High-Throughput Quantification of 32 Bioactive Antioxidant Phenolic Compounds in Grapes, Wines and Vinification Byproducts by LC–MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grapes, Wines and Vinification Byproducts
2.2. Chemicals and Standards
2.3. Sample Preparation
2.4. Determination of Phenolic Compound Content by LC–MS/MS Analysis
2.4.1. Preparation of Standard Stock Solutions
2.4.2. LC–MS/MS Analysis
2.4.3. Quantification of Phenolic Compounds
2.4.4. Analytical Method Validation
Linearity
Limit of Detection (LOD) and Limit of Quantification (LOQ)
Precision
Recovery
Determination of Matrix Effect
2.5. Estimation of Phenolic Compound Content and Antioxidant Properties
2.5.1. Determination of Total Phenolic Content (TPC)
2.5.2. Determination of Total Flavonoid Content (TFC)
2.5.3. Determination of Total Tannin Content (TTC)
2.5.4. DPPH∙ Radical Scavenging Assay
2.5.5. Ferric Reducing Antioxidant Power (FRAP) Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Analytical Method Development
3.2. Analytical Method Validation
3.2.1. Determination of Linearity, LOD and LOQ
3.2.2. Repeatability, Recovery and Matrix Effect
3.3. Estimation of TPC, TFC, TTC
3.4. Phenolic Compound Quantitation
3.4.1. Grape Berries
3.4.2. Grape Pomace
3.4.3. Grape Stems
3.4.4. Wines
3.4.5. Stilbene Content
3.5. Antioxidant Activity (DPPH∙ and FRAP Assays)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT-Food and Agriculture Organization of the United Nations. 2021. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 1 March 2021).
- Waterhouse, A.L. Wine Phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Bueno Ottoboni, A.M.; Fiorini, A.M.; Guiguer, É.L.; Nicolau, C.C.; Goulart, R.D.; Flato, U.A. Grape Juice or Wine: Which Is the Best Option? Crit. Rev. Food Sci. Nutr. 2020, 60, 3876–3889. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sun, B. Grape and Wine Polymeric Polyphenols: Their Importance in Enology. Crit. Rev. Food Sci. Nutr. 2019, 59, 563–579. [Google Scholar] [CrossRef]
- Háková, M.; Havlíková, L.C.; Švec, F.; Solich, P.; Erben, J.; Chvojka, J.; Šatínský, D. Novel Nanofibrous Sorbents for the Extraction and Determination of Resveratrol in Wine. Talanta 2020, 206, 120181. [Google Scholar] [CrossRef]
- Šikuten, I.; Štambuk, P.; Andabaka, Ž.; Tomaz, I.; Marković, Z.; Stupić, D.; Maletić, E.; Kontić, J.K.; Preiner, D. Grapevine as a Rich Source of Polyphenolic Compounds. Molecules 2020, 25, 5604. [Google Scholar] [CrossRef]
- Ditano-Vázquez, P.; Torres-Peña, J.D.; Galeano-Valle, F.; Pérez-Caballero, A.I.; Demelo-Rodríguez, P.; Lopez-Miranda, J.; Katsiki, N.; Delgado-Lista, J.; Alvarez-Sala-Walther, L.A. The Fluid Aspect of the Mediterranean Diet in the Prevention and Management of Cardiovascular Disease and Diabetes: The Role of Polyphenol Content in Moderate Consumption of Wine and Olive Oil. Nutrients 2019, 11, 2833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swallah, M.S.; Sun, H.; Affoh, R.; Fu, H.; Yu, H. Antioxidant Potential Overviews of Secondary Metabolites (Polyphenols) in Fruits. Int. J. Food Sci. 2020, 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Naczk, M.; Shahidi, F. Extraction and Analysis of Phenolics in Food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Blackford, M.; Comby, M.; Zeng, L.; Dienes-Nagy, Á.; Bourdin, G.; Lorenzini, F.; Bach, B. A Review on Stems Composition and Their Impact on Wine Quality. Molecules 2021, 26, 1240. [Google Scholar] [CrossRef] [PubMed]
- Merkytė, V.; Longo, E.; Windisch, G.; Boselli, E. Phenolic Compounds as Markers of Wine Quality and Authenticity. Foods 2020, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- Psomas, A.N.; Anastasiadi, M.; Haroutounian, S.A. Grapevines: Varieties, Cultivation and Management; Szabo, P.V., Shojania, J., Eds.; Nova Publishers: New York, NY, USA, 2012. [Google Scholar]
- Anastasiadi, M.; Chorianopoulos, N.G.; Nychas, G.-J.E.; Haroutounian, S.A. Antilisterial Activities of Polyphenol-Rich Extracts of Grapes and Vinification Byproducts. J. Agric. Food Chem. 2009, 57, 457–463. [Google Scholar] [CrossRef]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Haroutounian, S.A.; Apostolou, A.S.; Mtthaiou, C.M. Polyphenols: Chemistry, Dietary Sources and Health Benefits; Sun, J., Prasad, K.N., Ismail, A., Yang, B., You, X., Li, L., Eds.; Nova Publishers: New York, NY, USA, 2013. [Google Scholar]
- Quero, J.; Jiménez-Moreno, N.; Esparza, I.; Osada, J.; Cerrada, E.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Grape Stem Extracts with Potential Anticancer and Antioxidant Properties. Antioxidants 2021, 10, 243. [Google Scholar] [CrossRef]
- Sahpazidou, D.; Geromichalos, G.D.; Stagos, D.; Apostolou, A.; Haroutounian, S.A.; Tsatsakis, A.M.; Tzanakakis, G.N.; Hayes, A.W.; Kouretas, D. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells. Toxicol. Lett. 2014, 230, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Kasiotis, K.M.; Pratsinis, H.; Kletsas, D.; Haroutounian, S.A. Resveratrol and Related Stilbenes: Their Anti-Aging and Anti-Angiogenic Properties. Food Chem. Toxicol. 2013, 61, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Kantsadi, A.L.; Apostolou, A.; Theofanous, S.; Stravodimos, G.; Kyriakis, E.; Gorgogietas, V.A.; Chatzileontiadou, D.S.M.; Pegiou, K.; Skamnaki, V.T.; Stagos, D.; et al. Biochemical and Biological Assessment of the Inhibitory Potency of Extracts from Vinification Byproducts of Vitis Vinifera against Glycogen Phosphorylase. Food Chem. Toxicol. 2014, 67, 35–43. [Google Scholar] [CrossRef]
- Snopek, L.; Mlcek, J.; Sochorova, L.; Baron, M.; Hlavacova, I.; Jurikova, T.; Kizek, R.; Sedlackova, E.; Sochor, J. Contribution of Red Wine Consumption to Human Health Protection. Molecules 2018, 23, 1684. [Google Scholar] [CrossRef] [Green Version]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Di Minno, G.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Ouyang, H.; Zhang, N.; Wang, C.; Ji, B.; Zhou, F. Effects of Huangjiu, Baijiu and Red Wine Combined With High-Fat Diet on Glucose and Lipid Metabolism: Aggravate or Alleviate? Alcohol. Alcohol. 2021, 56, 334–347. [Google Scholar] [CrossRef]
- Blokhina, O. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: A Review. Ann. Bot. 2003, 91, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Apostolou, A.; Stagos, D.; Galitsiou, E.; Spyrou, A.; Haroutounian, S.; Portesis, N.; Trizoglou, I.; Wallace Hayes, A.; Tsatsakis, A.M.; Kouretas, D. Assessment of Polyphenolic Content, Antioxidant Activity, Protection against ROS-Induced DNA Damage and Anticancer Activity of Vitis Vinifera Stem Extracts. Food Chem. Toxicol. 2013, 61, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A.I.R.N.A. Potential Application of Grape (Vitis Vinifera L.) Stem Extracts in the Cosmetic and Pharmaceutical Industries: Valorization of a by-Product. Ind. Crop. Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Chen, Y.; Wen, J.; Deng, Z.; Pan, X.; Xie, X.; Peng, C. Effective Utilization of Food Wastes: Bioactivity of Grape Seed Extraction and Its Application in Food Industry. J. Funct. Foods 2020, 73, 104113. [Google Scholar] [CrossRef]
- Martin, M.E.; Grao-Cruces, E.; Millan-Linares, M.C.; Montserrat-de la Paz, S. Grape (Vitis Vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods 2020, 9, 1360. [Google Scholar] [CrossRef]
- Beres, C.; Freitas, S.P.; de Oliveira Godoy, R.L.; de Oliveira, D.C.; Deliza, R.; Iacomini, M.; Mellinger-Silva, C.; Cabral, L.M. Antioxidant Dietary Fibre from Grape Pomace Flour or Extract: Does It Make Any Difference on the Nutritional and Functional Value? J. Funct. Foods 2019, 56, 276–285. [Google Scholar] [CrossRef]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.A.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of Grape (Vitis Vinifera L.) Stems from Portuguese Varieties as a Resource of (Poly)Phenolic Compounds: A Comparative Study. Food Res. Int. 2014, 65, 375–384. [Google Scholar] [CrossRef]
- Colombo, F.; Di Lorenzo, C.; Regazzoni, L.; Fumagalli, M.; Sangiovanni, E.; Peres de Sousa, L.; Bavaresco, L.; Tomasi, D.; Bosso, A.; Aldini, G.; et al. Phenolic Profiles and Anti-Inflammatory Activities of Sixteen Table Grape (Vitis Vinifera L.) Varieties. Food Funct. 2019, 10, 1797–1807. [Google Scholar] [CrossRef]
- Alonso, Á.M.; Guillén, D.A.; Barroso, C.G.; Puertas, B.; García, A. Determination of Antioxidant Activity of Wine Byproducts and Its Correlation with Polyphenolic Content. J. Agric. Food Chem. 2002, 50, 5832–5836. [Google Scholar] [CrossRef]
- Nile, S.H.; Kim, S.H.; Ko, E.Y.; Park, S.W. Polyphenolic Contents and Antioxidant Properties of Different Grape (V. Vinifera, V. Labrusca, and V. Hybrid) Cultivars. BioMed Res. Int. 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.-L.; Haroutounian, S.A. Bioactive Non-Coloured Polyphenols Content of Grapes, Wines and Vinification Byproducts: Evaluation of the Antioxidant Activities of Their Extracts. Food Res. Int. 2010, 43, 805–813. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Schieber, A.; Carle, R. A Novel Process for the Recovery of Polyphenols from Grape (Vitis Vinifera L.) Pomace. J. Food Sci. 2005, 70, C157–C163. [Google Scholar] [CrossRef]
- Ferri, M.; Bin, S.; Vallini, V.; Fava, F.; Michelini, E.; Roda, A.; Minnucci, G.; Bucchi, G.; Tassoni, A. Recovery of Polyphenols from Red Grape Pomace and Assessment of Their Antioxidant and Anti-Cholesterol Activities. New Biotechnol. 2016, 33, 338–344. [Google Scholar] [CrossRef]
- Kelebek, H.; Canbas, A.; Jourdes, M.; Teissedre, P.-L. Characterization of Colored and Colorless Phenolic Compounds in Öküzgözü Wines from Denizli and Elazig Regions Using HPLC-DAD–MS. Ind. Crop. Prod. 2010, 31, 499–508. [Google Scholar] [CrossRef]
- Hilma, R.; Herliani, H.; Almurdan, M. Determination of Total Phenolic, Flavonoid Content Andfree Radical Scavenging Activity of Etanol Extract Sawo Stem Bark (Manilkara Zapota L.). In Proceedings of the CELSciTech towards Downstream and Commercialization of Research, Pekanbaru, Indonesia, 20 September 2018; Volume 3. [Google Scholar]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants 2021, 10, 234. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Development of a High-Performance Liquid Chromatography Method Based on a Core–Shell Column Approach for the Rapid Determination of Multiclass Polyphenols in Grape Pomaces. Food Chem. 2016, 192, 1–8. [Google Scholar] [CrossRef] [PubMed]
- De Peredo, A.V.; Vázquez-Espinosa, M.; Piñeiro, Z.; Espada-Bellido, E.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Development of a Rapid and Accurate UHPLC-PDA-FL Method for the Quantification of Phenolic Compounds in Grapes. Food Chem. 2021, 334, 127569. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre-Tudo, J.L.; Buica, A.; Nieuwoudt, H.; Aleixandre, J.L.; du Toit, W. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines. J. Agric. Food Chem. 2017, 65, 4009–4026. [Google Scholar] [CrossRef]
- Pinheiro, C.; Wienkoop, S.; de Almeida, J.F.; Brunetti, C.; Zarrouk, O.; Planchon, S.; Gori, A.; Tattini, M.; Ricardo, C.P.; Renaut, J.; et al. Phellem Cell-Wall Components Are Discriminants of Cork Quality in Quercus Suber. Front. Plant Sci. 2019, 10, 944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, F.; Li, J.-M.; Pan, Q.-H.; Huang, W.-D. Determination of Red Wine Flavonoids by HPLC and Effect of Aging. Food Chem. 2007, 101, 428–433. [Google Scholar] [CrossRef]
- Sakkiadi, A.-V.; Georgiou, C.A.; Haroutounian, S.A. A standard addition method to assay the concentration of biologically interesting polyphenols in grape berries by reversed phase HPLC. Molecules 2007, 12, 2259–2269. [Google Scholar] [CrossRef] [Green Version]
- Monagas, B.; Bartolome, B.; Gomez-Condoves, C. Updated knowledge about the presence of phenolic compounds in wine. Crit. Rev. Food Sci. Nutr. 2005, 45, 85–118. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Mishra, A.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | Parent Mass | Product Mass | Collision Energy (eV) | Polarity | RT (min) |
---|---|---|---|---|---|
Gallic acid | 169.939 | 126.089 | 17 | (–) | 3.59 |
125.047 | 17 | ||||
Protocatechuic acid | 154.057 | 109.048 | 22 | (–) | 6.43 |
110.095 | 17 | ||||
Caftaric acid | 312.151 | 149.039 | 14 | (–) | 6.82 |
179.985 | 17 | ||||
Procyanidin B1 | 578.328 | 426.099 | 18 | (–) | 6.89 |
Epigallocatechin | 306.138 | 124.855 | 27 | (–) | 7.13 |
179.658 | 18 | ||||
Chlorogenic acid | 354.200 | 191.113 | 20 | (–) | 7.72 |
Oenin | 493.236 | 315.121 | 47 | (+) | 7.87 |
331.122 | 23 | ||||
Catechin | 290.133 | 203.873 | 22 | (–) | 7.89 |
245.958 | 17 | ||||
Procyanidin B2 | 578.122 | 290.047 | 31 | (–) | 8.06 |
Coutaric acid | 296.129 | 120.145 | 29 | (–) | 8.16 |
164.015 | 18 | ||||
Fertaric acid | 326.172 | 134.113 | 33 | (–) | 8.46 |
194.059 | 18 | ||||
Epicatechin | 290.132 | 203.818 | 21 | (–) | 8.48 |
245.948 | 17 | ||||
Epigallocatechin gallate | 458.233 | 167.890 | 22 | (–) | 8.59 |
457.460 | 11 | ||||
Caffeic acid | 180.102 | 135.095 | 24 | (–) | 8.69 |
136.106 | 19 | ||||
Syringic acid | 198.085 | 167.89 | 22 | (–) | 8.86 |
182.921 | 16 | ||||
Hesperidin | 610.054 | 301.320 | 28 | (–) | 8.96 |
trans-Polydatin | 390.548 | 229.992 | 21 | (–) | 9.31 |
389.777 | 8 | ||||
Quercetin-3-β-D-glucoside | 464.220 | 300.781 | 28 | (–) | 9.32 |
301.966 | 26 | ||||
Epicatechin gallate | 442.252 | 168.845 | 23 | (–) | 9.47 |
290.236 | 21 | ||||
Procyanidin A2 | 576.358 | 424.052 | 18 | (–) | 9.59 |
449.815 | 24 | ||||
Rutin | 610.355 | 271.536 | 68 | (–) | 9.65 |
302.205 | 44 | ||||
p-Coumaric acid | 164.014 | 94.475 | 36 | (–) | 9.85 |
119.835 | 18 | ||||
Sinapic acid | 224.132 | 193.987 | 24 | (–) | 9.99 |
209.043 | 17 | ||||
Ferulic acid | 194.120 | 135.094 | 20 | (–) | 10.09 |
179.062 | 16 | ||||
Myricetin | 318.114 | 136.79 | 29 | (–) | 10.63 |
178.963 | 22 | ||||
o-Coumaric acid | 163.970 | 119.068 | 17 | (–) | 10.79 |
120.127 | 16 | ||||
Coniferyl aldeyde | 178.085 | 162.944 | 16 | (–) | 11.10 |
trans-Resveratrol | 228.146 | 144.131 | 29 | (–) | 11.24 |
186.109 | 22 | ||||
Quercetin | 302.111 | 151.483 | 24 | (–) | 11.74 |
179.692 | 22 | ||||
Apigenin | 270.037 | 116.922 | 42 | (–) | 12.67 |
117.972 | 40 | ||||
Kaempferol | 286.102 | 211.942 | 33 | (–) | 12.83 |
229.944 | 27 | ||||
Isorhamnetin | 316.376 | 301.277 | 24 | (–) | 13.01 |
302.404 | 23 | ||||
Internal Standard: 2-(4-Chlorophenyl) malonaldehyde | 182.456 | 136.900 | 26 | (–) | 12.60 |
154.892 | 19 |
Compound | Equation | R2 | LOD (ng/mL) | LOQ (ng/mL) |
---|---|---|---|---|
Gallic acid | y = −0.00096256 + 0.0395411x | 0.9998 | 29.2 | 88.4 |
Caftaric acid | y = −0.00534158 + 0.07718x | 0.9996 | 25.3 | 76.8 |
Protocatechuic acid | y = −0.000761486 + 0.0310679x | 0.9999 | 29.9 | 90.8 |
Procyanidin B1 | y = −0.00258365 + 0.0256469x | 0.9998 | 53.2 | 161.2 |
Epigallocatechin | y = −0.00488722 + 0.0509023x | 0.9997 | 63.4 | 192.1 |
Chlorogenic acid | y = −0.00016251 + 0.0821949x | 0.9992 | 25.4 | 76.9 |
Catechin | y = −0.00202138 + 0.0129254x | 0.9993 | 94.4 | 286.1 |
Coutaric acid | y = −0.007455 + 0.198158x | 0.9998 | 49.0 | 148.4 |
Syringic acid | y = −0.00125888 + 0.0655096x | 0.9998 | 119.7 | 362.8 |
Oenin | y = −0.406027 + 11.2312x | 0.9995 | 20.5 | 62.1 |
Procyanidin B2 | y = −0.00111717 + 0.0215283x | 0.9996 | 62.2 | 188.6 |
Fertaric acid | y = 0.000358572 + 0.147193x | 0.9999 | 7.5 | 22.6 |
Epicatechin | y = 0.0000486191 + 0.00498918x | 0.9989 | 46.2 | 139.6 |
Caffeic acid | y = −0.167715 + 0.488001x | 0.9998 | 11.9 | 36.1 |
Epigallocatechin gallate | y = 0.000118646 + 0.00994617x | 0.9993 | 34.5 | 104.5 |
Hesperidin | y = 0.000321812 + 0.000883822x | 0.9988 | 120.0 | 363.6 |
trans-Polydatin | y = 0.00124534 + 0.0569565x | 0.9998 | 59.9 | 181.4 |
Quercetin-3-β-D-glucoside | y = −0.000728175 + 0.0484013x | 0.9998 | 41.6 | 126.1 |
Epicatechin gallate | y = −0.00151726 + 0.0801815x | 0.9999 | 32.5 | 98.5 |
Procyanidin A2 | y = −0.000351333 + 0.131369x | 0.9998 | 46.3 | 140.4 |
Rutin | y = −0.00209729 + 0.0613716x | 0.9997 | 42.9 | 130.1 |
p-Coumaric acid | y = −0.000916311 + 0.0643206x | 0.9998 | 30.4 | 92.4 |
Ferulic acid | y = −0.00093805 + 0.01891x | 0.9994 | 81.1 | 245.7 |
Sinapic acid | y = 0.000677742 + 0.00960727x | 0.9996 | 53.9 | 163.4 |
trans-Resveratrol | y = 0.000015519 + 0.00578912x | 0.9999 | 158.3 | 479.8 |
Myricetin | y = 0.000640023 + 0.20355x | 0.9998 | 13.0 | 39.5 |
o-Coumaric acid | y = −0.0000876583 + 0.0740954x | 0.9997 | 28.9 | 87.7 |
Coniferyl aldehyde | y = −0.00119489 + 0.0676759x | 0.9999 | 31.3 | 95.0 |
Quercetin | y = −0.00140527 + 0.068703x | 0.9999 | 31.3 | 95.0 |
Apigenin | y = 0.00884981 + 0.300563x | 0.9993 | 8.3 | 25.2 |
Kaempferol | y = −0.000290336 + 0.0430157x | 0.9995 | 52.2 | 158.2 |
Isorhamnetin | y = −0.00579894 + 0.432144x | 0.9999 | 15.7 | 47.5 |
Compound | Recoveries % (±RSD) (n = 3) | Intra-Day Precision % (±RSD) | Inter-Day Precision % (±RSD) | ME (%) | |||
---|---|---|---|---|---|---|---|
25 ng/mL | 80 ng/mL | 300 ng/mL | 1500 ng/mL | 250 ng/mL | 250 ng/mL | ||
Gallic acid | 104.6–123.0 | 69.0–82.4 | 115.9–127.9 | 95.9–104.5 | 2.2 | 4.5 | −20.4 |
Caftaric acid | 104.8–107.6 | 100.2–105.4 | 92.6–104.0 | 94.7–98.5 | 3.7 | 11.8 | 18.0 |
Protocatechuic acid | 95.1–102.9 | 98.8–101.6 | 111.9–117.5 | 100.4–106.0 | 13.7 | 8.0 | −11.3 |
Procyanidin B1 | - | 92.5–104.7 | 104.4–109.4 | 79.5–92.3 | 5.6 | 0.9 | −5.4 |
Epigallocatechin | - | 93.6–96.2 | 92.9–104.3 | 97.8–103.0 | 13.3 | 3.4 | −21.0 |
Chlorogenic acid | 79.5–83.7 | 62.0–76.0 | 73.4–78.8 | 76.5–79.9 | 8.6 | 14.4 | 4.3 |
Catechin | - | 72.3–75.1 | 76.9–82.5 | 79.6–83.4 | 4.9 | 2.9 | −0.6 |
Coutaric acid | - | 89.4–95.0 | 89.4–95.0 | 75.9–91.7 | 3.9 | 8.2 | 3.1 |
Syringic acid | - | 91.6–103.4 | 99.9–108.3 | 109.6–116.0 | 9.5 | 1.1 | 28.0 |
Oenin | 97.0–101.8 | 118.4–122.0 | 102.9–103.7 | 97.5–102.3 | 4.8 | 9.4 | −22.0 |
Procyanidin B2 | - | 80.4–80.8 | 84.1–89.7 | 80.2–89.8 | 6.1 | 5.2 | −5.7 |
Fertaric acid | 91.0–108.2 | 92.5–104.7 | 100.2–105.4 | 94.9–98.5 | 6.1 | 5.0 | 12.9 |
Epicatechin | - | 84.1–90.3 | 78.8–80.8 | 87.8–100.4 | 10.0 | 7.0 | 10.5 |
Caffeic acid | 113.8–121.9 | 96.7–99.5 | 107.8–112.0 | 115.7–117.3 | 5.3 | 3.5 | 19.2 |
Epigallocatechin gallate | - | 76.3–77.3 | 87.4–91.2 | 96.2–97.4 | 7.7 | 3.6 | 35.5 |
Hesperidin | - | 79.0–84.4 | 72.2–75.8 | 65.1–77.9 | 7.9 | 7.4 | 8.7 |
trans-Polydatin | - | 84.0–88.0 | 98.0–107.0 | 84.6–85.4 | 3.9 | 5.0 | 9.7 |
Quercetin-3-β-D-glucoside | - | 96.4–112.0 | 92.9–104.5 | 101.1–112.7 | 6.5 | 5.4 | 34.8 |
Epicatechin gallate | 94.9–115.7 | 73.4–81.8 | 69.1–82.7 | 69.8–82.6 | 4.0 | 2.9 | 18.9 |
Procyanidin A2 | - | 98.0–101.8 | 75.3–80.9 | 85.0–87.0 | 11.5 | 9.7 | −0.5 |
Rutin | - | 71.2–85.0 | 71.9–79.1 | 71.2–85.0 | 2.9 | 2.3 | 24.3 |
p-Coumaric acid | 103.2–121.6 | 69.6–74.8 | 83.8–85.2 | 113.7–115.7 | 4.3 | 5.2 | 15.2 |
Ferulic acid | - | 98.2–104.0 | 77.2–79.8 | 77.8–81.8 | 8.0 | 12.3 | 1.2 |
Sinapic acid | - | 104.6–110.4 | 65.6–81.2 | 78.8–83.2 | 7.9 | 11.2 | 2.8 |
trans-Resveratrol | - | 107.2–111.4 | 90.7–105.3 | 66.7–74.7 | 1.9 | 1.7 | 27.2 |
Myricetin | 69.7–78.5 | 89.3–97.7 | 97.5–10.5 | 84.8–88.0 | 3.4 | 3.1 | −19.9 |
o-Coumaric acid | 79.2–84.4 | 89.6–110.0 | 82.0–101.4 | 78.1–84.7 | 3.9 | 1.7 | −1.2 |
Coniferyl aldehyde | 82.1–101.7 | 66.7–73.5 | 79.8–93.8 | 65.1–75.5 | 0.8 | 4.5 | 4.7 |
Quercetin | 94.8–105.2 | 70.5–74.9 | 75.2–88.4 | 75.0–75.2 | 2.4 | 6.2 | 2.3 |
Apigenin | 74.0–77.4 | 77.6–82.6 | 83.9±85.9 | 81.4–84.6 | 7.3 | 4.0 | −14.8 |
Kaempferol | - | 70.3–73.6 | 73.1–76.5 | 87.7–90.3 | 1.3 | 2.0 | −11.5 |
Isorhamnetin | 102.9–106.1 | 88.0–94.4 | 83.2–87.8 | 75.2–77.6 | 6.4 | 5.4 | 0.4 |
Grape Variety | Color | Part | TPC (g GAE/kg) | TFC (g QE/kg) | TTC (g EE/kg) |
---|---|---|---|---|---|
Mandilaria | Red | Grape | 0.18 ± 0.02 | 0.22 ± 0.01 | 12.3 ± 0.5 |
Pomace | 5.1 ± 0.1 | 0.20 ± 0.02 | 15.6 ± 0.4 | ||
Stem | 4.95 ± 0.08 | 0.299 ± 0.006 | 18.2 ± 0.8 | ||
Monemvassia | White | Grape | 0.287 ± 0.006 | 0.167 ± 0.004 | 0.53 ± 0.08 |
Pomace | 4.49 ± 0.08 | 0.22 ± 0.02 | 12 ± 1 | ||
Stem | 14.0 ± 0.3 | 1.6 ± 0.1 | 64 ± 2 | ||
Aidani mavro | Red | Grape | 0.94 ± 0.03 | 0.32 ± 0.01 | 4.6 ± 0.1 |
Pomace | 0.25 ± 0.01 | 0.17 ± 0.02 | 9.5 ± 0.4 | ||
Stem | 2.46 ± 0.02 | 0.274 ± 0.009 | 8.3 ± 0.4 | ||
Wine Appellation | Color | Grape Variety | TPC (g GAE/L) | TFC (g QE/L) | TTC (g EE/L) |
Paros Reserve | Red | Mandilaria | 1.68 ± 0.02 | 0.127 ± 0.004 | 3.8 ± 0.1 |
Amphora | White | Monemvassia | 0.30 ± 0.04 | 0.0227 ± 0.0007 | 0.56 ± 0.05 |
Rose Moraitis | Rose | Aidani mavro | 0.22 ± 0.02 | 0.0175 ± 0.0004 | 0.38 ± 0.03 |
Compound | Grapes | Wine | Pomace | Stems |
---|---|---|---|---|
Gallic acid | 2.5 ± 0.1 | 180 ± 7 | 54 ± 2 | 125 ± 8 |
Caftaric acid | 171 ± 2 | 62 ± 1 | ND | ND |
Protocatechuic acid | ND | 2.32 ± 0.10 | 13 ± 1 | 59 ± 8 |
Procyanidin B1 | 37.8 ± 0.5 | 14.7 ± 0.4 | 266 ± 3 | 942 ± 19 |
Epigallocatechin | tr | 0.55 ± 0.07 | 1.8 ± 0.1 | 8.9 ± 0.4 |
Chlorogenic acid | ND | ND | ND | ND |
(+)-Catechin | 74 ± 3 | 7.8 ± 0.4 | 1049 ± 16 | 1176 ± 43 |
Coutaric acid | 48 ± 2 | 8.66 ± 0.08 | 5.20 ± 0.01 | 54 ± 2 |
Syringic acid | ND | ND | 12 ± 3 | ND |
Oenin | 142 ± 3 | 1.5 ± 0.04 | 28 ± 3 | 33 ± 9 |
Procyanidin B2 | 96 ± 4 | 3.7 ± 0.2 | 817 ± 10 | 21 ± 1 |
Fertaric acid | 22.5 ± 0.9 | 6.6 ± 0.2 | 13.00 ± 0.05 | 72.9 ± 0.2 |
(–)-Epicatechin | 181 ± 8 | 7.2 ± 0.3 | 1299 ± 7 | 71 ± 5 |
Caffeic acid | ND | 2.77 ± 0.04 | ND | ND |
Epigallocatechin gallate | ND | ND | tr | 22.0 ± 1.0 |
Hesperidin | ND | ND | ND | ND |
trans-Polydatin | 12 ± 3 | ND | 8.41 ± 0.01 | ND |
Quercetin-3-β-D-glucoside | ND | 3.94 ± 0.09 | 66 ± 4 | 73 ± 3 |
Epicatechin gallate | 3.0 ± 0.1 | 0.022 ± 0.006 | 4.4 ± 0.1 | 46 ± 3 |
Procyanidin A2 | tr | ND | ND | ND |
Rutin | 0.052 ± 0.001 | ND | ND | ND |
p-Coumaric acid | ND | 3.05 ± 0.07 | tr | 1.2 ± 0.2 |
Ferulic acid | ND | 0.22 ± 0.05 | ND | tr |
Sinapic acid | tr | ND | ND | ND |
trans-Resveratrol | 1.1 ± 0.3 | 0.37 ± 0.08 | tr | 58 ± 4 |
Myricetin | 1.76 ± 0.04 | 0.87 ± 0.03 | 0.92 ± 0.03 | 0.98 ± 0.01 |
o-Coumaric acid | ND | ND | ND | ND |
Coniferyl aldehyde | ND | ND | ND | ND |
Quercetin | ND | ND | ND | ND |
Apigenin | ND | ND | 6.0 ± 0.3 | 3.0 ± 0.2 |
Kaempferol | ND | 0.374 ± 0.009 | ND | ND |
Isorhamnetin | tr | 0.60 ± 0.01 | 2.29 ± 0.02 | 1.77 ± 0.05 |
Compound | Grapes | Wine | Pomace | Stems |
---|---|---|---|---|
Gallic acid | 1.06 ± 0.2 | 0.65 ± 0.02 | 70 ± 3 | 49 ± 2 |
Caftaric acid | 33.5 ± 0.5 | 30.9 ± 0.6 | ND | ND |
Protocatechuic acid | 0.47 ± 0.07 | 0.64 ± 0.04 | 7.9 ± 0.5 | 24.3 ± 0.8 |
Procyanidin B1 | 25.1 ± 0.2 | 6.2 ± 0.2 | 66 ± 2 | 125 ± 7 |
Epigallocatechin | tr | 0.12 ± 0.03 | 1.8 ± 0.1 | 4.3 ± 0.3 |
Chlorogenic acid | ND | ND | ND | ND |
(+)-Catechin | 19 ± 1 | 6.1 ± 0.4 | 136 ± 6 | 127 ± 5 |
Coutaric acid | 6.97 ± 0.09 | 5.7 ± 0.08 | 3.8 ± 0.3 | 24.1 ± 0.7 |
Syringic acid | ND | ND | 12 ± 3 | 3.0 ± 0.5 |
Oenin | 65 ± 1 | 0.446 ± 0.009 | 32 ± 2 | 1.9 ± 0.2 |
Procyanidin B2 | 37 ± 2 | 1.8 ± 0.2 | 146 ± 5 | 12.3 ± 0.6 |
Fertaric acid | 23.9 ± 0.6 | 5.5 ± 0.2 | 3.6 ± 0.1 | 4.3 ± 0.3 |
(–)-Epicatechin | 61 ± 4 | 6.9 ± 0.9 | 302 ± 14 | 49 ± 2 |
Caffeic acid | ND | 0.92 ± 0.02 | ND | ND |
Epigallocatechin gallate | ND | ND | ND | 6.4 ± 0.3 |
Hesperidin | ND | ND | ND | ND |
trans-Polydatin | 4.46 ± 0.03 | ND | ND | ND |
Quercetin-3-β-D-glucoside | ND | 0.56 ± 0.02 | 10.6 ± 0.3 | 18.8 ± 0.4 |
Epicatechin gallate | 1.7 ± 0.2 | ND | 7.9 ± 0.4 | 18.4 ± 0.5 |
Procyanidin A2 | tr | tr | ND | ND |
Rutin | tr | ND | ND | ND |
p-Coumaric acid | ND | 0.64 ± 0.04 | ND | ND |
Ferulic acid | ND | 0.25 ± 0.04 | ND | 1.9 ± 0.2 |
Sinapic acid | ND | ND | ND | ND |
trans-Resveratrol | tr | tr | ND | 33 ± 3 |
Myricetin | tr | ND | ND | 0.45 ± 0.01 |
o-Coumaric acid | ND | ND | ND | ND |
Coniferyl aldehyde | ND | ND | ND | ND |
Quercetin | ND | ND | 11.5 ± 0.4 | 7.2 ± 0.3 |
Apigenin | ND | ND | 1.5 ± 0.1 | tr |
Kaempferol | ND | 0.067 ± 0.007 | 4.4 ± 0.4 | tr |
Isorhamnetin | ND | 0.072 ± 0.002 | 2.4 ± 0.1 | 0.99 ± 0.01 |
Compound | Grapes | Wine | Pomace | Stems |
---|---|---|---|---|
Gallic acid | 2.77 ± 0.03 | 9 ± 1 | 72 ± 5 | 40.3 ± 0.6 |
Caftaric acid | 21.4 ± 0.3 | 35 ± 1 | ND | ND |
Protocatechuic acid | 4.2 ± 0.1 | 1.04 ± 0.05 | 11 ± 1 | 16.8 ± 0.6 |
Procyanidin B1 | 23 ± 2 | 11.0 ± 0.3 | 181 ± 7 | 400 ± 2 |
Epigallocatechin | 0.47 ± 0.01 | tr | 2.9 ± 0.1 | 3.08 ± 0.08 |
Chlorogenic acid | ND | ND | tr | ND |
(+)-Catechin | 107 ± 9 | 6.4 ± 0.9 | 866 ± 8 | 387 ± 5 |
Coutaric acid | 56 ± 3 | 3.11 ± 0.05 | 3.65 ± 0.03 | 8.67 ± 0.08 |
Syringic acid | ND | ND | ND | ND |
Oenin | 0.12 ± 0.01 | ND | 1.06 ± 0.01 | 0.57 ± 0.01 |
Procyanidin B2 | 31 ± 1 | 5.3 ± 0.2 | 760 ± 13 | 10.4 ± 0.4 |
Fertaric acid | 154 ± 8 | 10.1 ± 0.1 | 4.4 ± 0.5 | 4.4 ± 0.2 |
(–)-Epicatechin | 50 ± 2 | 8.2 ± 0.5 | 1901 ± 68 | 34 ± 1 |
Caffeic acid | ND | 2.4 ± 0.1 | ND | ND |
Epigallocatechin gallate | ND | ND | tr | 5.51 ± 0.08 |
Hesperidin | ND | ND | ND | ND |
trans-Polydatin | 0.55 ± 0.08 | ND | ND | 3.2 ± 0.2 |
Quercetin-3-β-D-glucoside | 4.9 ± 0.3 | 1.56 ± 0.06 | 155 ± 3 | 54.3 ± 0.6 |
Epicatechin gallate | 3.9 ± 0.2 | ND | 67 ± 2 | 19.0 ± 0.3 |
Procyanidin A2 | 1.0 ± 0.1 | ND | ND | ND |
Rutin | tr | ND | ND | ND |
p-Coumaric acid | ND | 6.7 ± 0.4 | ND | ND |
Ferulic acid | tr | 1.3 ± 0.2 | 1.1 ± 0.1 | 2.5 ± 0.2 |
Sinapic acid | ND | ND | ND | ND |
trans-Resveratrol | 6.0 ± 0.8 | ND | 1.8 ± 0.8 | 24.0 ± 0.9 |
Myricetin | ND | ND | ND | ND |
o-Coumaric acid | ND | ND | ND | ND |
Coniferyl aldehyde | ND | ND | ND | ND |
Quercetin | ND | ND | 13 ± 2 | 5.2 ± 0.2 |
Apigenin | ND | ND | tr | tr |
Kaempferol | 1.3 ± 0.1 | 0.097 ± 0.007 | 1.4 ± 0.1 | ND |
Isorhamnetin | tr | 0.027 ± 0.001 | 1.2 ± 0.3 | ND |
Grape Variety | Color | Part | DPPH IC50g TΕ/kg DW | FRAP mol E-Fe(II)/kg DW |
---|---|---|---|---|
Mandilaria | Red | Grapes | 40.3 ± 0.3 | 0.12 ± 0.04 |
Pomace | 30.2 ± 0.2 | 0.31 ± 0.05 | ||
Stems | 24.20 ± 0.04 | 0.35 ± 0.07 | ||
Monemvassia | White | Grapes | 69.6 ± 1.2 | 0.03 ± 0.01 |
Pomace | 30.1 ± 0.1 | 0.32 ± 0.09 | ||
Stems | 5.634 ± 0.009 | 1.4 ± 0.4 | ||
Aidani mavro | Red | Grapes | 67.4 ± 0.2 | 0.06 ± 0.02 |
Pomace | 33.31 ± 0.07 | 0.21 ± 0.05 | ||
Stems | 57.2 ± 0.1 | 0.18 ± 0.04 | ||
Wine Appellation | Color | Grape Variety | IC50 (mg TE/L) | mol E-Fe(II)/L |
Paros Reserve | Red | Mandilaria | 0.047 ± 0.002 | 0.031 ± 0.003 |
Amphora | White | Monemvassia | 0.121 ± 0.001 | 0.010 ± 0.002 |
Rose Moraitis | Rose | Aidani mavro | 0.088 ± 0.002 | 0.014 ± 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myrtsi, E.D.; Koulocheri, S.D.; Iliopoulos, V.; Haroutounian, S.A. High-Throughput Quantification of 32 Bioactive Antioxidant Phenolic Compounds in Grapes, Wines and Vinification Byproducts by LC–MS/MS. Antioxidants 2021, 10, 1174. https://doi.org/10.3390/antiox10081174
Myrtsi ED, Koulocheri SD, Iliopoulos V, Haroutounian SA. High-Throughput Quantification of 32 Bioactive Antioxidant Phenolic Compounds in Grapes, Wines and Vinification Byproducts by LC–MS/MS. Antioxidants. 2021; 10(8):1174. https://doi.org/10.3390/antiox10081174
Chicago/Turabian StyleMyrtsi, Eleni D., Sofia D. Koulocheri, Vassilios Iliopoulos, and Serkos A. Haroutounian. 2021. "High-Throughput Quantification of 32 Bioactive Antioxidant Phenolic Compounds in Grapes, Wines and Vinification Byproducts by LC–MS/MS" Antioxidants 10, no. 8: 1174. https://doi.org/10.3390/antiox10081174
APA StyleMyrtsi, E. D., Koulocheri, S. D., Iliopoulos, V., & Haroutounian, S. A. (2021). High-Throughput Quantification of 32 Bioactive Antioxidant Phenolic Compounds in Grapes, Wines and Vinification Byproducts by LC–MS/MS. Antioxidants, 10(8), 1174. https://doi.org/10.3390/antiox10081174