
- Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013, 310, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Donato, A.J.; Machin, D.R.; Lesniewski, L.A. Mechanisms of Dysfunction in the Aging Vasculature and Role in Age-Related Disease. Circ. Res. 2018, 123, 825–848. [Google Scholar] [CrossRef]
- Sarniak, A.; Lipińska, J.; Tytman, K.; Lipińska, S. Endogenous mechanisms of reactive oxygen species (ROS) generation. Postepy Hig. Med. Dosw. 2016, 70, 1150–1165. [Google Scholar] [CrossRef]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dikalov, S.I.; Ungvari, Z. Role of mitochondrial oxidative stress in hypertension. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H1417–H1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, N.C.; Hodgson, J.M.; Puddey, I.B.; Mori, T.A.; Beilin, L.J.; Croft, K.D. Oxidative stress in human hypertension: Association with antihypertensive treatment, gender, nutrition, and lifestyle. Free Radic. Biol. Med. 2004, 36, 226–232. [Google Scholar] [CrossRef]
- Touyz, R.M. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: What is the clinical significance? Hypertension 2004, 44, 248–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touyz, R.M.; Rios, F.J.; Alves-Lopes, R.; Neves, K.B.; Camargo, L.L.; Montezano, A.C. Oxidative Stress: A Unifying Paradigm in Hypertension. Can. J. Cardiol. 2020, 36, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Han, S.J.; Kim, D.J.; Jang, H.C.; Lim, S.; Choi, S.H.; Kim, Y.H.; Shin, D.H.; Kim, S.H.; Kim, T.H.; et al. Effects of valsartan and amlodipine on oxidative stress in type 2 diabetic patients with hypertension: A randomized, multicenter study. Korean J. Intern. Med. 2017, 32, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Jia, Z.; Trush, M.A. Defining ROS in Biology and Medicine. React. Oxyg. Species 2016, 1, 9–21. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B. Antioxidants in human health and disease. Annu. Rev. Nutr. 1996, 16, 33–50. [Google Scholar] [CrossRef]
- Brunelli, E.; La Russa, D.; Pellegrino, D. Impaired Oxidative Status Is Strongly Associated with Cardiovascular Risk Factors. Oxid. Med. Cell. Longev. 2017, 2017, 6480145. [Google Scholar] [CrossRef] [Green Version]
- Paravicini, T.M.; Touyz, R.M. Redox signaling in hypertension. Cardiovasc. Res. 2006, 71, 247–258. [Google Scholar] [CrossRef]
- Wenzel, P.; Kossmann, S.; Münzel, T.; Daiber, A. Redox regulation of cardiovascular inflammation—Immunomodulatory function of mitochondrial and Nox-derived reactive oxygen and nitrogen species. Free Radic. Biol. Med. 2017, 109, 48–60. [Google Scholar] [CrossRef]
- Park, S.Y.; Kwon, O.S.; Andtbacka, R.H.I.; Hyngstrom, J.R.; Reese, V.; Murphy, M.P.; Richardson, R.S. Age-related endothelial dysfunction in human skeletal muscle feed arteries: The role of free radicals derived from mitochondria in the vasculature. Acta Physiol. 2018, 222, e12893. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Lu, Y.; Saredy, J.; Wang, X.; Drummer Iv, C.; Shao, Y.; Saaoud, F.; Xu, K.; Liu, M.; Yang, W.Y.; et al. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 2020, 37, 101696. [Google Scholar] [CrossRef]
- Daiber, A.; Di Lisa, F.; Oelze, M.; Kröller-Schön, S.; Steven, S.; Schulz, E.; Münzel, T. Przesłuch mitochondriów z oksydazą NADPH poprzez sygnalizację reaktywnych form tlenu i azotu oraz ich rolę w funkcji naczyń. Br. J. Pharmacol. 2017, 174, 1670–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, E.; Wenzel, P.; Münzel, T.; Daiber, A. Mitochondrial redox signaling: Interaction of mitochondrial reactive oxygen species with other sources of oxidative stress. Antioxid. Redox Signal. 2014, 20, 308–324. [Google Scholar] [CrossRef]
- Taravati, A.; Tohidi, F. Comprehensive analysis of oxidative stress markers and antioxidants status in preeclampsia. Taiwan J. Obstet. Gynecol. 2018, 57, 779–790. [Google Scholar] [CrossRef]
- Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol. Rev. 2018, 98, 1627–1738. [Google Scholar] [CrossRef]
- Daiber, A.; Kröller-Schön, S.; Frenis, K.; Oelze, M.; Kalinovic, S.; Vujacic-Mirski, K.; Kuntic, M.; Bayo Jimenez, M.T.; Helmstädter, J.; Steven, S.; et al. Environmental noise induces the release of stress hormones and inflammatory signaling molecules leading to oxidative stress and vascular dysfunction-Signatures of the internal exposome. Biofactors 2019, 45, 495–506. [Google Scholar] [CrossRef]
- Bredemeier, M.; Lopes, L.M.; Eisenreich, M.A.; Hickmann, S.; Bongiorno, G.K.; d’Avila, R.; Morsch, A.L.B.; da Silva Stein, F.; Campos, G.G.D. Xanthine oxidase inhibitors for prevention of cardiovascular events: A systematic review and meta-analysis of randomized controlled trials. BMC Cardiovasc. Disord. 2018, 18, 24. [Google Scholar] [CrossRef]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxid. Med. Cell. Longev. 2017, 2017, 6501046. [Google Scholar] [CrossRef]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef] [Green Version]
- Barati Boldaji, R.; Akhlaghi, M.; Sagheb, M.M.; Esmaeilinezhad, Z. Pomegranate juice improves cardiometabolic risk factors, biomarkers of oxidative stress and inflammation in hemodialysis patients: A randomized crossover trial. J. Sci. Food Agric. 2020, 100, 846–854. [Google Scholar] [CrossRef]
- Toscano, L.T.; da Silva, C.S.; Toscano, L.T.; de Almeida, A.E.; Santos Ada, C.; Silva, A.S. Chia flour supplementation reduces blood pressure in hypertensive subjects. Plant Foods Hum. Nutr. 2014, 69, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Umebayashi, R.; Uchida, H.A.; Okuyama, Y.; Kakio, Y.; Hanayama, Y.; Shikata, K.; Wada, J. The clinical efficacy of angiotensin II type1 receptor blockers on inflammatory markers in patients with hypertension: A multicenter randomized-controlled trial; MUSCAT-3 study. Biomarkers 2019, 24, 255–261. [Google Scholar] [CrossRef]
- Serg, M.; Kampus, P.; Kals, J.; Zagura, M.; Zilmer, M.; Zilmer, K.; Kullisaar, T.; Eha, J. Nebivolol and metoprolol: Long-term effects on inflammation and oxidative stress in essential hypertension. Scand. J. Clin. Lab. Investig. 2012, 72, 427–432. [Google Scholar] [CrossRef]
- Johnson, S.A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L.T.; Feresin, R.G.; Elam, M.L.; Hooshmand, S.; Payton, M.E.; et al. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: A randomized, double-blind, placebo-controlled clinical trial. J. Acad. Nutr. Diet. 2015, 115, 369–377. [Google Scholar] [CrossRef]
- Johnson, S.A.; Feresin, R.G.; Navaei, N.; Figueroa, A.; Elam, M.L.; Akhavan, N.S.; Hooshmand, S.; Pourafshar, S.; Payton, M.E.; Arjmandi, B.H. Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation, and antioxidant defense in postmenopausal women with pre- and stage 1-hypertension: A randomized controlled trial. Food Funct. 2017, 8, 372–380. [Google Scholar] [CrossRef]
- Napoli, C.; Ackah, E.; De Nigris, F.; Del Soldato, P.; D’Armiento, F.P.; Crimi, E.; Condorelli, M.; Sessa, W.C. Chronic treatment with nitric oxide-releasing aspirin reduces plasma low-density lipoprotein oxidation and oxidative stress, arterial oxidation-specific epitopes, and atherogenesis in hypercholesterolemic mice. Proc. Natl. Acad. Sci. USA. 2002, 99, 12467–12470. [Google Scholar] [CrossRef] [Green Version]
- Napoli, C.; Bruzzese, G.; Ignarro, L.J.; Crimi, E.; de Nigris, F.; Williams-Ignarro, S.; Libardi, S.; Sommese, L.; Fiorito, C.; Mancini, F.P.; et al. Long-term treatment with sulfhydryl angiotensin-converting enzyme inhibition reduces carotid intima-media thickening and improves the nitric oxide/oxidative stress pathways in newly diagnosed patients with mild to moderate primary hypertension. Am. Heart J. 2008, 156, 1154.e1–1154.e8. [Google Scholar] [CrossRef]
- Cacciatore, F.; Bruzzese, G.; Vitale, D.F.; Liguori, A.; de Nigris, F.; Fiorito, C.; Infante, T.; Donatelli, F.; Minucci, P.B.; Ignarro, L.J.; et al. Effects of ACE inhibition on circulating endothelial progenitor cells, vascular damage, and oxidative stress in hypertensive patients. Eur. J. Clin. Pharmacol. 2011, 67, 877–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napoli, C.; Sica, V.; de Nigris, F.; Pignalosa, O.; Condorelli, M.; Ignarro, L.J.; Liguori, A. Sulfhydryl angiotensin-converting enzyme inhibition induces sustained reduction of systemic oxidative stress and improves the nitric oxide pathway in patients with essential hypertension. Am. Heart J. 2004, 148, e5. [Google Scholar] [CrossRef]
- Taguchi, I.; Toyoda, S.; Takano, K.; Arikawa, T.; Kikuchi, M.; Ogawa, M.; Abe, S.; Node, K.; Inoue, T. Irbesartan, an angiotensin receptor blocker, exhibits metabolic, anti-inflammatory and antioxidative effects in patients with high-risk hypertension. Hypertens. Res. 2013, 36, 608–613. [Google Scholar] [CrossRef]
- Asgary, S.; Sahebkar, A.; Afshani, M.R.; Keshvari, M.; Haghjooyjavanmard, S.; Rafieian-Kopaei, M. Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phytother. Res. 2014, 28, 193–199. [Google Scholar] [CrossRef]
- Derosa, G.; Maffioli, P.; Salvadeo, S.A.; Ferrari, I.; Gravina, A.; Mereu, R.; Palumbo, I.; D’Angelo, A.; Cicero, A.F. Candesartan effect on inflammation in hypertension. Hypertens. Res. 2010, 33, 209–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Martin, F.J.; Rodriguez-Rosas, H.; Peiro-Martinez, I.; Soriano-Perera, P.; Pedrianes-Martin, P.; Comi-Diaz, C. Olmesartan/amlodipine vs olmesartan/hydrochlorothiazide in hypertensive patients with metabolic syndrome: The OLAS study. J. Hum. Hypertens. 2011, 25, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Feresin, R.G.; Johnson, S.A.; Pourafshar, S.; Campbell, J.C.; Jaime, S.J.; Navaei, N.; Elam, M.L.; Akhavan, N.S.; Alvarez-Alvarado, S.; Tenenbaum, G.; et al. Impact of daily strawberry consumption on blood pressure and arterial stiffness in pre- and stage 1-hypertensive postmenopausal women: A randomized controlled trial. Food Funct. 2017, 8, 4139–4149. [Google Scholar] [CrossRef]
- Alwosais, E.Z.M.; Al-Ozairi, E.; Zafar, T.A.; Alkandari, S. Chia seed (Salvia hispanica L.) supplementation to the diet of adults with type 2 diabetes improved systolic blood pressure: A randomized controlled trial. Nutr. Health 2021, 27, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Orona-Tamayo, D.; Valverde, M.; Nieto-Rendón, B.; Paredes-Lopez, O. Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. LWT-Food Sci. Technol. 2015, 64, 236–242. [Google Scholar] [CrossRef]
- Saleem, T.S.; Bharani, K.; Gauthaman, K. ACE inhibitors—angiotensin II receptor antagonists: A useful combination therapy for ischemic heart disease. Open Access Emerg. Med. 2010, 2, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Weir, M.R.; Dzau, V.J. The renin-angiotensin-aldosterone system: A specific target for hypertension management. Am. J. Hypertens. 1999, 12, 205S–213S. [Google Scholar] [CrossRef]
- Wenzel, P.; Knorr, M.; Kossmann, S.; Stratmann, J.; Hausding, M.; Schuhmacher, S.; Karbach, S.H.; Schwenk, M.; Yogev, N.; Schulz, E.; et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation 2011, 124, 1370–1381. [Google Scholar] [CrossRef] [Green Version]
- Fujino, M.; Miura, S.; Kiya, Y.; Tominaga, Y.; Matsuo, Y.; Karnik, S.S.; Saku, K. A small difference in the molecular structure of angiotensin II receptor blockers induces AT1 receptor-dependent and -independent beneficial effects. Hypertens. Res. 2010, 33, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.S.; Schulman, I.H.; Jaimes, E.A.; Raij, L. Thiazide diuretics, endothelial function, and vascular oxidative stress. J. Hypertens. 2008, 26, 494–500. [Google Scholar] [CrossRef]
- Sáez, G.T.; Tormos, C.; Giner, V.; Chaves, J.; Lozano, J.V.; Iradi, A.; Redón, J. Factors related to the impact of antihypertensive treatment in antioxidant activities and oxidative stress by-products in human hypertension. Am. J. Hypertens. 2004, 17, 809–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Oxygen-Free Radicals | Non-Radical ROS |
---|---|
Superoxide | Hydrogen peroxide |
Hydroxyl radical | Peroxynitrite |
Peroxyl radical | Hypochlorous acid |
Alkoxy radical | Ozone |
Study Author | Biomarkers of Oxidative Stress or Inflammation |
---|---|
Barati Boldaji et al. [30] | TAC, MDA, IL-6 |
Toscano et al. [31] | hs-CRP, AGP, MDA, Nitrite |
Umebayashi et al. [32] | hsCRP, PTX3, MCP-1, MDA-LDL |
Serg et al. [33] | OxLDL, 8-iso *, ICAM-1, ADMA, IL-6, hsCRP, Fibrinogen, WBC |
Johnson et al. [34,35] | CRP, GPx, GR, 8-OHdG, 8-iso *, OxLDL, SOD, TBARS, TNF-α |
Napoli et al. [36,37,39] | NOx, 8-iso-PGF2-α */8-epi-PGF2-α *, ADMA |
Cacciatore et al. [38] | NOx, 8-iso-PGF2-α * |
Taguchi et al. [40] | hs-CRP, MMP-9, d-ROMs, MPO, Adiponectin |
Asgary et al. [41] | ICAM-1, VCAM-1, hs-CRP, IL-6 |
Derosa et al. [42] | sICAM-1, IL-6, hs-CRP |
Martinez-Martin et al. [43] | TNF-α, CRP, IL-1β, IL-6 and IL-8, ICAM-1, VCAM-1 |
Feresin et al. [44] | SOD |
Authors | Barati Boldaji et al. [30] | Asgary et al. [41] |
---|---|---|
Patient category | ESRD patients on dialysis treatment, aged 18–65 years with serum potassium level of less than 6 mEq/L. | Hypertensive patients SBP > 140 mmHg and/or DBP > 90 mmHg) aged 30–67 years with BMI ≤ 30. |
Difference in SBP (mm Hg) between pre-test and post-test values | ||
Experimental group | has decreased | has decreased |
Control group | has increased | - |
p-value | <0.001 | 0.002 |
Difference in DBP (mm Hg) between pre-test and post-test values | ||
Experimental group | has decreased | has decreased |
Control group | has increased | - |
p-value | <0.001 | 0.038 |
Authors | Barati Boldaji et al. [30] | Toscano et al. [31] | Johnson et al. [34,35] | Asgary et al. [41] | Feresin et al. [44] |
---|---|---|---|---|---|
Study design | Randomized Controlled Trial | Randomized Controlled Trial | Randomized Controlled Trial | Clinical Trial | Randomized Controlled Trial |
All patients | 41 experimental group/40 control group | 26 | 40 | 21 | 60 |
Patient category | ESRD patients on dialysis treatment, aged 18–65 years with serum potassium level of less than 6 mEq/L. | Hypertensive patients (mild/stage 1 hypertension according to the VI Brazilian Guidelines on Hypertension) aged 35–65 years with BMI between 25 and 35 kg/m2. | Pre- and stage 1-hypertensive postmenopausal women aged 45–65 years. | Hypertensive patients (SBP > 140 mmHg and/or DBP > 90 mmHg) aged 30–67 years with BMI ≤ 30. | Pre- and stage 1-hypertensive postmenopausal women aged 45–65 years. |
Type of product | Pomegranate juice | Chia flour | Freeze-dried blueberry powder | Pomegranate juice | FDSP |
Antioxidant/Anti-inflammatory effects | Antioxidant and anti-inflammatory properties have been demonstrated by increasing TAC levels and decreasing MDA and IL-6 levels. | A reduction in lipid peroxidation with no change in inflammatory markers was demonstrated. | Antioxidant and anti-inflammatory effects were not demonstrated, as no improvement in oxidative DNA damage and circulating biomarkers was observed at the end of the study. | Anti-inflammatory properties were demonstrated by significant reduction in the levels of the endothelial function and vascular inflammation biomarker VCAM-1. | Antioxidant and anti-inflammatory effects were not demonstrated because there was no increase in SOD activity. |
Authors | Toscano et al. [31] | Johnson et al. [34,35] | Feresin et al. [44] |
---|---|---|---|
Type of product | Chia flour | Freeze-dried blueberry powder | FDSP |
SBP (mm Hg) | |||
(1) Baseline | |||
Experimental group | 146.2 ± 2.0 (CHIA) 145.8 ± 2.2 (CHIA-MD) 146.8 ± 3.8 (CHIA-NM) | 138 ± 14 | 141 ± 3 (25 g FDSP group) 142 ± 3 (50 g FDSP group) |
Control group | 144.0 ± 4.3 | 138 ± 15 | 137 ± 3 |
(2) Post-trial | |||
Experimental group | 136.3 ± 2.6 (CHIA) 133.7 ± 4.1 (CHIA-MD) 137.3 ± 3.1 (CHIA-NM) | 131 ± 17 | 135 ± 3 (25 g FDSP group) 138 ± 3 (50 g FDSP group) |
Control group | 141.2 ± 5.2 | 139 ± 15 | 132 ± 3 |
Authors | Toscano et al. [31] | Johnson et al. [34,35] | Feresin et al. [44] |
---|---|---|---|
Type of product | Chia flour | Freeze-dried blueberry powder | FDSP |
DBP (mm Hg) | |||
(1) Baseline | |||
Experimental group | 94.2 ± 2.0 (CHIA) 94.3 ± 2.4 (CHIA-MD) 94.2 ± 3.6 (CHIA-NM) | 80 ± 7 | 81 ± 2 (25 g FDSP group) 79 ± 2 (50 g FDSP group) |
Control group | 90.1 ± 2.4 | 78 ± 8 | 79 ± 2 |
(2) Post-trial | |||
Experimental group | 85.5 ± 1.2 (CHIA) 83.3 ± 1.3 (CHIA-MD) 88.7 ± 1.8 (CHIA-NM) | 75 ± 9 | 79 ± 2 (25 g FDSP group) 79 ± 2 (50 g FDSP group) |
Control group | 87.8 ± 2.2 | 80 ± 8 | 79 ± 2 |
Authors | Umebayashi et al. [32] | Taguchi et al. [40] |
---|---|---|
Study design | Randomized controlled trial; Patients who had been taking ARBs except irbesartan for more than 3 months were divided into 2 groups, one continuing the same ARB and the other switching ARBs to irbesartan for 6 months. | Clinical trial; High-risk patients who were taking ARBs, except irbesartan, for over 3 months and had stable BP underwent 4-week follow-up, and then all ARBs were switched to an equivalent dose of irbesartan for 12 weeks. |
All patients | 76 | 118 |
Patient category | Hypertensive patients, aged 20–85, who had failed to achieve target BP levels (140/90 mmHg or 130/80 mmHg for patients with diabetes, chronic kidney disease or myocardial infarction) with conventional ARBs (losartan, candesartan, valsartan, olmesartan or telmisartan) for more than 3 months. | High-risk hypertensive patients with the presence of at least one complication, such as coronary artery disease, cerebrovascular disease, or diabetes. |
Duration of irbesartan therapy | 6 months | 12 weeks |
Antioxidant/Anti-inflammatory effects | There was no effect of changing ARB to irbesartan on markers of oxidative stress and inflammation. | The antioxidant and anti-inflammatory properties of irbesartan (decrease in hs-CRP and d-ROM) have been demonstrated. |
Authors | Serg et al. [33] | Napoli et al. [37] | Cacciatore et al. [38] | Taguchi et al. [40] | Derosa et al. [42] | Martinez-Martin et al. [43] |
---|---|---|---|---|---|---|
Study design | Randomized Controlled Trial | Prospective randomized clinical trial | Randomized Controlled Trial | Clinical trial | Controlled Clinical Trial | Randomized Controlled Trial |
All patients | 63 | 48 | 36 | 118 | 219 | 120 |
Patient category | Hypertensive patients (never-treated mild-to-moderate essential hypertension), aged 30–65 years. | Newly diagnosed patients with mild hypertension; without additional risk factors for atherosclerosis. | Newly diagnosed patients with mild hypertension; without CVD and associated risk factors, who are not receiving ACE-I therapy. | High-risk hypertensive patients with the presence of at least one complication, such as coronary artery disease, cerebrovascular disease, or diabetes. | Hypertensive non-diabetic (n = 106) and diabetic (n = 113) patients aged ≥18 years. | Hypertensive patients (stage I and II hypertension; SBP 140–179 mmHg) aged 25–75 years with MetS, as defined by the International Diabetes Federation for Europid populations. |
Drug class | Beta-blockers (nebivolol/metoprolol) | ACE-I (enalapril/zofenopril) | ACE-I (enalapril/ zofenopril) | ARB (irbesartan) | ARB (candesartan) | ARB + CCB (olmesartan + amlodipine)/ARB + thiazide diuretics (olmesartan + hydrochlorothiazide) |
Antioxidant/Anti-inflammatory effects | Decreased levels of oxLDL, ICAM-1, and 8-iso (nebivolol only) were observed, whereas there were no changes in inflammatory markers (hsCRP, WBC, fibrinogen, and IL-6) and ADMA. | There were reductions in plasma NOx and ADMA (more prominent in the enalapril group) and 8-iso-PGF2α (more prominent in the zofenopril group). | There was a plasma decrease in NOx (with no clear differences between treatment groups) and 8-iso-PGF2α (more prominent in the zofenopril group). | The antioxidant and anti-inflammatory properties of irbesartan (decrease in hs-CRP and d-ROM) have been demonstrated. | The anti-inflammatory properties were observed through its beneficial effects on inflammatory markers, such as sICAM-1, IL-6 and Hs-CRP. | Better anti-inflammatory properties of ARB + CCB combination than ARB + thiazide diuretics (decrease in CRP in both groups; decrease in TNF-α, IL-1β, IL-6, IL-8, ICAM-1, and VCAM-1 levels in ARB + CCB group only). |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzemińska, J.; Wronka, M.; Młynarska, E.; Franczyk, B.; Rysz, J. Arterial Hypertension—Oxidative Stress and Inflammation. Antioxidants 2022, 11, 172. https://doi.org/10.3390/antiox11010172
Krzemińska J, Wronka M, Młynarska E, Franczyk B, Rysz J. Arterial Hypertension—Oxidative Stress and Inflammation. Antioxidants. 2022; 11(1):172. https://doi.org/10.3390/antiox11010172
Chicago/Turabian StyleKrzemińska, Julia, Magdalena Wronka, Ewelina Młynarska, Beata Franczyk, and Jacek Rysz. 2022. "Arterial Hypertension—Oxidative Stress and Inflammation" Antioxidants 11, no. 1: 172. https://doi.org/10.3390/antiox11010172
APA StyleKrzemińska, J., Wronka, M., Młynarska, E., Franczyk, B., & Rysz, J. (2022). Arterial Hypertension—Oxidative Stress and Inflammation. Antioxidants, 11(1), 172. https://doi.org/10.3390/antiox11010172