The Role of NADPH Oxidase in Neuronal Death and Neurogenesis after Acute Neurological Disorders
Abstract
:1. Introduction
2. Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidases (NOXs)
3. NOX Induced Oxidative Stress and Subsequent Neuronal Death
3.1. Stroke
3.1.1. NOX Induced Neuronal Death after Stroke
3.1.2. Neuroprotective Effect of NOX Inhibition on Stroke
3.2. Traumatic Brain Injury
3.2.1. NOX Induced Neuronal Death after TBI
3.2.2. Neuroprotective Effect of NOX Inhibition in TBI
3.3. Epilepsy
3.3.1. NOX Induced Neuronal Death after an Epileptic Seizure
3.3.2. Neuroprotective Effect of NOX Inhibition on Epileptic Seizure
3.4. Hypoglycemia
3.4.1. NOX Induced Neuronal Death after Hypoglycemia
3.4.2. Neuroprotective Effect of NOX Inhibition on Hypoglycemia
4. NOXs and Neurogenesis
4.1. Neurogenesis: A General Understanding
4.2. Balance of NOX Activity and Neurogenesis
4.3. NOX-Related Neurogenesis after Stroke
4.4. NOX-Related Neurogenesis after an Epileptic Seizure
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bedard, K.; Krause, K.H. The NOX Family of ROS-generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Sbarra, A.J.; Karnovsky, M.L. The Biochemical Basis of Phagocytosis. I. Metabolic Changes during the Ingestion of Particles by Polymorphonuclear Leukocytes. J. Biol. Chem. 1959, 234, 1355–1362. [Google Scholar] [CrossRef]
- Rossi, F.; Zatti, M. Biochemical Aspects of Phagocytosis in Polymorphonuclear Leucocytes. NADH and NADPH Oxidation by the Granules of Resting and Phagocytizing Cells. Experientia 1964, 20, 21–23. [Google Scholar] [CrossRef] [PubMed]
- Babior, B.M.; Kipnes, R.S.; Curnutte, J.T. Biological Defense Mechanisms. The Production by Leukocytes of Superoxide, a Potential Bactericidal Agent. J. Clin. Investig. 1973, 52, 741–744. [Google Scholar] [CrossRef]
- Floyd, R.A.; Carney, J.M. Free Radical Damage to Protein and DNA: Mechanisms Involved and Relevant Observations on Brain Undergoing Oxidative Stress. Ann. Neurol. 1992, 32, S22–S27. [Google Scholar] [CrossRef]
- Ansari, M.A.; Roberts, K.N.; Scheff, S.W. A Time Course of NADPH-oxidase Up-regulation and Endothelial Nitric Oxide Synthase Activation in the Hippocampus Following Neurotrauma. Free Radic. Biol. Med. 2014, 77, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.G.; Laird, M.D.; Han, D.; Nguyen, K.; Scott, E.; Dong, Y.; Dhandapani, K.M.; Brann, D.W. Critical Role of NADPH Oxidase in Neuronal Oxidative Damage and Microglia Activation Following Traumatic Brain Injury. PLoS ONE 2012, 7, e34504. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.W.; Hamby, A.M.; Gum, E.T.; Shin, B.S.; Won, S.J.; Sheline, C.T.; Chan, P.H.; Swanson, R.A. Sequential Release of Nitric Oxide, Zinc, and Superoxide in Hypoglycemic Neuronal Death. J. Cereb. Blood Flow Metab. 2008, 28, 1697–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, H.M.; Zhou, H.; Hong, J.S. NADPH Oxidases: Novel Therapeutic Targets for Neurodegenerative Diseases. Trends Pharmacol. Sci. 2012, 33, 295–303. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Guo, C.; Kong, J. Oxidative Stress in Neurodegenerative Diseases. Neural. Regen. Res. 2012, 7, 376–385. [Google Scholar] [PubMed]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, S.; Abramov, A.Y. Mechanism of Oxidative Stress in Neurodegeneration. Oxid. Med. Cell Longev. 2012, 2012, 428010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar] [PubMed]
- Choi, B.Y.; Kim, J.H.; Kho, A.R.; Kim, I.Y.; Lee, S.H.; Lee, B.E.; Choi, E.; Sohn, M.; Stevenson, M.; Chung, T.N.; et al. Inhibition of NADPH Oxidase Activation Reduces EAE-induced White Matter Damage in Mice. J. Neuroinflammation 2015, 12, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.H.; Jang, B.G.; Choi, B.Y.; Kim, H.S.; Sohn, M.; Chung, T.N.; Choi, H.C.; Song, H.K.; Suh, S.W. Post-treatment of an NADPH Oxidase Inhibitor Prevents Seizure-induced Neuronal Death. Brain Res. 2013, 1499, 163–172. [Google Scholar] [CrossRef]
- Kho, A.R.; Choi, B.Y.; Lee, S.H.; Hong, D.K.; Lee, S.H.; Jeong, J.H.; Park, K.-H.; Song, H.K.; Choi, H.C.; Suh, S.W. Effects of Protocatechuic Acid (PCA) on Global Cerebral Ischemia-Induced Hippocampal Neuronal Death. Int. J. Mol. Sci. 2018, 19, 1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Choi, B.Y.; Kho, A.R.; Jeong, J.H.; Hong, D.K.; Lee, S.H.; Lee, S.Y.; Lee, M.W.; Song, H.K.; Choi, H.C.; et al. Protective Effects of Protocatechuic Acid on Seizure-Induced Neuronal Death. Int. J. Mol. Sci. 2018, 19, 187. [Google Scholar] [CrossRef] [Green Version]
- Ma, M.W.; Wang, J.; Dhandapani, K.M.; Wang, R.; Brann, D.W. NADPH Oxidases in Traumatic Brain Injury-Promising Therapeutic Targets? Redox Biol. 2018, 16, 285–293. [Google Scholar] [CrossRef]
- Ma, M.W.; Wang, J.; Zhang, Q.; Wang, R.; Dhandapani, K.M.; Vadlamudi, R.K.; Brann, D.W. NADPH Oxidase in Brain Injury and Neurodegenerative Disorders. Mol. Neurodegener. 2017, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Unsal, V.; Dalkiran, T.; Cicek, M.; Kolukcu, E. The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review. Adv. Pharm. Bull. 2020, 10, 184–202. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.W. Excitotoxic Cell Death. J. Neurobiol. 1992, 23, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Lau, A.; Tymianski, M. Glutamate Receptors, Neurotoxicity and Neurodegeneration. Pflügers Arch. Eur. J. Physiol. 2010, 460, 525–542. [Google Scholar] [CrossRef]
- Dawson, D.A.; Graham, D.I.; McCulloch, J.; Macrae, I.M. Anti-ischaemic Efficacy of a Nitric oxide Synthase Inhibitor and a N-methyl-D-aspartate Receptor Antagonist in Models of Transient and Permanent Focal Cerebral Ischaemia. Br. J. Pharmacol. 1994, 113, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Brennan-Minnella, A.M.; Won, S.J.; Swanson, R.A. NADPH Oxidase-2: Linking Glucose, Acidosis, and Excitotoxicity in Stroke. Antioxid. Redox Signal. 2015, 22, 161–174. [Google Scholar] [CrossRef] [Green Version]
- Gower-Winter, S.D.; Levenson, C.W. Zinc in the Central Nervous System: From Molecules to Behavior. Biofactors 2012, 38, 186–193. [Google Scholar] [CrossRef] [Green Version]
- Maywald, M.; Wessels, I.; Rink, L. Zinc Signals and Immunity. Int. J. Mol. Sci. 2017, 18, 2222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashi, Y.; Aratake, T.; Shimizu, S.; Shimizu, T.; Nakamura, K.; Tsuda, M.; Yawata, T.; Ueba, T.; Saito, M. Influence of Extracellular Zinc on M1 Microglial Activation. Sci. Rep. 2017, 7, 43778. [Google Scholar] [CrossRef] [Green Version]
- Noh, K.M.; Koh, J.Y. Induction and Activation by Zinc of NADPH Oxidase in Cultured Cortical Neurons and Astrocytes. J. Neurosci. 2000, 20, RC111. [Google Scholar] [CrossRef]
- Sensi, S.L.; Paoletti, P.; Bush, A.I.; Sekler, I. Zinc in the Physiology and Pathology of the CNS. Nat. Rev. Neurosci. 2009, 10, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, J.; Fang, L.; Li, X.; Zhao, Y.; Shi, W.; An, L. Neuroprotective Effects of Sulforaphane on Cholinergic Neurons in Mice with Alzheimer’s Disease-like Lesions. Int. J. Mol. Sci. 2014, 15, 14396–14410. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.E.; Suh, Y.S.; Lee, M.S.; Kim, K.Y.; Lee, J.H.; Lee, H.S.; Hong, K.W.; Kim, C.D. Vascular NAD(P)H Oxidase Triggers Delayed Cerebral Vasospasm after Subarachnoid Hemorrhage in Rats. Stroke 2002, 33, 2687–2691. [Google Scholar] [CrossRef] [Green Version]
- Weise, J.; Isenmann, S.; Bahr, M. Increased Expression and Activation of Poly(ADP-ribose) Polymerase (PARP) Contribute to Retinal Ganglion Cell Death Following Rat Optic Nerve Transection. Cell Death Differ. 2001, 8, 801–807. [Google Scholar] [CrossRef] [Green Version]
- Cosi, C.; Suzuki, H.; Milani, D.; Facci, L.; Menegazzi, M.; Vantini, G.; Kanai, Y.; Skaper, S.D. Poly(ADP-ribose) Polymerase: Early Involvement in Glutamate-induced Neurotoxicity in Cultured Cerebellar Granule Cells. J. Neurosci. Res. 1994, 39, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Radons, J.; Heller, B.; Burkle, A.; Hartmann, B.; Rodriguez, M.L.; Kroncke, K.D.; Burkart, V.; Kolb, H. Nitric Oxide Toxicity in Islet Cells Involves Poly(ADP-ribose) Polymerase Activation and Concomitant NAD + Depletion. Biochem. Biophys. Res. Commun. 1994, 199, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Thies, R.L.; Autor, A.P. Reactive Oxygen Injury to Cultured Pulmonary Artery Endothelial Cells: Mediation by Poly(ADP-ribose) Polymerase Activation Causing NAD Depletion and Altered Energy Balance. Arch. Biochem. Biophys. 1991, 286, 353–363. [Google Scholar] [CrossRef]
- Zhang, J.; Dawson, V.L.; Dawson, T.M.; Snyder, S.H. Nitric Oxide Activation of Poly(ADP-ribose) Synthetase in Neurotoxicity. Science 1994, 263, 687–689. [Google Scholar] [CrossRef]
- Kim, Y.H.; Eom, J.W.; Koh, J.Y. Mechanism of Zinc Excitotoxicity: A Focus on AMPK. Front. Neurosci. 2020, 14, 577958. [Google Scholar] [CrossRef]
- Suh, S.W.; Gum, E.T.; Hamby, A.M.; Chan, P.H.; Swanson, R.A. Hypoglycemic Neuronal Death is Triggered by Glucose Reperfusion and Activation of Neuronal NADPH Oxidase. J. Clin. Investig. 2007, 117, 910–918. [Google Scholar] [CrossRef]
- Tammariello, S.P.; Quinn, M.T.; Estus, S. NADPH Oxidase Contributes Directly to Oxidative Stress and Apoptosis in Nerve Growth Factor-deprived Sympathetic Neurons. J. Neurosci. 2000, 20, RC53. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.; Nunez, M.T.; Gonzalez-Billault, C. Contribution of NADPH Oxidase to the Establishment of Hippocampal Neuronal Polarity in Culture. J. Cell Sci. 2015, 128, 2989–2995. [Google Scholar] [CrossRef] [Green Version]
- Belambri, S.A.; Rolas, L.; Raad, H.; Hurtado-Nedelec, M.; Dang, P.M.; El-Benna, J. NADPH Oxidase Activation in Neutrophils: Role of the Phosphorylation of Its Subunits. Eur. J. Clin. Investig. 2018, 48, e12951. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.Y.; Lin, S.; Chen, H.Y.; Chen, Y.P.; Chen, T.Y.; Hsu, K.S.; Wu, H.M. NADPH Oxidases as Potential Pharmacological Targets Against Increased Seizure Susceptibility after Systemic Inflammation. J. Neuroinflammation 2018, 15, 140. [Google Scholar] [CrossRef]
- Inanami, O.; Johnson, J.L.; McAdara, J.K.; Benna, J.E.; Faust, L.R.; Newburger, P.E.; Babior, B.M. Activation of the Leukocyte NADPH Oxidase by Phorbol Ester Requires the Phosphorylation of p47PHOX on Serine 303 or 304. J. Biol. Chem. 1998, 273, 9539–9543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Dinger, B.; Sanders, K.; Hoidal, J.; Obeso, A.; Stensaas, L.; Fidone, S.; Gonzalez, C. Effect of p47phox Gene Deletion on ROS Production and Oxygen Sensing in Mouse Carotid Body Chemoreceptor Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005, 289, L916–L924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jekabsone, A.; Mander, P.K.; Tickler, A.; Sharpe, M.; Brown, G.C. Fibrillar Beta-amyloid Peptide Abeta1-40 Activates Microglial Proliferation via Stimulating TNF-alpha Release and H2O2 Derived from NADPH Oxidase: A Cell Culture Study. J. Neuroinflammation 2006, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moskowitz, M.A.; Lo, E.H.; Iadecola, C. Macrophage Colony Stimulatory Factor and Interferon-gamma Trigger Distinct Mechanisms for Augmentation of Beta-amyloid-induced Microglia-mediated Neurotoxicity. J. Neurochem. 2004, 91, 623–633. [Google Scholar]
- Moskowitz, M.A.; Lo, E.H.; Iadecola, C. The Science of Stroke: Mechanisms in Search of Treatments. Neuron 2010, 67, 181–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.N.; Zheng, Z.; Giffard, R.G.; Yenari, M.A. Significance of Marrow-derived Nicotinamide Adenine Dinucleotide Phosphate Oxidase in Experimental Ischemic Stroke. Ann. Neurol. 2011, 70, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kim, G.S.; Okami, N.; Narasimhan, P.; Chan, P.H. NADPH Oxidase is Involved in Post-ischemic Brain Inflammation. Neurobiol. Dis. 2011, 42, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Liu, J.; Zhou, C.; Ostanin, D.; Grisham, M.B.; Neil Granger, D.; Zhang, J.H. Role of NADPH Oxidase in the Brain Injury of Intracerebral Hemorrhage. J. Neurochem. 2005, 94, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.K.; Lee, J.H.; Kim, K.Y.; Kim, C.D.; Lee, W.S.; Rhim, B.Y.; Hong, K.W. Impairment of Autoregulatory Vasodilation by NAD(P)H Oxidase-dependent Superoxide Generation during Acute Stage of Subarachnoid Hemorrhage in Rat Pial Artery. J. Cereb. Blood Flow Metab. 2002, 22, 869–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D Duan, X.; Wen, Z.; Shen, H.; Shen, M.; Chen, G. Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy. Oxid. Med. Cell Longev. 2016, 2016, 1203285. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Tang, J.; Ostrowski, R.P.; Titova, E.; Monroe, C.; Chen, W.; Lo, W.; Martin, R.; Zhang, J.H. Oxidative Stress after Subarachnoid Hemorrhage in gp91phox Knockout Mice. Can. J. Neurol. Sci. 2007, 34, 356–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, X.N.; Cairns, B.; Cairns, N.; Yenari, M.A. Apocynin Improves Outcome in Experimental Stroke with a Narrow Dose Range. Neuroscience 2008, 154, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.H.; Kim, J.H.; Lee, K.H.; Kim, H.Y.; Kim, Y.S.; Choi, W.S.; Lee, J. Role of Neuronal NADPH Oxidase 1 in the Peri-infarct Regions after Stroke. PLoS ONE 2015, 10, e0116814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, S.W.; Shin, B.S.; Ma, H.; Van Hoecke, M.; Brennan, A.M.; Yenari, M.A.; Swanson, R.A. Glucose and NADPH Oxidase Drive Neuronal Superoxide Formation in Stroke. Ann. Neurol. 2008, 64, 654–663. [Google Scholar] [CrossRef]
- Angeloni, C.; Prata, C.; Dalla Sega, F.V.; Piperno, R.; Hrelia, S. Traumatic Brain Injury and NADPH Oxidase: A Deep Relationship. Oxid. Med. Cell Longev. 2015, 2015, 370312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano, F.; Kolluri, N.S.; Wientjes, F.B.; Card, J.P.; Klann, E. NADPH Oxidase Immunoreactivity in the Mouse Brain. Brain Res. 2003, 988, 193–198. [Google Scholar] [CrossRef]
- Block, M.L. NADPH Oxidase as a Therapeutic Target in Alzheimer’s Disease. BMC Neurosci. 2008, 9, S8. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.Y.; Jang, B.G.; Kim, J.H.; Lee, B.E.; Sohn, M.; Song, H.K.; Suh, S.W. Prevention of Traumatic Brain Injury-induced Neuronal Death by Inhibition of NADPH Oxidase Activation. Brain Res. 2012, 1481, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Puttachary, S.; Sharma, S.; Stark, S.; Thippeswamy, T. Seizure-induced Oxidative Stress in Temporal Lobe Epilepsy. Biomed. Res. Int. 2015, 2015, 745613. [Google Scholar] [CrossRef] [PubMed]
- Pearson-Smith, J.N.; Patel, M. Metabolic Dysfunction and Oxidative Stress in Epilepsy. Int. J. Mol. Sci. 2017, 18, 2365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olowe, R.; Sandouka, S.; Saadi, A.; Shekh-Ahmad, T. Approaches for Reactive Oxygen Species and Oxidative Stress Quantification in Epilepsy. Antioxidants 2020, 9, 990. [Google Scholar] [CrossRef] [PubMed]
- Kovac, S.; Domijan, A.M.; Walker, M.C.; Abramov, A.Y. Seizure Activity Results in Calcium-and Mitochondria-independent ROS Production via NADPH and Xanthine Oxidase Activation. Cell Death Dis. 2014, 5, e1442. [Google Scholar] [CrossRef] [PubMed]
- Tannich, F.; Tlili, A.; Pintard, C.; Chniguir, A.; Eto, B.; Dang, P.M.; Souilem, O.; El-Benna, J. Activation of the Phagocyte NADPH Oxidase/NOX2 and Myeloperoxidase in the Mouse Brain during Pilocarpine-induced Temporal Lobe Epilepsy and Inhibition by Ketamine. Inflammopharmacology 2020, 28, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Tarafdar, A.; Pula, G. The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int. J. Mol. Sci. 2018, 19, 3824. [Google Scholar] [CrossRef] [Green Version]
- Suh, S.W.; Hamby, A.M.; Swanson, R.A. Hypoglycemia, Brain Energetics, and Hypoglycemic Neuronal Death. Glia 2007, 55, 1280–1286. [Google Scholar] [CrossRef]
- Won, S.J.; Yoo, B.H.; Kauppinen, T.M.; Choi, B.Y.; Kim, J.H.; Jang, B.G.; Lee, M.W.; Sohn, M.; Liu, J.; Swanson, R.A.; et al. Recurrent/Moderate Hypoglycemia Induces Hippocampal Dendritic Injury, Microglial Activation, and Cognitive Impairment in Diabetic Rats. J. Neuroinflammation 2012, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Kleinschnitz, C.; Grund, H.; Wingler, K.; Armitage, M.E.; Jones, E.; Mittal, M.; Barit, D.; Schwarz, T.; Geis, C.; Kraft, P.; et al. Post-stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLoS Biol. 2010, 8, e1000479. [Google Scholar] [CrossRef] [Green Version]
- Imayoshi, I.; Sakamoto, M.; Ohtsuka, T.; Kageyama, R. Continuous Neurogenesis in the Adult Brain. Dev. Growth Differ. 2009, 51, 379–386. [Google Scholar] [CrossRef]
- Ge, S.; Sailor, K.A.; Ming, G.L.; Song, H. Synaptic Integration and Plasticity of New Neurons in the Adult Hippocampus. J. Physiol. 2008, 586, 3759–3765. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.S.; Soumier, A.; Brewer, M.; Pickel, J.; Cameron, H.A. Adult Hippocampal Neurogenesis Buffers Stress Responses and Depressive Behaviour. Nature 2011, 476, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Ko, D.G.; Hong, D.K.; Lim, M.S.; Choi, B.Y.; Suh, S.W. Role of Excitatory Amino Acid Carrier 1 (EAAC1) in Neuronal Death and Neurogenesis After Ischemic Stroke. Int. J. Mol. Sci. 2020, 21, 5676. [Google Scholar] [CrossRef] [PubMed]
- Ming, G.L.; Song, H. Adult Neurogenesis in the Mammalian Brain: Significant Answers and Aignificant Questions. Neuron 2011, 70, 687–702. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.; Urban, N.; Achimastou, A.; Ito, A.; Simic, M.; Ullom, K.; Martynoga, B.; Lebel, M.; Goritz, C.; Frisen, J.; et al. A Transcriptional Mechanism Integrating Inputs from Extracellular Signals to Activate Hippocampal Stem Cells. Neuron 2014, 83, 1085–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lledo, P.M.; Alonso, M.; Grubb, M.S. Adult Neurogenesis and Functional Plasticity in Neuronal Circuits. Nat. Rev. Neurosci. 2006, 7, 179–193. [Google Scholar] [CrossRef]
- Zhang, J.; Jiao, J. Molecular Biomarkers for Embryonic and Adult Neural Stem Cell and Neurogenesis. Biomed. Res. Int. 2015, 2015, 727542. [Google Scholar] [CrossRef] [Green Version]
- Dayer, A.G.; Cleaver, K.M.; Abouantoun, T.; Cameron, H.A. New GABAergic Interneurons in the Adult Neocortex and Striatum are Generated from Different Precursors. J. Cell Biol. 2005, 168, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.Y.; Won, S.J.; Kim, J.H.; Sohn, M.; Song, H.K.; Chung, T.N.; Kim, T.Y.; Suh, S.W. EAAC1 Gene Deletion Reduces Adult Hippocampal Neurogenesis after Transient Cerebral Ischemia. Sci. Rep. 2018, 8, 6903. [Google Scholar] [CrossRef]
- Tobin, M.K.; Bonds, J.A.; Minshall, R.D.; Pelligrino, D.A.; Testai, F.D.; Lazarov, O. Neurogenesis and Inflammation after Ischemic Stroke: What is Known and Where We Go from Here. J. Cereb. Blood Flow Metab. 2014, 34, 1573–1584. [Google Scholar] [CrossRef] [Green Version]
- Goritz, C.; Frisen, J. Neural Stem Cells and Neurogenesis in the Adult. Cell Stem Cell 2012, 10, 657–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindvall, O.; Kokaia, Z. Neurogenesis Following Stroke Affecting the Adult Brain. Cold Spring Harb. Perspect. Biol. 2015, 7, a019034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salman, H.; Ghosh, P.; Kernie, S.G. Subventricular Zone Neural Stem Cells Remodel the Brain Following Traumatic Injury in Adult Mice. J. Neurotrauma 2004, 21, 283–292. [Google Scholar] [CrossRef]
- Sun, D. The Potential of Endogenous Neurogenesis for Brain Repair and Regeneration Following Traumatic Brain Injury. Neural Regen. Res. 2014, 9, 688–692. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Goings, G.E.; Soderstrom, K.E.; Szele, F.G.; Kozlowski, D.A. Cellular Proliferation and Migration Following a Controlled Cortical Impact in the Mouse. Brain Res. 2005, 1053, 38–53. [Google Scholar] [CrossRef]
- Sun, D.; McGinn, M.J.; Zhou, Z.; Harvey, H.B.; Bullock, M.R.; Colello, R.J. Anatomical Integration of Newly Generated Dentate Granule Neurons Following Traumatic Brain Injury in Adult Rats and Its Association to Cognitive Recovery. Exp. Neurol. 2007, 204, 264–272. [Google Scholar] [CrossRef]
- Yu, T.S.; Washington, P.M.; Kernie, S.G. Injury-Induced Neurogenesis: Mechanisms and Relevance. Neuroscientist 2016, 22, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Cao, L.; Chen, J.; Song, S.; Lee, I.H.; Quijano, C.; Liu, H.; Keyvanfar, K.; Chen, H.; Cao, L.Y.; et al. Bmi1 Regulates Mitochondrial Function and the DNA Damage Response Pathway. Nature 2009, 459, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Garcia, D.; Wood, C.D.; Castro-Obregon, S.; Covarrubias, L. Reactive Oxygen Species: A Radical Role in Development? Free Radic. Biol. Med. 2010, 49, 130–143. [Google Scholar] [CrossRef]
- Xie, F.; Liu, H.; Liu, Y. Adult Neurogenesis Following Ischemic Stroke and Implications for Cell-Based Therapeutic Approaches. World Neurosurg. 2020, 138, 474–480. [Google Scholar] [CrossRef]
- Kuruba, R.; Hattiangady, B.; Shetty, A.K. Hippocampal Neurogenesis and Neural Stem Cells in Temporal Lobe Epilepsy. Epilepsy Behav. 2009, 14, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parent, J.M.; Lowenstein, D.H. Seizure-induced Neurogenesis: Are More New Neurons Good for an Adult Brain? Prog. Brain Res. 2002, 135, 121–131. [Google Scholar] [PubMed]
- Gao, X.; Chen, J. Moderate Traumatic Brain Injury Promotes Neural Precursor Proliferation Without Increasing Neurogenesis in the Adult Hippocampus. Exp. Neurol. 2013, 239, 38–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Choi, B.Y.; Kim, J.H.; Kho, A.R.; Sohn, M.; Song, H.K.; Choi, H.C.; Suh, S.W. Late Treatment with Choline Alfoscerate (l-alpha glycerylphosphorylcholine, alpha-GPC) Increases Hippocampal Neurogenesis and Provides Protection Against Seizure-induced Neuronal Death and Cognitive Impairment. Brain Res. 2017, 1654, 66–76. [Google Scholar] [CrossRef]
- Wang, J.; Ma, M.W.; Dhandapani, K.M.; Brann, D.W. NADPH Oxidase 2 Deletion Enhances Neurogenesis Following Traumatic Brain Injury. Free Radic. Biol. Med. 2018, 123, 62–71. [Google Scholar] [CrossRef]
- Chui, A.; Zhang, Q.; Dai, Q.; Shi, S.H. Oxidative Stress Regulates Progenitor Behavior and Cortical Neurogenesis. Development 2020, 147. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Choi, E.; Cha, M.J.; Hwang, K.C. Cell Adhesion and Long-term Survival of Transplanted Mesenchymal Stem Cells: A Prerequisite for Cell Therapy. Oxid. Med. Cell Longev. 2015, 2015, 632902. [Google Scholar] [CrossRef] [Green Version]
- Bigarella, C.L.; Liang, R.; Ghaffari, S. Stem Cells and the Impact of ROS Signaling. Development 2014, 141, 4206–4218. [Google Scholar] [CrossRef] [Green Version]
- Bae, Y.S.; Oh, H.; Rhee, S.G.; Yoo, Y.D. Regulation of Reactive Oxygen Species Generation in Cell Signaling. Mol. Cells 2011, 32, 491–509. [Google Scholar] [CrossRef] [Green Version]
- Fiskum, G.; Rosenthal, R.E.; Vereczki, V.; Martin, E.; Hoffman, G.E.; Chinopoulos, C.; Kowaltowski, A. Protection Against Ischemic Brain Injury by Inhibition of Mitochondrial Oxidative Stress. J. Bioenerg. Biomembr. 2004, 36, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Choi, B.Y.; Kho, A.R.; Jeong, J.H.; Hong, D.K.; Kang, D.H.; Kang, B.S.; Song, H.K.; Choi, H.C.; Suh, S.W. Inhibition of NADPH Oxidase Activation by Apocynin Rescues Seizure-Induced Reduction of Adult Hippocampal Neurogenesis. Int. J. Mol. Sci. 2018, 19, 3087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, J.R.; Hong, C.J.; Kim, J.Y.; Kim, E.K.; Sun, W.; Yu, S.W. Control of Adult Neurogenesis by Programmed Cell Death in the Mammalian Brain. Mol. Brain 2016, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disorder | Animal Model | Genetic Manipulation | Treatment | Result | Reference |
---|---|---|---|---|---|
Stroke | ↑ ROS,NF-kB and VEGF | [20,48] | |||
p47 -/- | Apocynin | ↓ Neuron death and superoxide production | [57] | ||
AAV, MCAO | NOX1 -/- | ↓ Peri-infarct, neuron death and activation of astrocytes | [56] | ||
NOX4 -/- | ↓ Ischaemic brain injury | [70] | |||
TBI | Apocynin | ↓ p47 phox translocation and neuron death | [61] | ||
Epilepsy | pilocarpine | Apocynin | ↓ p47 phox translocation, neuron death and ROS production | [16] | |
Hypoglycemia | Insulin | ↑ Zinc accumulation, ROS production and PARP1 activation | [8,68] | ||
p47 -/- | ↓ ROS production and neuron death | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Lee, M.; Ko, D.G.; Choi, B.Y.; Suh, S.W. The Role of NADPH Oxidase in Neuronal Death and Neurogenesis after Acute Neurological Disorders. Antioxidants 2021, 10, 739. https://doi.org/10.3390/antiox10050739
Lee SH, Lee M, Ko DG, Choi BY, Suh SW. The Role of NADPH Oxidase in Neuronal Death and Neurogenesis after Acute Neurological Disorders. Antioxidants. 2021; 10(5):739. https://doi.org/10.3390/antiox10050739
Chicago/Turabian StyleLee, Song Hee, Minwoo Lee, Dong Gyun Ko, Bo Young Choi, and Sang Won Suh. 2021. "The Role of NADPH Oxidase in Neuronal Death and Neurogenesis after Acute Neurological Disorders" Antioxidants 10, no. 5: 739. https://doi.org/10.3390/antiox10050739
APA StyleLee, S. H., Lee, M., Ko, D. G., Choi, B. Y., & Suh, S. W. (2021). The Role of NADPH Oxidase in Neuronal Death and Neurogenesis after Acute Neurological Disorders. Antioxidants, 10(5), 739. https://doi.org/10.3390/antiox10050739