Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes
Abstract
:1. Introduction
2. Influence of Emerging Technologies on EVOO Production (Yield and Quality)
2.1. Pulsed Electric Fields
2.2. High Pressure Processing
2.3. Ultrasound Technology
High-Power Ultrasound
2.4. Microwave Heating
3. Consumer Acceptance of Olive Oil Processed by Emerging Technologies
3.1. Pulsed Electric Fields
3.2. High Pressure Processing
3.3. Ultrasound Technology
3.4. Microwave Heating
4. Emerging Food Technologies for Increasing the Sustainability of the Olive Oil Process
5. Conclusions
Funding
Conflicts of Interest
References
- Polari, J.J.; Garcí-Aguirre, D.; Olmo-García, L.; Carrasco-Pancorbo, A.; Wang, S.C. Impact of industrial hammer mill rotor speed on extraction efficiency and quality of extra virgin olive oil. Food Chem. 2018, 242, 362–368. [Google Scholar] [CrossRef]
- López-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Tresserra-Rimbau, A.; Quifer-Rada, P.; Jiménez, B.; Pérez, M.; Vallverdú-Queralt, A. Effects of Organic and Conventional Growing Systems on the Phenolic Profile of Extra-Virgin Olive Oil. Molecules 2019, 24, 1986. [Google Scholar] [CrossRef] [Green Version]
- López-Yerena, A.; Ninot, A.; Lozano-Castellón, J.; Escribano-Ferrer, E.; Romero-Aroca, A.J.; Belaj, A.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Conservation of Native Wild Ivory-White Olives from the MEDES Islands Natural Reserve to Maintain Virgin Olive Oil Diversity. Antioxidants 2020, 9, 1009. [Google Scholar] [CrossRef]
- Vallverdu-Queralt, A.; Regueiro, J.; Rinaldi de Alvarenga, J.F.; Torrado, X.; Lamuela-Raventos, R.M. Home cooking and phenolics: Effect of Thermal Treatment and Addition of Extra Virgin Olive Oil on the Phenolic Profile of Tomato Sauces. J. Agr. Food Chem. 2014, 62, 3314–3320. [Google Scholar] [CrossRef]
- Lozano-Castellón, J.; López-Yerena, A.; De Alvarenga, J.F.R.; Del Castillo-Alba, J.R.; Vallverdú-Queralt, A.; Escribano-Ferrer, E.; Lamuela-Raventós, R.M. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Crit. Rev. Food Sci. Nutr. 2020, 60, 2532–2548. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.-W. Recent Advances in the Use of High Pressure as an Effective Processing Technique in the Food Industry. Food Bioprocess Technol. 2008, 1, 2–34. [Google Scholar] [CrossRef]
- Butz, P.; Tauscher, B. Emerging technologies: Chemical aspects. Food Res. Int. 2002, 35, 279–284. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Bendini, A.; Barbieri, S.; Di Lecce, G.; Martin-Belloso, O.; Toschi, T.G. Volatile Profile and Sensory Evaluation of Tomato Juices Treated with Pulsed Electric Fields. J. Agric. Food Chem. 2013, 61, 1977–1984. [Google Scholar] [CrossRef]
- Ignat, A.; Manzocco, L.; Brunton, N.P.; Nicoli, M.C.; Lyng, J.G. The effect of pulsed electric field pre-treatments prior to deep-fat frying on quality aspects of potato fries. Innov. Food Sci. Emerg. Technol. 2015, 29, 65–69. [Google Scholar] [CrossRef]
- Arroyo, C.; Lascorz, D.; O’Dowd, L.; Noci, F.; Arimi, J.; Lyng, J.G. Effect of Pulsed Electric Field treatments at various stages during conditioning on quality attributes of beef longissimus thoracis et lumborum muscle. Meat Sci. 2015, 99, 52–59. [Google Scholar] [CrossRef]
- González-Casado, S.; Martín-Belloso, O.; Elez-Martínez, P.; Soliva-Fortuny, R. Enhancing the carotenoid content of tomato fruit with pulsed electric field treatments: Effects on respiratory activity and quality attributes. Postharvest Biol. Technol. 2018, 137, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Ricci, A.; Parpinello, G.P.; Versari, A. Recent Advances and Applications of Pulsed Electric Fields (PEF) to Improve Polyphenol Extraction and Color Release during Red Winemaking. Beverages 2018, 4, 18. [Google Scholar] [CrossRef] [Green Version]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Selvaggini, R.; Sordini, B.; Lorefice, A.; Daidone, L.; Pagano, M.; Tomasone, R.; Servili, M. Extra-Virgin Olive Oil Extracted Using Pulsed Electric Field Technology: Cultivar Impact on Oil Yield and Quality. Front. Nutr. 2019, 6, 134. [Google Scholar] [CrossRef] [Green Version]
- Aydar, A.Y. Emerging Extraction Technologies in Olive Oil Production. In Technological Innovation in the Olive Oil Production Chain; IntechOpen: London, UK, 2019. [Google Scholar]
- Lyndhurst, B. An Evidence Review of Public Attitudes to Emerging Food Technologies; Social Science Research Unit, Food Standards Agency, Crown: UK, 2009; pp. 1–89. [Google Scholar]
- Kowalkowska, J.; Lonnie, M.; Wadolowska, L.; Czarnocinska, J.; Jezewska-Zychowicz, M.; Babicz-Zielińska, E. Health- and Taste-Related Attitudes Associated with Dietary Patterns in a Representative Sample of Polish Girls and Young Women: A Cross-Sectional Study (GEBaHealth Project). Nutrients 2018, 10, 254. [Google Scholar] [CrossRef] [Green Version]
- Vassallo, M.; Saba, A.; Arvola, A.; Dean, M.; Messina, F.; Winkelmann, M.; Claupein, E.; Lähteenmäki, L.; Shepherd, R. Willingness to use functional breads. Applying the Health Belief Model across four European countries. Appetite 2009, 52, 452–460. [Google Scholar] [CrossRef]
- Corkindale, D. Technology too risky for major players. Food Technol. Ingredients 2006, 31, 56–57. [Google Scholar]
- Knorr, D.; Froehling, A.; Jaeger, H.; Reineke, K.; Schlueter, O.; Schoessler, K. Emerging Technologies in Food Processing. Annu. Rev. Food Sci. Technol. 2011, 2, 203–235. [Google Scholar] [CrossRef] [Green Version]
- Souilem, S.; El-Abbassi, A.; Kiai, H.; Hafidi, A.; Sayadi, S.; Galanakis, C.M. Olive Oil Production Sector: Environmental Effects and Sustainability Challenges. In Olive Mill Waste; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 1–28. ISBN 9780128053140. [Google Scholar]
- Khouryieh, H.A. Novel and emerging technologies used by the U.S. food processing industry. Innov. Food Sci. Emerg. Technol. 2021, 67, 102559. [Google Scholar] [CrossRef]
- Abenoza, M.; Benito, M.; Saldaña, G.; Álvarez, I.; Raso, J.; Sánchez-Gimeno, A.C. Effects of Pulsed Electric Field on Yield Extraction and Quality of Olive Oil. Food Bioprocess Technol. 2013, 6, 1367–1373. [Google Scholar] [CrossRef]
- Andreou, V.; Dimopoulos, G.; Alexandrakis, Z.; Katsaros, G.; Oikonomou, D.; Toepfl, S.; Heinz, V.; Taoukis, P. Shelf-life evaluation of virgin olive oil extracted from olives subjected to nonthermal pretreatments for yield increase. Innov. Food Sci. Emerg. Technol. 2017, 40, 52–57. [Google Scholar] [CrossRef]
- Puértolas, E.; Martínez de Marañón, I. Olive oil pilot-production assisted by pulsed electric field: Impact on extraction yield, chemical parameters and sensory properties. Food Chem. 2015, 167, 497–502. [Google Scholar] [CrossRef]
- Tamborrino, A.; Urbani, S.; Servili, M.; Romaniello, R.; Perone, C.; Leone, A. Pulsed Electric Fields for the Treatment of Olive Pastes in the Oil Extraction Process. Appl. Sci. 2019, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Romaniello, R.; Tamborrino, A.; Leone, A. Use of ultrasound and pulsed electric fields technologies applied to the olive oil extraction process. Chem. Eng. Trans. 2019, 75, 13–18. [Google Scholar]
- Guderjan, M.; Töpfl, S.; Angersbach, A.; Knorr, D. Impact of pulsed electric field treatment on the recovery and quality of plant oils. J. Food Eng. 2005, 67, 281–287. [Google Scholar] [CrossRef]
- Guerrini, L.; Zanoni, B.; Breschi, C.; Angeloni, G.; Masella, P.; Calamai, L.; Parenti, A. Understanding Olive Oil Stability Using Filtration and High Hydrostatic Pressure. Molecules 2020, 25, 420. [Google Scholar] [CrossRef] [Green Version]
- Amarillo, M.; Pérez, N.; Blasina, F.; Gambaro, A.; Leone, A.; Romaniello, R.; Xu, X.-Q.; Juliano, P. Impact of sound attenuation on ultrasound-driven yield improvements during olive oil extraction. Ultrason. Sonochem. 2019, 53, 142–151. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Moramarco, V.; Paduano, A.; Sacchi, R.; Di Palmo, T.; Crupi, P.; Corbo, F.; Pesce, V.; Distaso, E.; Tamburrano, P.; et al. Engineering design and prototype development of a full scale ultrasound system for virgin olive oil by means of numerical and experimental analysis. Ultrason. Sonochem. 2017, 37, 169–181. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Durante, V.; La Notte, D.; Punzi, R.; Gambacorta, G. Ultrasound-assisted extraction of virgin olive oil to improve the process efficiency. Eur. J. Lipid Sci. Technol. 2013, 115, 1062–1069. [Google Scholar] [CrossRef]
- Yahyaoui, A.; Rigane, G.; Mnif, S.; Ben Salem, R.; Acar, A.; Arslan, D. Ultrasound Technology Parameters: Effects on Phenolics in Olive Paste and Oil in Relation to Enzymatic Activity. Eur. J. Lipid Sci. Technol. 2019, 121, 1800295. [Google Scholar] [CrossRef]
- Clodoveo, M.L.; Hbaieb, R.H. Beyond the traditional virgin olive oil extraction systems: Searching innovative and sustainable plant engineering solutions. Food Res. Int. 2013, 54, 1926–1933. [Google Scholar] [CrossRef]
- Iqdiam, B.M.; Mostafa, H.; Goodrich-Schneider, R.; Baker, G.L.; Welt, B.; Marshall, M.R. High Power Ultrasound: Impact on Olive Paste Temperature, Malaxation Time, Extraction Efficiency, and Characteristics of Extra Virgin Olive Oil. Food Bioprocess Technol. 2018, 11, 634–644. [Google Scholar] [CrossRef]
- Taticchi, A.; Selvaggini, R.; Esposto, S.; Sordini, B.; Veneziani, G.; Servili, M. Physicochemical characterization of virgin olive oil obtained using an ultrasound-assisted extraction at an industrial scale: Influence of olive maturity index and malaxation time. Food Chem. 2019, 289, 7–15. [Google Scholar] [CrossRef]
- Iqdiam, B.M.; Abuagela, M.O.; Marshall, S.M.; Yagiz, Y.; Goodrich-Schneider, R.; Baker, G.L.; Welt, B.A.; Marshall, M.R. Combining high power ultrasound pre-treatment with malaxation oxygen control to improve quantity and quality of extra virgin olive oil. J. Food Eng. 2019, 244, 1–10. [Google Scholar] [CrossRef]
- Rigane, G.; Yahyaoui, A.; Acar, A.; Mnif, S.; Ben Salem, R.; Arslan, D. Change in some quality parameters and oxidative stability of olive oils with regard to ultrasound pretreatment, depitting and water addition. Biotechnol. Rep. 2020, 26, e00442. [Google Scholar] [CrossRef] [PubMed]
- Clodoveo, M.L.; Durante, V.; La Notte, D. Working towards the development of innovative ultrasound equipment for the extraction of virgin olive oil. Ultrason. Sonochem. 2013, 20, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Juliano, P.; Bainczyk, F.; Swiergon, P.; Supriyatna, M.I.M.; Guillaume, C.; Ravetti, L.; Canamasas, P.; Cravotto, G.; Xu, X.-Q. Extraction of olive oil assisted by high-frequency ultrasound standing waves. Ultrason. Sonochem. 2017, 38, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.; Beltrán, G.; Uceda, M. High-power ultrasound in olive paste pretreatment. Effect on process yield and virgin olive oil characteristics. Ultrason. Sonochem. 2007, 14, 725–731. [Google Scholar] [CrossRef]
- Bejaoui, M.A.; Sánchez-Ortiz, A.; Aguilera, M.P.; Ruiz-Moreno, M.J.; Sánchez, S.; Jiménez, A.; Beltrán, G. High power ultrasound frequency for olive paste conditioning: Effect on the virgin olive oil bioactive compounds and sensorial characteristics. Innov. Food Sci. Emerg. Technol. 2018, 47, 136–145. [Google Scholar] [CrossRef]
- Gila, A.; Sánchez-Ortiz, A.; Jiménez, A.; Beltrán, G. The ultrasound application does not affect to the thermal properties and chemical composition of virgin olive oils. Ultrason. Sonochem. 2021, 70, 105320. [Google Scholar] [CrossRef]
- Leone, A.; Tamborrino, A.; Romaniello, R.; Zagaria, R.; Sabella, E. Specification and implementation of a continuous microwave-assisted system for paste malaxation in an olive oil extraction plant. Biosyst. Eng. 2014, 125, 24–35. [Google Scholar] [CrossRef]
- Tamborrino, A.; Romaniello, R.; Zagaria, R.; Leone, A. Microwave-assisted treatment for continuous olive paste conditioning: Impact on olive oil quality and yield. Biosyst. Eng. 2014, 127, 92–102. [Google Scholar] [CrossRef]
- Leone, A.; Tamborrino, A.; Zagaria, R.; Sabella, E.; Romaniello, R. Plant innovation in the olive oil extraction process: A comparison of efficiency and energy consumption between microwave treatment and traditional malaxation of olive pastes. J. Food Eng. 2015, 146, 44–52. [Google Scholar] [CrossRef]
- Leone, A.; Romaniello, R.; Tamborrino, A.; Xu, X.-Q.; Juliano, P. Microwave and megasonics combined technology for a continuous olive oil process with enhanced extractability. Innov. Food Sci. Emerg. Technol. 2017, 42, 56–63. [Google Scholar] [CrossRef]
- Leone, A.; Romaniello, R.; Tamborrino, A.; Urbani, S.; Servili, M.; Amarillo, M.; Grompone, M.A.; Gambaro, A.; Juliano, P. Application of Microwaves and Megasound to Olive Paste in an Industrial Olive Oil Extraction Plant: Impact on Virgin Olive Oil Quality and Composition. Eur. J. Lipid Sci. Technol. 2018, 120, 1700261. [Google Scholar] [CrossRef]
- Leone, A.; Romaniello, R.; Juliano, P.; Tamborrino, A. Use of a mixing-coil heat exchanger combined with microwave and ultrasound technology in an olive oil extraction process. Innov. Food Sci. Emerg. Technol. 2018, 50, 66–72. [Google Scholar] [CrossRef]
- Tamborrino, A.; Romaniello, R.; Caponio, F.; Squeo, G.; Leone, A. Combined industrial olive oil extraction plant using ultrasounds, microwave, and heat exchange: Impact on olive oil quality and yield. J. Food Eng. 2019, 245, 124–130. [Google Scholar] [CrossRef]
- Servili, M.; Veneziani, G.; Taticchi, A.; Romaniello, R.; Tamborrino, A.; Leone, A. Low-frequency, high-power ultrasound treatment at different pressures for olive paste: Effects on olive oil yield and quality. Ultrason. Sonochem. 2019, 59, 104747. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Lamuela-Raventós, R.M.; Elez-Martínez, P.; Martín-Belloso, O. Changes in the Polyphenol Profile of Tomato Juices Processed by Pulsed Electric Fields. J. Agric. Food Chem. 2012, 60, 9667–9672. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Oms-Oliu, G.; Odriozola-Serrano, I.; Lamuela-Raventós, R.M.; Martín-Belloso, O.; Elez-Martínez, P. Metabolite profiling of phenolic and carotenoid contents in tomatoes after moderate-intensity pulsed electric field treatments. Food Chem. 2013, 136, 199–205. [Google Scholar] [CrossRef]
- De Vito, F.; Ferrari, G.; Lebovka, N.I.; Shynkaryk, N.V.; Vorobiev, E. Pulse Duration and Efficiency of Soft Cellular Tissue Disintegration by Pulsed Electric Fields. Food Bioprocess Technol. 2008, 1, 307–313. [Google Scholar] [CrossRef]
- Avila, J.A.D.; Medrano, A.W.; Pardo, C.A.R.; González, E.M.; Aguilar, G.A.G. Use of nonthermal technologies in the production of functional beverages from vegetable ingredients to preserve heat-labile phytochemicals. J. Food Process. Preserv. 2018, 42, e13506. [Google Scholar] [CrossRef]
- Teissié, J.; Eynard, N.; Vernhes, M.C.; Bénichou, A.; Ganeva, V.; Galutzov, B.; Cabanes, P.A. Recent biotechnological developments of electropulsation. A prospective review. Bioelectrochemistry 2002, 55, 107–112. [Google Scholar] [CrossRef]
- Kalua, C.M.; Allen, M.S.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D.; Robards, K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 2007, 100, 273–286. [Google Scholar] [CrossRef]
- Francisco, V.; Ruiz-Fernández, C.; Lahera, V.; Lago, F.; Pino, J.; Skaltsounis, A.-L.; González-Gay, M.A.; Mobasheri, A.; Gómez, R.; Scotece, M.; et al. Natural Molecules for Healthy Lifestyles: Oleocanthal from Extra Virgin Olive Oil. J. Agric. Food Chem. 2019, 67, 3845–3853. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, T.; Gao, L.; Zhao, W.; Wang, P. Preparation of Azithromycin Nanosuspensions by High Pressure Homogenization and its Physicochemical Characteristics Studies. Drug Dev. Ind. Pharm. 2007, 33, 569–575. [Google Scholar] [CrossRef]
- Ahmed, J.; Ramaswamy, H.S. Viscoelastic properties of sweet potato puree infant food. J. Food Eng. 2006, 74, 376–382. [Google Scholar] [CrossRef]
- Gallo, M.; Ferrara, L.; Naviglio, D. Application of Ultrasound in Food Science and Technology: A Perspective. Foods 2018, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Ashokkumar, M. Applications of ultrasound in food and bioprocessing. Ultrason. Sonochem. 2015, 25, 17–23. [Google Scholar] [CrossRef]
- Femenia Marroig, A.; Adrover Obrador, S.; Simal Florindo, S.; RosellóMatas, M.C. Method for Preventing Total or Partial Crystallization of Olive Oil during Storage at Low Temperature. Patent No. WO/2012/160226, 29 November 2012. [Google Scholar]
- Migliorini, M.; Mugelli, M.; Cherubini, C.; Viti, P.; Zanoni, B. Influence of O2 on the quality of virgin olive oil during malaxation. J. Sci. Food Agric. 2006, 86, 2140–2146. [Google Scholar] [CrossRef]
- Sumnu, G.; Sahin, S. Microwave Heating. In Thermal Food Processing: New Technologies and Quality Issues; Sun, D.-W., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 555–582. ISBN 9781138199637. [Google Scholar]
- Tang, J. Unlocking Potentials of Microwaves for Food Safety and Quality. J. Food Sci. 2015, 80, E1776–E1793. [Google Scholar] [CrossRef] [Green Version]
- Caponio, F.; Leone, A.; Squeo, G.; Tamborrino, A.; Summo, C. Innovative technologies in virgin olive oil extraction process: Influence on volatile compounds and organoleptic characteristics. J. Sci. Food Agric. 2019, 99, 5594–5600. [Google Scholar] [CrossRef]
- Ares, G.; Gámbaro, A. Influence of gender, age and motives underlying food choice on perceived healthiness and willingness to try functional foods. Appetite 2007, 49, 148–158. [Google Scholar] [CrossRef]
- Bruhn, C.M. Enhancing consumer acceptance of new processing technologies. Innov. Food Sci. Emerg. Technol. 2007, 8, 555–558. [Google Scholar] [CrossRef]
- Olsen, N.V.; Grunert, K.G.; Sonne, A.-M. Consumer acceptance of high-pressure processing and pulsed-electric field: A review. Trends Food Sci. Technol. 2010, 21, 464–472. [Google Scholar] [CrossRef]
- Soliva-Fortuny, R.; Balasa, A.; Knorr, D.; Martín-Belloso, O. Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends Food Sci. Technol. 2009, 20, 544–556. [Google Scholar] [CrossRef]
- Frewer, L.J.; Bergmann, K.; Brennan, M.; Lion, R.; Meertens, R.; Rowe, G.; Siegrist, M.; Vereijken, C. Consumer response to novel agri-food technologies: Implications for predicting consumer acceptance of emerging food technologies. Trends Food Sci. Technol. 2011, 22, 442–456. [Google Scholar] [CrossRef]
- Cardello, A.V.; Schutz, H.G.; Lesher, L.L. Consumer perceptions of foods processed by innovative and emerging technologies: A conjoint analytic study. Innov. Food Sci. Emerg. Technol. 2007, 8, 73–83. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Sonne, A.-M.; Grunert, K.G.; Banati, D.; Pollák-Tóth, A.; Lakner, Z.; Olsen, N.V.; Žontar, T.P.; Peterman, M. Consumer perception of the use of high-pressure processing and pulsed electric field technologies in food production. Appetite 2009, 52, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, H.; Knorr, D.; Szabó, E.; Hámori, J.; Bánáti, D. Impact of terminology on consumer acceptance of emerging technologies through the example of PEF technology. Innov. Food Sci. Emerg. Technol. 2015, 29, 87–93. [Google Scholar] [CrossRef]
- Mireaux, M.; Cox, D.N.; Cotton, A.; Evans, G. An adaptation of repertory grid methodology to evaluate Australian consumers’ perceptions of food products produced by novel technologies. Food Qual. Prefer. 2007, 18, 834–848. [Google Scholar] [CrossRef]
- Bruhn, C.M. Consumer Acceptance of High-Pressure Processed Products: American Perspective. In High Pressure Processing of Food; Balasubramaniam, V.M., Barbosa-Cánovas, G.V., Lelieveld, H.L.M., Eds.; Springer: New York, NY, USA, 2016; pp. 733–742. [Google Scholar]
- José, J.F.B.S.; Vanetti, M.C.D. Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control. 2012, 24, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Almeida, B.; Valli, E.; Bendini, A.; Toschi, T.G. Semi-industrial ultrasound-assisted virgin olive oil extraction: Impact on quality. Eur. J. Lipid Sci. Technol. 2017, 119, 1600230. [Google Scholar] [CrossRef]
- Cavallo, C.; Carlucci, D.; De Gennaro, B.; Carfora, V.; Caso, D.; Cicia, G.; Clodoveo, M.L.; Del Giudice, T.; Di Monaco, R.; Roselli, L.; et al. Innovation in traditional foods: A laboratory experiment on consumers’ acceptance of extra-virgin olive oil extracted through ultrasounds. NJAS Wagening. J. Life Sci. 2020, 92, 100336. [Google Scholar] [CrossRef]
- Roselli, L.; Cicia, G.; Del Giudice, T.; Cavallo, C.; Vecchio, R.; Carfora, V.; Caso, D.; Sardaro, R.; Carlucci, D.; De Gennaro, B. Testing consumers’ acceptance for an extra-virgin olive oil with a naturally increased content in polyphenols: The case of ultrasounds extraction. J. Funct. Foods 2020, 69, 103940. [Google Scholar] [CrossRef]
- de Barcellos, M.D.; Kügler, J.O.; Grunert, K.G.; Van Wezemael, L.; Pérez-Cueto, F.J.A.; Ueland, Ø.; Verbeke, W. European consumers’ acceptance of beef processing technologies: A focus group study. Innov. Food Sci. Emerg. Technol. 2010, 11, 721–732. [Google Scholar] [CrossRef]
- Jermann, C.; Koutchma, T.; Margas, E.; Leadley, C.; Ros-Polski, V. Mapping trends in novel and emerging food processing technologies around the world. Innov. Food Sci. Emerg. Technol. 2015, 31, 14–27. [Google Scholar] [CrossRef]
- Ferreira, V.J.; Arnal, Á.J.; Royo, P.; García-Armingol, T.; López-Sabirón, A.M.; Ferreira, G. Energy and resource efficiency of electroporation-assisted extraction as an emerging technology towards a sustainable bio-economy in the agri-food sector. J. Clean. Prod. 2019, 233, 1123–1132. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Donsì, F.; Paniwnyk, L.; Djekic, I. Impact of Novel Nonthermal Processing on Food Quality: Sustainability, Modelling, and Negative Aspects. J. Food Qual. 2019, 2019, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Abu Tayeh, H.N.; Azaizeh, H.; Gerchman, Y. Circular economy in olive oil production—Olive mill solid waste to ethanol and heavy metal sorbent using microwave pretreatment. Waste Manag. 2020, 113, 321–328. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Brunton, N.P.; Rai, D.K. Recent Advances on Application of Ultrasound and Pulsed Electric Field Technologies in the Extraction of Bioactives from Agro-Industrial By-products. Food Bioprocess Technol. 2018, 11, 223–241. [Google Scholar] [CrossRef]
- Andreou, V.; Psarianos, M.; Dimopoulos, G.; Tsimogiannis, D.; Taoukis, P. Effect of pulsed electric fields and high pressure on improved recovery of high-added-value compounds from olive pomace. J. Food Sci. 2020, 85, 1500–1512. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Loureiro, L.M.E.F.; Sá, L.C.R.; Silva, H.F.C. Evaluation of the potential for energy recovery from olive oil industry waste: Thermochemical conversion technologies as fuel improvement methods. Fuel 2020, 279, 118536. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Loureiro, L.M.E.F.; Sá, L.C.R.; Silva, H.F.C. Thermochemical Conversion of Olive Oil Industry Waste: Circular Economy through Energy Recovery. Recycling 2020, 5, 12. [Google Scholar] [CrossRef]
- Kostas, E.T.; Durán-Jiménez, G.; Shepherd, B.J.; Meredith, W.; Stevens, L.A.; Williams, O.S.A.; Lye, G.J.; Robinson, J.P. Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chem. Eng. J. 2020, 387, 123404. [Google Scholar] [CrossRef]
- Al-Bsoul, A.; Al-Shannag, M.; Tawalbeh, M.; Al-Taani, A.A.; Lafi, W.K.; Al-Othman, A.; Alsheyab, M. Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes. Sci. Total Environ. 2020, 700, 134576. [Google Scholar] [CrossRef]
- Sar, T.; Ozturk, M.; Taherzadeh, M.J.; Ferreira, J.A. New Insights on Protein Recovery from Olive Oil Mill Wastewater Through Bioconversion with Edible Filamentous Fungi. Processes 2020, 8, 1210. [Google Scholar] [CrossRef]
Technologies | Cultivar | Parameters | Matrix of Application | Effect | Ref |
---|---|---|---|---|---|
PEF | Arroniz | 11.25 kJ/kg. | Olive paste after malaxation | Increased extraction yield (13.3%). Increased TPC, phytosterol, and tocopherol contents. | [24] |
Carolea, Coratina, and Ottobratica | 17 kJ/kg. | Increased extraction yield (2.3–6%).Increased TPC (3.2–14.3%). | [13] | ||
Arbequina | 1.47–5.22 kJ/kg. | Olive paste before malaxation | Increased extraction yield (14%) without or with malaxation at 15 °C. Reduced TPC and unaltered vitamin E. | [22] | |
Unspecified | 7.83 kJ/kg. | Increased extraction yield (7.5%). Increased oleacein and oleocanthal concentration at low temperature. | [25] | ||
Coratina | 16 kV, 100 µs pulse duration | Increased oil extractability (3.71%). Increased oil yield (0.38%). | [26] | ||
Tsounati, Amfissis, Manaki | 1.6–70.0 kJ/kg. | Fruit | Increased extraction yield (18%). Increased TPC. Improved oxidative stability. | [23] | |
Unspecified | 0.7 kV/cm (30 pulses) 1.3 kV/cm (100 pulses) | Increased extraction yield (7.4%) at 1.3 kV/cm. | [27] | ||
HPP | Tsounati, Amfissis, Manaki | 200 and 600 MPa for 1 and 5 min. | Fruit | Increased extraction yield (16%). Increased TPC. Improved oxidative stability. | [23] |
Frantoio | 608 MPa for 6 min. | Filtered and unfiltered oil | Less fusty and rancid sensory attributes when the oil was unfiltered; no differences for the filtered oil. | [28] | |
US | Coratina | 0.4 and 2 MHz, 280 W, 2.5 and 5 min | Olive paste after malaxation | Increased yield in all cases (10%). | [29] |
Unspecified | 150 W, 30 kHz, 120–300 s | Olive paste before malaxation. | Improved sensory evaluation. Increased tocopherol, carotenoids, and phenolic compounds. Reduced polyphenol oxidase activity. | [30] | |
Coratina and Peranzana | 150 W 35 kHz 2–10 min | Reduced malaxation time. Increased carotenoid, chlorophyll, and tocopherol content. Reduced TPC. | [31] | ||
Memecik and Chemlali | 150 W, 35 kHz, 4–10 min | Increased secoiridoids concentration. | [32] | ||
Ogliarola Barese | 150 W, 35 kHz, 10 min | Increased extraction yield (17%). | [33] | ||
US | Arbequina and Frantoio | Directly: 110 W/cm2 19 KHz Indirectly: 150 W/cm2 20 kHz 2–10 min | Increased extraction yield (1%). Increased tocopherols, pigments, and peroxide value. Decreased TPC and oxidative stability index (in treatments longer than 8 min). The treated oil was darker. | [34] | |
Ogliarola garganica | 2.8 kW 20 kHz, continuous 2 tons/h | Increased extraction yield, especially with less ripe olives (22%); increased TPC. | [35] | ||
Arbequina | 150 W, 20 kHz, 6 min | Increased extraction yield (10%). Increased tocopherols, carotenoids, and chlorophylls content. | [36] | ||
Chemlali and Memecik | 150 W, 35 kHz 4–10 min | Increased yield with increasing US treatment time. No changes in oil composition or oil stability. | [37] | ||
Coratina | 4 kW | Increased oil extractability (3.57%). Increased oil yield (0.54%). | [26] | ||
US | Coratina | 150 W 35 Hz 10 min | Fruit and olive paste before malaxation | Increased extraction yield (6.2%). Increased chlorophylls, carotenoids, tocopherols, and phenolic content. | [38] |
36-146 kJ/kg, 20–600 kHz | Olive paste before, during, and after malaxation | Increased extraction yield, especially when US was applied before and after malaxation (4%). | [39] | ||
Picual | 105 W/cm2 24 Hz and 150 W/cm2 25 Hz 0–30 min | Olive paste during malaxation, directly to the paste and to the water bath, respectively | Increased tocopherols, carotenoids, and chlorophylls content. Decreased TPC. Improved attributes in the sensory analyses. | [40] | |
900 W, 20–80 kHz in continuous mode: 200 kg/h | Olive paste before malaxation or before centrifugation when no malaxation was performed | More balanced sensorial profile. Increased secoiridoids levels and (E)-2-hexenal. | [41] | ||
Arbequina and Picual | 150 W, 40 kHz, 15–60 min | EVOO | Slight decrease in individual volatile compounds. | [42] | |
MW | Coratina | 24 kW at 2.45 GHz continuous: 3tones/h. | Olive paste before malaxation or before centrifugation when no malaxation was performed. | Increased coalescence. Increased volatiles compounds. Decreased TPC and peroxide value. | [43,44,45] |
Ogliarola garganica | Increased extraction yield (1.8%). Increased TPC when megasound was applied. | [46,47] | |||
Ogliarola Barese | 800 W 180 s 2.45 GHz | Olive paste before malaxation | Increased extraction yield. | [33] | |
Combination | Coratina | MW 3.3–4.0 kW 2.45 GHz 395 kg/h + US 2.08 kW 400–600 Hz 395 kg/h | Olive paste before malaxation or before centrifugation when no malaxation was performed | The combination of MW and US obviated the need for malaxation and increased the yield (2.2%). Increased TPC when megasound was applied. | [46,47] |
MW 5.34 kW, 2.45 GHz 1200 kg/h + US 3.3 kW, 20 kHz, 1200 kg/h + heat exchange | The combination of US, MW, and a spiral heat exchange device achieved a higher yield than conventional extraction. No changes observed in the oil. | [48,49] | |||
Combination | Arbequina, Peranzana, Nocellara, Coratina | HPP 1.7–3.5 Bar + US 2.6–3.5 kW, 20 Hz, 2300 kg/h | Olive paste before malaxation | Increased extraction yield (6%). Increased TPC. | [50] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez, M.; López-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Lamuela-Raventós, R.M.; Martin-Belloso, O.; Vallverdú-Queralt, A. Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants 2021, 10, 417. https://doi.org/10.3390/antiox10030417
Pérez M, López-Yerena A, Lozano-Castellón J, Olmo-Cunillera A, Lamuela-Raventós RM, Martin-Belloso O, Vallverdú-Queralt A. Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants. 2021; 10(3):417. https://doi.org/10.3390/antiox10030417
Chicago/Turabian StylePérez, Maria, Anallely López-Yerena, Julián Lozano-Castellón, Alexandra Olmo-Cunillera, Rosa M. Lamuela-Raventós, Olga Martin-Belloso, and Anna Vallverdú-Queralt. 2021. "Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes" Antioxidants 10, no. 3: 417. https://doi.org/10.3390/antiox10030417
APA StylePérez, M., López-Yerena, A., Lozano-Castellón, J., Olmo-Cunillera, A., Lamuela-Raventós, R. M., Martin-Belloso, O., & Vallverdú-Queralt, A. (2021). Impact of Emerging Technologies on Virgin Olive Oil Processing, Consumer Acceptance, and the Valorization of Olive Mill Wastes. Antioxidants, 10(3), 417. https://doi.org/10.3390/antiox10030417