Apple Pomace as a Source of Bioactive Polyphenol Compounds in Gluten-Free Breads
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Methods
2.3.1. Bread Preparation
2.3.2. Antioxidant Content and Antioxidant Activity
2.3.3. Determination of Individual Polyphenols by UPLC-PDA-MS/MS
- Extraction
- 2.
- Assay
2.3.4. Organoleptic Analysis
2.3.5. Statistical Analysis
3. Results and Discussion
3.1. Apple Pomace Characteristics
3.2. Profile of Phenolic Compounds in Gluten-Free Bread Enriched with Apple Pomace
3.3. Organoleptic Analysis of Gluten-Free Bread Enriched with Apple Pomace
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wieser, H. Chemistry of Gluten Proteins. Food Microbiol. 2007, 24, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Świeca, M.; Reguła, J.; Suliburska, J.; Złotek, U.; Gawlik-Dziki, U. Effects of Gluten-Free Breads, with Varying Functional Supplements, on the Biochemical Parameters and Antioxidant Status of Rat Serum. Food Chem. 2015, 182, 268–274. [Google Scholar] [CrossRef]
- Tsatsaragkou, Κ.; Protonotariou, S.; Mandala, I. Structural Role of Fibre Addition to Increase Knowledge of Non-Gluten Bread. J. Cereal Sci. 2016, 67, 58–67. [Google Scholar] [CrossRef]
- Saturni, L.; Ferretti, G.; Bacchetti, T. The Gluten-Free Diet: Safety and Nutritional Quality. Nutrients 2010, 2, 16–34. [Google Scholar] [CrossRef]
- Hopper, A.D.; Hadjivassiliou, M.; Butt, S.; Sanders, D.S. Adult Coeliac Disease. BMJ 2007, 335, 558–562. [Google Scholar] [CrossRef]
- Wierdsma, N.; Bokhorst-de van der Schueren, M.; Berkenpas, M.; Mulder, C.; van Bodegraven, A. Vitamin and Mineral Deficiencies Are Highly Prevalent in Newly Diagnosed Celiac Disease Patients. Nutrients 2013, 5, 3975–3992. [Google Scholar] [CrossRef] [PubMed]
- Stojiljković, V.; Todorović, A.; Pejić, S.; Kasapović, J.; Saičić, Z.S.; Radlović, N.; Pajović, S.B. Antioxidant Status and Lipid Peroxidation in Small Intestinal Mucosa of Children with Celiac Disease. Clin. Biochem. 2009, 42, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Szaflarska-Popławska, A.; Siomek, A.; Czerwionka-Szaflarska, M.; Gackowski, D.; Różalski, R.; Guz, J.; Szpila, A.; Zarakowska, E.; Oliński, R. Oxidatively Damaged DNA/Oxidative Stress in Children with Celiac Disease. Cancer Epidemiol. Biomark. Prev 2010, 19, 1960–1965. [Google Scholar] [CrossRef]
- Maluf, S.W.; Wilhelm Filho, D.; Parisotto, E.B.; Medeiros, G.d.S.d.; Pereira, C.H.J.; Maraslis, F.T.; Dornelles Schoeller, C.C.; da Rosa, J.S.; Fröde, T.S.; Maluf, S.W.; et al. DNA Damage, Oxidative Stress, and Inflammation in Children with Celiac Disease. Genet. Mol. Biol. 2020, 43. [Google Scholar] [CrossRef]
- Rowicka, G.; Czaja-Bulsa, G.; Chełchowska, M.; Riahi, A.; Strucińska, M.; Weker, H.; Ambroszkiewicz, J. Oxidative and Antioxidative Status of Children with Celiac Disease Treated with a Gluten Free-Diet. Available online: https://www.hindawi.com/journals/omcl/2018/1324820/ (accessed on 22 April 2021).
- Tarko, T.; Duda-Chodak, A.; Bebak, A. Aktywność biologiczna wybranych wytłoków owocowych oraz warzywnych. Żywność Nauka Technol. Jakość 2012, 19, 4. [Google Scholar]
- Balasuriya, N.; Rupasinghe, H.P.V. Antihypertensive Properties of Flavonoid-Rich Apple Peel Extract. Food Chem. 2012, 135, 2320–2325. [Google Scholar] [CrossRef]
- Makarova, E.; Górnaś, P.; Konrade, I.; Tirzite, D.; Cirule, H.; Gulbe, A.; Pugajeva, I.; Seglina, D.; Dambrova, M. Acute Anti-Hyperglycaemic Effects of an Unripe Apple Preparation Containing Phlorizin in Healthy Volunteers: A Preliminary Study. J. Sci. Food Agric. 2015, 95, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Savatović, S.; Mandić, A.; Tumbas, V. Assessment of Polyphenolic Content and in Vitro Antiradical Characteristics of Apple Pomace. Food Chem. 2008, 109, 340–347. [Google Scholar] [CrossRef]
- Rabetafika, H.N.; Bchir, B.; Blecker, C.; Richel, A. Fractionation of Apple By-Products as Source of New Ingredients: Current Situation and Perspectives. Trends Food Sci. Technol. 2014, 40, 99–114. [Google Scholar] [CrossRef]
- Kammerer, D.R.; Kammerer, J.; Valet, R.; Carle, R. Recovery of Polyphenols from the By-Products of Plant Food Processing and Application as Valuable Food Ingredients. Food Res. Int. 2014, 65, 2–12. [Google Scholar] [CrossRef]
- Leyva-Corral, J.; Quintero-Ramos, A.; Camacho-Dávila, A.; de Jesús Zazueta-Morales, J.; Aguilar-Palazuelos, E.; Ruiz-Gutiérrez, M.G.; Meléndez-Pizarro, C.O.; de Jesús Ruiz-Anchondo, T. Polyphenolic Compound Stability and Antioxidant Capacity of Apple Pomace in an Extruded Cereal. LWT Food Sci. Technol. 2016, 65, 228–236. [Google Scholar] [CrossRef]
- Mir, S.A.; Bosco, S.J.D.; Shah, M.A.; Santhalakshmy, S.; Mir, M.M. Effect of Apple Pomace on Quality Characteristics of Brown Rice Based Cracker. J. Saudi Soc. Agric. Sci. 2017, 16, 25–32. [Google Scholar] [CrossRef]
- Šarić, B.; Mišan, A.; Mandić, A.; Nedeljković, N.; Pojić, M.; Pestorić, M.; Đilas, S. Valorisation of Raspberry and Blueberry Pomace through the Formulation of Value-Added Gluten-Free Cookies. J. Food Sci. Technol. 2016, 53, 1140–1150. [Google Scholar] [CrossRef] [PubMed]
- Zlatanović, S.; Kalušević, A.; Micić, D.; Laličić-Petronijević, J.; Tomić, N.; Ostojić, S.; Gorjanović, S. Functionality and Storability of Cookies Fortified at the Industrial Scale with up to 75% of Apple Pomace Flour Produced by Dehydration. Foods 2019, 8, 561. [Google Scholar] [CrossRef]
- Brouns, F.J.P.H.; van Buul, V.J.; Shewry, P.R. Does Wheat Make Us Fat and Sick? J. Cereal Sci. 2013, 58, 209–215. [Google Scholar] [CrossRef]
- Gumul, D.; Korus, J.; Ziobro, R.; Kruczek, M. Enrichment of Wheat Bread with Apple Pomace as a Way to Increase Pro-Health Constituents. Qual. Assur. Saf. Crops Foods 2019, 11, 231–240. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 9780121822002. [Google Scholar]
- El Hariri, B.; Sallé, G.; Andary, C. Involvement of Flavonoids in the Resistance of Two Poplar Cultivars to Mistletoe (Viscum Album L.). Protoplasma 1991, 162, 20–26. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oszmiański, J.; Kolniak-Ostek, J.; Wojdyło, A. Application of Ultra Performance Liquid Chromatography-Photodiode Detector-Quadrupole/Time of Flight-Mass Spectrometry (UPLC-PDA-Q/TOF-MS) Method for the Characterization of Phenolic Compounds of Lepidium Sativum L. Sprouts. Eur. Food Res. Technol. 2013, 236, 699–706. [Google Scholar] [CrossRef]
- PN-ISO 8589. Sensory Analysis—General Guidance for the Design of Test Rooms; PKN: Warsaw, Poland, 1998; (In Polish, English Abstract). [Google Scholar]
- Candrawinata, V.I.; Golding, J.B.; Roach, P.D.; Stathopoulos, C.E. Optimisation of the Phenolic Content and Antioxidant Activity of Apple Pomace Aqueous Extracts. CyTA J. Food 2015, 13, 293–299. [Google Scholar] [CrossRef]
- Bai, X.-L.; Yue, T.-L.; Yuan, Y.-H.; Zhang, H.-W. Optimization of Microwave-Assisted Extraction of Polyphenols from Apple Pomace Using Response Surface Methodology and HPLC Analysis: Sample Preparation. J. Sep. Sci. 2010, 33, 3751–3758. [Google Scholar] [CrossRef]
- Adil, İ.H.; Çetin, H.I.; Yener, M.E.; Bayındırlı, A. Subcritical (Carbon Dioxide+ethanol) Extraction of Polyphenols from Apple and Peach Pomaces, and Determination of the Antioxidant Activities of the Extracts. J. Supercrit. Fluids 2007, 43, 55–63. [Google Scholar] [CrossRef]
- Persic, M.; Mikulic-Petkovsek, M.; Slatnar, A.; Veberic, R. Chemical Composition of Apple Fruit, Juice and Pomace and the Correlation between Phenolic Content, Enzymatic Activity and Browning. LWT Food Sci. Technol. 2017, 82, 23–31. [Google Scholar] [CrossRef]
- Krasnova, I.; Segliņa, D. Content of Phenolic Compounds and Antioxidant Activity in Fresh Apple, Pomace and Pomace Water Extract—Effect of Cultivar. Proc. Latv. Acad. Sci. 2019, 73, 513–518. [Google Scholar] [CrossRef]
- Waldbauer, K.; McKinnon, R.; Kopp, B. Apple Pomace as Potential Source of Natural Active Compounds. Planta Med. 2017, 83, 994–1010. [Google Scholar] [CrossRef]
- Rana, S.; Gupta, S.; Rana, A.; Bhushan, S. Functional Properties, Phenolic Constituents and Antioxidant Potential of Industrial Apple Pomace for Utilization as Active Food Ingredient. Food Sci. Hum. Wellness 2015, 4, 180–187. [Google Scholar] [CrossRef]
- Molina, M.F.; Sanchez-Reus, I.; Iglesias, I.; Benedi, J. Quercetin, a Flavonoid Antioxidant, Prevents and Protects against Ethanol-Induced Oxidative Stress in Mouse Liver. Biol. Pharm. Bull. 2003, 26, 1398–1402. [Google Scholar] [CrossRef]
- Faillie, J.-L. Pharmacological Aspects of the Safety of Gliflozins. Pharmacol. Res. 2017, 118, 71–81. [Google Scholar] [CrossRef]
- Kasai, H.; Fukada, S.; Yamaizumi, Z.; Sugie, S.; Mori, H. Action of Chlorogenic Acid in Vegetables and Fruits as an Inhibitor of 8-Hydroxydeoxyguanosine Formation in Vitro and in a Rat Carcinogenesis Model. Food Chem. Toxicol. 2000, 38, 467–471. [Google Scholar] [CrossRef]
- Peng, I.-W.; Kuo, S.-M. Flavonoid Structure Affects the Inhibition of Lipid Peroxidation in Caco-2 Intestinal Cells at Physiological Concentrations. J. Nutr. 2003, 133, 2184–2187. [Google Scholar] [CrossRef]
- Gorjanović, S.; Micić, D.; Pastor, F.; Tosti, T.; Kalušević, A.; Ristić, S.; Zlatanović, S. Evaluation of Apple Pomace Flour Obtained Industrially by Dehydration as a Source of Biomolecules with Antioxidant, Antidiabetic and Antiobesity Effects. Antioxidants 2020, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- Pieszka, M.; Szczurek, P.; Bederska-Łojewska, D.; Migdał, W.; Pieszka, M.; Gogol, P.; Jagusiak, W. The Effect of Dietary Supplementation with Dried Fruit and Vegetable Pomaces on Production Parameters and Meat Quality in Fattening Pigs. Meat Sci. 2017, 126, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Naczk, M. Food Phenolics: Sources, Chemistry, Effects and Applications; Technomic Publishing Company: Lancaster, UK, 1995; ISBN 9781566762793. [Google Scholar]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough Study of Reactivity of Various Compound Classes toward the Folin−Ciocalteu Reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [PubMed]
- Katina, K.; Laitila, A.; Juvonen, R.; Liukkonen, K.-H.; Kariluoto, S.; Piironen, V.; Landberg, R.; Åman, P.; Poutanen, K. Bran Fermentation as a Means to Enhance Technological Properties and Bioactivity of Rye. Food Microbiol. 2007, 24, 175–186. [Google Scholar] [CrossRef]
- Korus, J.; Juszczak, L.; Ziobro, R.; Witczak, M.; Grzelak, K.; Sójka, M. Defatted Strawberry and Blackcurrant Seeds as Functional Ingredients of Gluten-Free Bread. J. Text. Stud. 2012, 43, 29–39. [Google Scholar] [CrossRef]
- Boskov Hansen, H.; Andreasen, M.; Nielsen, M.; Larsen, L.; Knudsen, B.K.; Meyer, A.; Christensen, L.; Hansen, Å. Changes in Dietary Fibre, Phenolic Acids and Activity of Endogenous Enzymes during Rye Bread-Making. Eur. Food Res. Technol. 2002, 214, 33–42. [Google Scholar] [CrossRef]
- Rupasinghe, H.; Wang, L.; Huber, G.; Pitts, N. Effect of Baking on Dietary Fibre and Phenolics of Muffins Incorporated with Apple Skin Powder. Food Chem. 2007, S0308814607009740. [Google Scholar] [CrossRef]
- Maillard, M.-N.; Berset, C. Evolution of Antioxidant Activity during Kilning: Role of Insoluble Bound Phenolic Acids of Barley and Malt. J. Agric. Food Chem. 1995, 43, 1789–1793. [Google Scholar] [CrossRef]
- Sivam, A.S.; Sun-Waterhouse, D.; Quek, S.; Perera, C.O. Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review. J. Food Sci. 2010, 75, R163–R174. [Google Scholar] [CrossRef] [PubMed]
- Dugas, B.; Dugas, N.; Conti, M.; Calenda, A.; Pino, P.; Thomas, Y.; Mazier, D.; Vouldoukis, I. Wheat Gliadin Promotes the Interleukin-4-Induced IgE Production by Normal Human Peripheral Mononuclear Cells through a Redox-Dependent Mechanism. Cytokine 2003, 21, 270–280. [Google Scholar] [CrossRef]
- Tučková, L.; Novotná, J.; Novák, P.; Flegelová, Z.; Květoň, T.; Jelínková, L.; Zídek, Z.; Man, P.; Tlaskalová-Hogenová, H. Activation of Macrophages by Gliadin Fragments: Isolation and Characterization of Active Peptide. J. Leukoc. Biol. 2002, 71, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Diñeiro García, Y.; Valles, B.S.; Picinelli Lobo, A. Phenolic and Antioxidant Composition of By-Products from the Cider Industry: Apple Pomace. Food Chem. 2009, 117, 731–738. [Google Scholar] [CrossRef]
- Kim, D.-O.; Lee, K.W.; Lee, H.J.; Lee, C.Y. Vitamin C Equivalent Antioxidant Capacity (VCEAC) of Phenolic Phytochemicals. J. Agric. Food Chem. 2002, 50, 3713–3717. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-Inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Vinaykumar, N.M.; Mahmood, R.; Krishna, V.; Ravishankara, B.; Shastri, S.L. Antioxidant and in Vivo Hepatoprotective Effects of Gardenia Gummifera L.f. Fruit Methanol Extract. Clin. Phytosci. 2020, 6, 47. [Google Scholar] [CrossRef]
- Fernandez-Panchon, M.S.; Villano, D.; Troncoso, A.M.; Garcia-Parrilla, M.C. Antioxidant Activity of Phenolic Compounds: From In Vitro Results to In Vivo Evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef] [PubMed]
- Bchir, B.; Rabetafika, H.N.; Paquot, M.; Blecker, C. Effect of Pear, Apple and Date Fibres from Cooked Fruit By-Products on Dough Performance and Bread Quality. Food Bioprocess. Technol. 2014, 7, 1114–1127. [Google Scholar] [CrossRef]
- Torbica, A.; Škrobota, D.; Janić Hajnal, E.; Belović, M.; Zhang, N. Sensory and Physico-Chemical Properties of Wholegrain Wheat Bread Prepared with Selected Food by-Products. LWT 2019, 114, 108414. [Google Scholar] [CrossRef]
- Rocha Parra, A.F.; Ribotta, P.D.; Ferrero, C. Apple Pomace in Gluten-Free Formulations: Effect on Rheology and Product Quality. Int. J. Food Sci. Technol. 2015, 50, 682–690. [Google Scholar] [CrossRef]
- Jannati, N.; Hojjatoleslamy, M.; Hosseini, E.; Mozafari, H.R.; Siavoshi, M. Effect of Apple Pomace Powder on Rheological Properties of Dough and Sangak Bread Texture. Carpathian J. Food Sci. Technol. 2018, 10, 77–84. [Google Scholar]
By-Product | Total Phenolic Content (mg Gallic Acid/100 g d.m.) | Total Flavonoids Content (mg Rutin/100 g d.m.) | Trolox Equivalent Antioxidant Capacity (mg Tx/g d.m.) |
---|---|---|---|
Apple pomace (AP) | 89.4 | 94.3 | 9.30 |
Compounds | Content in Apple Pomace (mg/100 g d.m.) | |
---|---|---|
Flavonols | luteolin 6-C-hexoside O-hexoside | n.d. |
luteolin O-hexoside C-hexoside | n.d. | |
quercetin-O-rutinoside | 2.82 ± 0.02 | |
quercetin-3-O-galactoside | 22.55 ± 0.34 | |
quercetin-3-O-glucoside | 5.88 ± 0.10 | |
quercetin-3-O-arabinoside | 8.77 ± 0.27 | |
quercetin-3-O-xyloside | 13.91 ± 0.03 | |
quercetin-3-O-rhamnoside | 19.21 ± 0.00 | |
isorhamnetin-3-O-galactoside | 0.74 ± 0.00 | |
isorhamnetin-3-O-glucoside | 0.57 ± 0.00 | |
Phenolic acids | chlorogenic acid | 20.55 ± 0.12 |
cryptochlorogenic acid | 1.03 ± 0.00 | |
caffeoylquinic acid | n.d. | |
p-coumaroylquinic acid | 0.16 ± 0.03 | |
caffeoyl-dihydroxyphenyl-lactaoyl-tartaric acid | n.d. | |
2-O-p-coumaroylglicerol | n.d. | |
1-O-p-coumaroylglicerol | n.d. | |
p-coumaroylspermidin | n.d. | |
di-p-coumaroylspermidin | n.d. | |
ferullyquinic acid | n.d. | |
Flavon-3-ols | (+) catechin | 1.44 ± 0.02 |
procyanidin B2 | 2.61 ± 0.00 | |
(−) epicatechin | 0.76 ± 0.00 | |
Dihydrochalcones | phloretin-2-O-xylosyl-glucoside | 1.48 ± 0.14 |
phloretin 2-O-glucoside (phloridzin) | 15.52 ± 0.00 |
Sample | Total Phenolic Content (mg Gallic Acid/100 g d.m.) | Change to Control | Total Flavonoids Content (mg Rutin/100 g d.m.) | TEAC (mg Tx/g d.m.) | Change to Control |
---|---|---|---|---|---|
Control | 1.02 ± 0.00 a * | - | n.d. | 0.03 ± 0.00 a * | - |
GFB5AP | 3.58 ± 0.00 b | 250% | 8.04 ± 0.10 b | 1.97 ± 0.19 b | 6467% |
GFB10AP | 7.15 ± 1.57 c | 600% | 15.87 ± 0.27 c | 2.26 ± 0.05 c | 7433% |
GFB15AP | 21.96 ± 2.00 d | 2050% | 21.56 ± 0.31 d | 3.21 ± 0.10 d | 10600% |
Compounds | Control | GFB5AP | GFB10AP | GFB15AP | |
---|---|---|---|---|---|
Flavonols | luteolin 6-C-hexoside O-hexoside | 0.84 ± 0.20 a * | 0.99 ± 0.07 a | 0.97 ± 0.00 a | 1.07 ± 0.03 b |
luteolin O-hexoside C-hexoside | 0.96 ± 0.00 c | 1.00 ± 0.08 c | 0.88 ± 0.00 b | 0.82 ± 0.02 a | |
quercetin-O-rutinoside | n.d. | 0.22 ± 0.03 a | 0.44 ± 0.01 b | 0.52 ± 0.05 c | |
quercetin-3-O-galactoside | 0.11 ± 0.02 a | 1.21 ± 0.17 b | 2.60 ± 0.09 c | 4.37 ± 0.00 d | |
quercetin-3-O-glucoside | 0.01 ± 0.00 a | 0.25 ± 0.00 b | 0.63 ± 0.00 c | 1.02 ± 0.07 d | |
quercetin-3-O-arabinoside | 0.08 ± 0.00 a | 0.47 ± 0.03 b | 0.93 ± 0.02 c | 1.72 ± 0.05 d | |
quercetin-3-O-xyloside | 0.10 ± 0.01 a | 0.83 ± 0.03 b | 1.49 ± 0.00 c | 2.89 ± 0.07 d | |
quercetin-3-O-rhamnoside | 0.13 ± 0.02 a | 1.06 ± 0.07 b | 2.00 ± 0.00 c | 3.71 ± 0.00 d | |
isorhamnetin-3-O-galactoside | n.d. | n.d. | 0.10 ± 0.03 a | 0.21 ± 0.00 b | |
isorhamnetin-3-O-glucoside | n.d. | n.d. | 0.14 ± 0.01 a | 0.15 ± 0.00 a | |
Phenolic acids | chlorogenic acid | 0.35 ± 0.00 a | 1.33 ± 0.09 b | 2.36 ± 0.00 c | 3.74 ± 0.12 d |
cryptochlorogenic acid | n.d. | 0.06 ± 0.00 a | 0.12 ± 0.00 b | 0.19 ± 0.04 c | |
caffeoylquinic acid | 0.42 ± 0.00 a | 0.49 ± 0.03 b | 0.37 ± 0.06 a | 0.57 ± 0.00 c | |
p-coumaroylquinic acid | 0.07 ± 0.00 a | 0.13 ± 0.00 b | 0.21 ± 0.02 c | 0.32 ± 0.01 d | |
caffeoyl-dihydroxyphenyl-lactaoyl-tartaric acid | 0.15 ± 0.00 a | 0.28 ± 0.00 b | 0.41 ± 0.00 c | 0.61 ± 0.00 d | |
2-O-p-coumaroylglicerol | 0.28 ± 0.00 ab | 0.26 ± 0.02 ab | 0.25 ± 0.00 ab | 0.23 ± 0.01 a | |
1-O-p-coumaroylglicerol | 1.39 ± 0.00 a | 1.74 ± 0.06 c | 1.58 ± 0.00 b | 1.54 ± 0.01 b | |
p-coumaroylspermidin | 0.27 ± 0.05 d | 0.16 ± 0.01 c | 0.11 ± 0.00 b | 0.05 ± 0.00 b | |
di-p-coumaroylspermidin | 0.98 ± 0.03 a | 1.21 ± 0.12 b | 1.10 ± 0.01 b | 1.12 ± 0.03 b | |
ferullyquinic acid | 0.16 ± 0.00 a | 0.31 ± 0.01 b | 0.35 ± 0.01 b | 0.34 ± 0.02 b | |
Flavon-3-ols | (+) catechin | 0.09 ± 0.00 a | n.d. | 0.15 ± 0.01 b | n.d. |
procyanidin B2 | 0.20 ± 0.00 a | 0.32 ± 0.00 c | 0.28 ± 0.00 b | 0.46 ± 0.00 d | |
(−) epicatechin | n.d. | n.d. | n.d. | n.d. | |
Dihydrochalcones | phloretin-2-O-xylosyl-glucoside | 0.02 ± 0.00 a | 0.09 ± 0.00 b | 0.16 ± 0.00 c | 0.25 ± 0.01 d |
phloretin 2-O-glucoside (phloridzin) | 0.04 ± 0.00 a | 0.84 ± 0.00 b | 1.78 ± 0.03 c | 2.99 ± 0.02 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumul, D.; Ziobro, R.; Korus, J.; Kruczek, M. Apple Pomace as a Source of Bioactive Polyphenol Compounds in Gluten-Free Breads. Antioxidants 2021, 10, 807. https://doi.org/10.3390/antiox10050807
Gumul D, Ziobro R, Korus J, Kruczek M. Apple Pomace as a Source of Bioactive Polyphenol Compounds in Gluten-Free Breads. Antioxidants. 2021; 10(5):807. https://doi.org/10.3390/antiox10050807
Chicago/Turabian StyleGumul, Dorota, Rafał Ziobro, Jarosław Korus, and Marek Kruczek. 2021. "Apple Pomace as a Source of Bioactive Polyphenol Compounds in Gluten-Free Breads" Antioxidants 10, no. 5: 807. https://doi.org/10.3390/antiox10050807
APA StyleGumul, D., Ziobro, R., Korus, J., & Kruczek, M. (2021). Apple Pomace as a Source of Bioactive Polyphenol Compounds in Gluten-Free Breads. Antioxidants, 10(5), 807. https://doi.org/10.3390/antiox10050807