High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Sample Preparation
2.3. Extraction of Phenolic Compounds
2.4. Estimation of Phenolic Compounds and Antioxidant Assays
2.4.1. Determination of Total Phenolic Content (TPC)
2.4.2. Determination of Total Flavonoids Content (TFC)
2.4.3. Determination of Total Tannins Content (TTC)
2.4.4. 2,2′-Diphenyl-1-picrylhydrazyl (DPPH) Antioxidant Assay
2.4.5. Ferric Reducing-Antioxidant Power (FRAP) Assay
2.4.6. 2,2′-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Radical Scavenging Assay
2.4.7. Total Antioxidant Capacity (TAC)
2.5. LC-ESI-QTOF-MS/MS Analysis
2.6. HPLC-PDA Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Compounds Estimation (TPC, TFC and TTC)
3.2. Antioxidant Activities Estimation (DPPH, FRAP, ABTS and TAC)
3.3. Correlation between Phenolic Compounds and Antioxidant Assays
3.4. Phenolic Identification by LC-ESI-QTOF-MS/MS
3.4.1. MS/MS Based Characterization of Phenolic Compounds
Phenolic Cids
Flavonoids
Lignans
Other polyphenols
3.4.2. Distribution of Phenolic Compounds—Venn Diagram
3.5. HPLC-PDA Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, F.; Mercer, D. Food waste in australia: The freegan response. Sociol. Rev. 2012, 60, 174–191. [Google Scholar] [CrossRef]
- Devin, B.; Richards, C. Food waste, power, and corporate social responsibility in the australian food supply chain. J. Bus. Ethics 2018, 150, 199–210. [Google Scholar] [CrossRef]
- Riva, S.C.; Opara, U.O.; Fawole, O.A. Recent developments on postharvest application of edible coatings on stone fruit: A review. Sci. Hortic. 2020, 262, 109074. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; De Hooge, I.; Amani, P.; Bech-Larsen, T.; Oostindjer, M. Consumer-related food waste: Causes and potential for action. Sustainability 2015, 7, 6457–6477. [Google Scholar] [CrossRef] [Green Version]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renew. Sustain. Energy Rev. 2013, 27, 789–805. [Google Scholar] [CrossRef]
- Cheok, C.Y.; Mohd Adzahan, N.; Abdul Rahman, R.; Zainal Abedin, N.H.; Hussain, N.; Sulaiman, R.; Chong, G.H. Current trends of tropical fruit waste utilization. Crit. Rev. Food Sci. Nutr. 2018, 58, 335–361. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, W.; Cao, J.; Ma, L. Evaluation of antioxidant properties of extractable and nonextractable polyphenols in peel and flesh tissue of different peach varieties. J. Food Process. Preserv. 2018, 42, e13624. [Google Scholar] [CrossRef]
- Wills, R.B.; Scriven, F.M.; Greenfield, H. Nutrient composition of stone fruit (prunus spp.) cultivars: Apricot, cherry, nectarine, peach and plum. J. Sci. Food Agric. 1983, 34, 1383–1389. [Google Scholar] [CrossRef]
- LaRue, J.H. Peaches, Plums, and Nectarines: Growing and Handling for Fresh Market; UCANR Publications: Davis, CA, USA, 1989; Volume 3331. [Google Scholar]
- Noratto, G.; Porter, W.; Byrne, D.; Cisneros-Zevallos, L. Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J. Agric. Food Chem. 2009, 57, 5219–5226. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Ruiz, D.; Valero, D.; Rivera, D.; Obón, C.; Sánchez-Roca, C.; Gil, M.I. Health benefits from pomegranates and stone fruit, including plums, peaches, apricots and cherries. Bioact. Fruit: Health Benefits Funct. Foods 2013, 19, 125–167. [Google Scholar]
- Urquiaga, I.; Leighton, F. Plant polyphenol antioxidants and oxidative stress. Biol. Res. 2000, 33, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Chung, K.-T.; Wong, T.Y.; Wei, C.-I.; Huang, Y.-W.; Lin, Y. Tannins and human health: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef]
- Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003, 23, 519–534. [Google Scholar] [CrossRef]
- Rasul Suleria, H.A.; Sadiq Butt, M.; Muhammad Anjum, F.; Saeed, F.; Batool, R.; Nisar Ahmad, A. Aqueous garlic extract and its phytochemical profile; special reference to antioxidant status. Int. J. Food Sci. Nutr. 2012, 63, 431–439. [Google Scholar] [CrossRef]
- Zerva, E.; Abatis, D.; Skaltsounis, A.; Fokialakis, N. Development and application of a methodology for the recovery of high added value products from peach industry waste. Planta Med. 2012, 78, PJ98. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids, and vitamin c contents of nectarine, peach, and plum cultivars from california. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef]
- Michalska, A.; Wojdyło, A.; Majerska, J.; Lech, K.; Brzezowska, J. Qualitative and quantitative evaluation of heat-induced changes in polyphenols and antioxidant capacity in prunus domestica l. By-products. Molecules 2019, 24, 3008. [Google Scholar] [CrossRef] [Green Version]
- Vizzotto, M.; Cisneros-Zevallos, L.; Byrne, D.H.; Ramming, D.W.; Okie, W. Large variation found in the phytochemical and antioxidant activity of peach and plum germplasm. J. Am. Soc. Hortic. Sci. 2007, 132, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Senter, S.; Robertson, J.; Meredith, F. Phenolic compounds of the mesocarp of cresthaven peaches during storage and ripening. J. Food Sci. 1989, 54, 1259–1268. [Google Scholar] [CrossRef]
- Subbiah, V.; Zhong, B.; Nawaz, M.A.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Screening of phenolic compounds in australian grown berries by lc-esi-qtof-ms/ms and determination of their antioxidant potential. Antioxidants 2021, 10, 26. [Google Scholar] [CrossRef]
- Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. A comparative investigation on phenolic composition, characterization and antioxidant potentials of five different australian grown pear varieties. Antioxidants 2021, 10, 151. [Google Scholar] [CrossRef] [PubMed]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M.; Goktepe, I. Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. Food Chem. 2005, 90, 199–206. [Google Scholar] [CrossRef]
- Šeruga, M.; Novak, I.; Jakobek, L. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, hplc and spectrophotometric methods. Food Chem. 2011, 124, 1208–1216. [Google Scholar] [CrossRef]
- Wu, X.; An, X.; Yu, M.; Ma, R.; Yu, Z. 1-methylcyclopropene treatment on phenolics and the antioxidant system in postharvest peach combined with the liquid chromatography/mass spectrometry technique. J. Agric. Food Chem. 2018, 66, 6364–6372. [Google Scholar] [CrossRef]
- Sójka, M.; Kołodziejczyk, K.; Milala, J.; Abadias, M.; Viñas, I.; Guyot, S.; Baron, A. Composition and properties of the polyphenolic extracts obtained from industrial plum pomaces. J. Funct. Foods 2015, 12, 168–178. [Google Scholar] [CrossRef]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A. Lc-esi-qtof/ms characterisation of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Dunshea, F.R.; Suleria, H.A. Lc-esi-qtof/ms characterization of phenolic compounds from medicinal plants (hops and juniper berries) and their antioxidant activity. Foods 2020, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severo, J.; Tiecher, A.; Chaves, F.C.; Silva, J.A.; Rombaldi, C.V. Gene transcript accumulation associated with physiological and chemical changes during developmental stages of strawberry cv. Camarosa. Food Chem. 2011, 126, 995–1000. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, S.; Castilho, P.C. Antioxidant potential of artemisia argentea l’hér alcoholic extract and its relation with the phenolic composition. Food Res. Int. 2011, 44, 1620–1631. [Google Scholar] [CrossRef]
- Stavrou, I.J.; Christou, A.; Kapnissi-Christodoulou, C.P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem. 2018, 269, 355–374. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total phenolics, antioxidant activity, and functional properties of ‘tommy atkins’ mango peel and kernel as affected by drying methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef]
- Peng, D.; Zahid, H.F.; Ajlouni, S.; Dunshea, F.R.; Suleria, H.A. Lc-esi-qtof/ms profiling of australian mango peel by-product polyphenols and their potential antioxidant activities. Processes 2019, 7, 764. [Google Scholar] [CrossRef] [Green Version]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin e. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Suleria, H.A.; Barrow, C.J.; Dunshea, F.R. Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Ma, C.; Dunshea, F.R.; Suleria, H.A. Lc-esi-qtof/ms characterization of phenolic compounds in palm fruits (jelly and fishtail palm) and their potential antioxidant activities. Antioxidants 2019, 8, 483. [Google Scholar] [CrossRef] [Green Version]
- Mitic, V.; Ilic, M.; Dimitrijevic, M.; Cvetkovic, J.; Ciric, S.; Jovanovic, V.S. Chemometric characterization of peach, nectarine and plum cultivars according to fruit phenolic content and antioxidant activity. Fruits 2016, 71, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Amin Morabbi, N.; Rashid, J. Free radical scavenging capacity and antioxidant activity of methanolic and ethanolic extracts of plum (prunus domestica l.) in both fresh and dried samples. Avicenna J. Phytomedicine 2014, 4, 343–353. [Google Scholar]
- Jafar, H.; Shabnam, F.; Gholamreza, D. Fruit quality, bioactive compounds and antioxidant capacity of 6 iranian peach cultivars. Res. Plant. Biol. 2013, 3, 6–16. [Google Scholar]
- Hui, L.; Jiankang, C.; Weibo, J. Changes in phenolics and antioxidant property of peach fruit during ripening and responses to 1-methylcyclopropene. Postharvest Biol. Technol. 2015, 108, 111–118. [Google Scholar]
- Nowicka, P.; Wojdylo, A. Content of bioactive compounds in the peach kernels and their antioxidant, anti-hyperglycemic, anti-aging properties. Eur. Food Res. Technol. 2019, 245, 1123–1136. [Google Scholar] [CrossRef] [Green Version]
- Hui, L.; Weibo, J.; Jiankang, C.; Yucai, L. Effect of chilling temperatures on physiological properties, phenolic metabolism and antioxidant level accompanying pulp browning of peach during cold storage. Sci. Hortic. 2019, 255, 175–182. [Google Scholar]
- Mitra, R.; Vercambre, G.; Gholamhossein, D.; Mohammad, B.; Majid, A.; Genard, M. Water scarcity conditions affect peach fruit size and polyphenol contents more severely than other fruit quality traits. J. Sci. Food Agric. 2015, 95, 1055–1065. [Google Scholar]
- Shan, S.; Huang, X.; Shah, M.H.; Abbasi, A.M. Evaluation of polyphenolics content and antioxidant activity in edible wild fruits. BioMed Res. Int. 2019, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hegedüs, A.; Pfeiffer, P.; Papp, N.; Abrankó, L.; Blázovics, A.; Pedryc, A.; Stefanovits-Bányai, É. Accumulation of antioxidants in apricot fruit through ripening: Characterization of a genotype with enhanced functional properties. Biol. Res. 2011, 44, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, A.; Engel, R.; Abranko, L.; Balogh, E.; Blazovics, A.; Herman, R.; Halasz, J.; Ercisli, S.; Pedryc, A.; Stefanovits-Banyai, E. Antioxidant and antiradical capacities in apricot (prunus armeniaca l. ) fruits: Variations from genotypes, years, and analytical methods. J. Food Sci. 2010, 75, C722–C730. [Google Scholar] [CrossRef]
- Hui, L.; Weibo, J.; Jiankang, C.; Yucai, L. Changes in extractable and non-extractable polyphenols and their antioxidant properties during fruit on-tree ripening in five peach cultivars. Hortic. Plant. J. 2019, 5, 137–144. [Google Scholar]
- Kaulmann, A.; Jonville, M.C.; Schneider, Y.J.; Hoffmann, L.; Bohn, T. Carotenoids, polyphenols and micronutrient profiles of brassica oleraceae and plum varieties and their contribution to measures of total antioxidant capacity. Food Chem. 2014, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Sawan, S.; Gouri, S.; Gupta, R.K. Nutritional, phytochemical, antioxidant and antimicrobial activity of prunus armenicus. J. Pharmacogn. Phytochem. 2014, 3, 23–28. [Google Scholar]
- Saoudi, S.; Khennouf, S.; Mayouf, N.; Amira, S.; Dahamna, S.; Hosni, K. Phytochemical screening and in vivo and in vitro evaluation antioxidant capacity of fargaria ananassa, prunus armeniaca and prunus persica fruits growing in algeria. Prog. Nutr. 2020, 22, 236–252. [Google Scholar]
- Petridis, A.; Koukourikou, M.; Sotiropoulos, T.; Stylianidis, D. Antioxidant activity of fruits produced in northern greece. HortScience 2010, 1341–1344. [Google Scholar] [CrossRef] [Green Version]
- Yurong, M.; Huihua, H. Characterisation and comparison of phenols, flavonoids and isoflavones of soymilk and their correlations with antioxidant activity. Int. J. Food Sci. Technol. 2014, 49, 2290–2298. [Google Scholar]
- Apak, R.; Gueclue, K.; Demirata, B.; Oezyuerek, M.; Celik, S.E.; Bektasoglu, B.; Berker, K.I.; Oezyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the cuprac assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [Green Version]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Merillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using dpph, abts, frap, sod, and orac assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Stratil, P.; Klejdus, B.; Kubáň, V. Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta 2007, 71, 1741–1751. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of abts/dpph assays to measure antioxidant capacity in popular antioxidant-rich us foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic acid antioxidants: An electrochemical overview. Biomed Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef]
- Lin, H.; Zhu, H.; Tan, J.; Wang, H.; Wang, Z.; Li, P.; Zhao, C.; Liu, J. Comparative analysis of chemical constituents of moringa oleifera leaves from china and india by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Molecules 2019, 24, 942. [Google Scholar] [CrossRef] [Green Version]
- Chongting, G.; Jinfeng, B.; Xuan, L.; Jian, L.; Xinye, W.; Ye, X. Polyphenol metabolic diversity of chinese peach and nectarine at thinned and ripe stages by uplc-esi-q-tof-ms combined with multivariate statistical analysis. J. Food Compos. Anal. 2020, 90, 103502. [Google Scholar]
- Gonçalves, B.; Moeenfard, M.; Rocha, F.; Alves, A.; Estevinho, B.N.; Santos, L. Microencapsulation of a natural antioxidant from coffee—chlorogenic acid (3-caffeoylquinic acid). Food Bioprocess. Technol. 2017, 10, 1521–1530. [Google Scholar] [CrossRef]
- Wang, J.; Jia, Z.; Zhang, Z.; Wang, Y.; Liu, X.; Wang, L.; Lin, R. Analysis of chemical constituents of melastoma dodecandrum lour. By uplc-esi-q-exactive focus-ms/ms. Molecules 2017, 22, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaiswal, R.; Karaköse, H.; Rühmann, S.; Goldner, K.; Neumüller, M.; Treutter, D.; Kuhnert, N. Identification of phenolic compounds in plum fruits (prunus salicina l. And prunus domestica l.) by high-performance liquid chromatography/tandem mass spectrometry and characterization of varieties by quantitative phenolic fingerprints. J. Agric. Food Chem. 2013, 61, 12020–12031. [Google Scholar] [CrossRef]
- Mancuso, C.; Santangelo, R. Ferulic acid: Pharmacological and toxicological aspects. Food Chem. Toxicol. 2014, 65, 185–195. [Google Scholar] [CrossRef]
- Redondo, D.; Arias, E.; Oria, R.; Venturini, M.E. Thinned stone fruits are a source of polyphenols and antioxidant compounds. J. Sci. Food Agric. 2017, 97, 902–910. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Mena, P.; Calani, L.; Borges, G.; Pereira-Caro, G.; Bresciani, L.; Del Rio, D.; Lean, M.E.J.; Crozier, A. New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radic. Biol. Med. 2015, 89, 758–769. [Google Scholar] [CrossRef] [Green Version]
- Zadernowski, R.; Naczk, M.; Nesterowicz, J. Phenolic acid profiles in some small berries. J. Agric. Food Chem. 2005, 53, 2118–2124. [Google Scholar] [CrossRef]
- Mokrani, A.; Cluzet, S.; Madani, K.; Pakina, E.; Gadzhikurbanov, A.; Mesnil, M.; Monvoisin, A.; Richard, T. Hplc-dad-ms/ms profiling of phenolics from different varieties of peach leaves and evaluation of their antioxidant activity: A comparative study. Int. J. Mass Spectrom. 2019, 445, 116192. [Google Scholar] [CrossRef]
- Khezeli, T.; Daneshfar, A.; Sahraei, R. A green ultrasonic-assisted liquid–liquid microextraction based on deep eutectic solvent for the hplc-uv determination of ferulic, caffeic and cinnamic acid from olive, almond, sesame and cinnamon oil. Talanta 2016, 150, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Santhirasegaram, V.; Razali, Z.; George, D.S.; Somasundram, C. Effects of thermal and non-thermal processing on phenolic compounds, antioxidant activity and sensory attributes of chokanan mango (mangifera indica l.) juice. Food Bioprocess. Technol. 2015, 8, 2256–2267. [Google Scholar] [CrossRef]
- Zhifeng, L.; Hui Wen, L.; Xu, L.; Dong, L.; Qi, W.; Dejian, H.; Choon Nam, O. Profiling of phenolic compounds and antioxidant activity of 12 cruciferous vegetables. Molecules 2018, 23, 1139. [Google Scholar]
- Juurlink, B.H.J.; Azouz, H.J.; Aldalati, A.M.Z.; AlTinawi, B.M.H.; Ganguly, P. Hydroxybenzoic acid isomers and the cardiovascular system. Nutr. J. 2014, 13, 63. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Saéz, V.; Riquelme, S.; von Baer, D.; Vallverdú-Queralt, A. Phenolic profile of grape canes: Novel compounds identified by lc-esi-ltq-orbitrap-ms. Molecules 2019, 24, 3763. [Google Scholar]
- Wang, X.; Yan, K.; Ma, X.; Li, W.; Chu, Y.; Guo, J.; Li, S.; Zhou, S.; Zhu, Y.; Liu, C. Simultaneous determination and pharmacokinetic study of protocatechuic aldehyde and its major active metabolite protocatechuic acid in rat plasma by liquid chromatography-tandem mass spectrometry. J. Chromatogr. Sci. 2016, 54, 697–705. [Google Scholar] [CrossRef] [Green Version]
- Brar, J.; Gupta, N.; Gill, M. Effect of pre and post-harvest treatments of salicylic acid on quality characteristics of peach (prunus persica l.) fruits during storage. Progress. Hortic. 2014, 46, 217–221. [Google Scholar]
- Pokotylo, I.; Kravets, V.; Ruelland, E. Salicylic acid binding proteins (sabps): The hidden forefront of salicylic acid signalling. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [Green Version]
- Diaconeasa, Z.; Florica, R.; Rugina, D.; Lucian, C.; Socaciu, C. Hplc/pda–esi/ms identification of phenolic acids, flavonol glycosides and antioxidant potential in blueberry, blackberry, raspberries and cranberries. J. Food Nutr. Res. 2014, 2, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Cuadrado-Silva, C.T.; Pozo-Bayon, M.A.; Osorio, C. Targeted metabolomic analysis of polyphenols with antioxidant activity in sour guava (psidium friedrichsthalianum nied.) fruit. Molecules 2017, 22, 11. [Google Scholar] [CrossRef] [Green Version]
- Rajauria, G.; Foley, B.; Abu-Ghannam, N. Identification and characterization of phenolic antioxidant compounds from brown irish seaweed himanthalia elongata using lc-dad–esi-ms/ms. Innov. Food Sci. Emerg. Technol. 2016, 37, 261–268. [Google Scholar] [CrossRef]
- Sasot, G.; Martínez-Huélamo, M.; Vallverdú-Queralt, A.; Mercader-Martí, M.; Estruch, R.; Lamuela-Raventós, R.M. Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution ltq-orbitrap-ms approach. Food Res. Int. 2017, 100, 435–444. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Amoo, S.; Kudanga, T. Phenolic compound profile and biological activities of southern african opuntia ficus-indica fruit pulp and peels. LWT 2019, 111, 337–344. [Google Scholar] [CrossRef]
- Borochov-Neori, H.; Judeinstein, S.; Greenberg, A.; Volkova, N.; Rosenblat, M.; Aviram, M. Antioxidant and antiatherogenic properties of phenolic acid and flavonol fractions of fruits of ‘amari’ and ‘hallawi’ date (phoenix dactylifera l.) varieties. J. Agric. Food Chem. 2015, 63, 3189–3195. [Google Scholar] [CrossRef]
- Lin, L.-Z.; Mukhopadhyay, S.; Robbins, R.J.; Harnly, J.M. Identification and quantification of flavonoids of mexican oregano (lippia graveolens) by lc-dad-esi/ms analysis. J. Food Compos. Anal. 2007, 20, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Abad-García, B.; Garmón-Lobato, S.; Berrueta, L.A.; Gallo, B.; Vicente, F. On line characterization of 58 phenolic compounds in citrus fruit juices from spanish cultivars by high-performance liquid chromatography with photodiode-array detection coupled to electrospray ionization triple quadrupole mass spectrometry. Talanta 2012, 99, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Mokrani, A.; Krisa, S.; Cluzet, S.; Da Costa, G.; Temsamani, H.; Renouf, E.; Mérillon, J.-M.; Madani, K.; Mesnil, M.; Monvoisin, A.; et al. Phenolic contents and bioactive potential of peach fruit extracts. Food Chem. 2016, 202, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Guijarro-Díez, M.; Castro-Puyana, M.; Crego, A.L.; Marina, M.L. A novel method for the quality control of saffron through the simultaneous analysis of authenticity and adulteration markers by liquid chromatography-(quadrupole-time of flight)-mass spectrometry. Food Chem. 2017, 228, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Heiss, C.; Keen, C.L.; Kelm, M. Flavanols and cardiovascular disease prevention. Eur. Heart J. 2010, 31, 2583–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Q.; Luo, F.; Zhao, X.; Liu, Y.; Hu, G.; Sun, C.; Li, X.; Chen, K. Identification of proanthocyanidins from litchi (litchi chinensis sonn.) pulp by lc-esi-q-tof-ms and their antioxidant activity. PLoS ONE 2015, 10, e0120480. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, H.; Takahashi, S.; Takeda, S.; Hatta, H. Distribution of flavan-3-ol species in ripe strawberry fruit revealed by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Molecules 2020, 25, 103. [Google Scholar] [CrossRef] [Green Version]
- Pereira, G.A.; Arruda, H.S.; de Morais, D.R.; Peixoto Araujo, N.M.; Pastore, G.M. Mutamba (guazuma ulmifolia lam.) fruit as a novel source of dietary fibre and phenolic compounds. Food Chem. 2020, 310, 125857. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef]
- Pool, I.E.H.; Lopez, N.A.P. Evaluation of the Change in the Content and Profile of Phenolic Compounds in Capsicum Chinense in Interaction with the Phytopathogenic Oomycete Pythium Ultimum; Research and Assistance Center for Technology and Design of the State of Jalisco: Guadalajara, Mexico, 2019. [Google Scholar]
- Zeng, X.; Su, W.; Zheng, Y.; Liu, H.; Li, P.; Zhang, W.; Liang, Y.; Bai, Y.; Peng, W.; Yao, H. Uflc-q-tof-ms/ms-based screening and identification of flavonoids and derived metabolites in human urine after oral administration of exocarpium citri grandis extract. Molecules 2018, 23, 895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, L.; Dueñas, M.; Ferreira, I.C.F.R.; Maria Carvalho, A.; Santos-Buelga, C. Use of hplc–dad–esi/ms to profile phenolic compounds in edible wild greens from portugal. Food Chem. 2011, 127, 169–173. [Google Scholar] [CrossRef]
- Abad-García, B.; Garmón-Lobato, S.; Sánchez-Ilárduya, M.B.; Berrueta, L.A.; Gallo, B.; Vicente, F.; Alonso-Salces, R.M. Polyphenolic contents in citrus fruit juices: Authenticity assessment. Eur. Food Res. Technol. 2014, 238, 803–818. [Google Scholar] [CrossRef]
- Lucini, L.; Rocchetti, G.; Kane, D.; Trevisan, M. Phenolic fingerprint allows discriminating processed tomato products and tracing different processing sites. Food Control 2017, 73, 696–703. [Google Scholar] [CrossRef]
- Roowi, S.; Crozier, A. Flavonoids in tropical citrus species. J. Agric. Food Chem. 2011, 59, 12217–12225. [Google Scholar] [CrossRef] [PubMed]
- Ghisoni, S.; Chiodelli, G.; Rocchetti, G.; Kane, D.; Lucini, L. Uhplc-esi-qtof-ms screening of lignans and other phenolics in dry seeds for human consumption. J. Funct. Foods 2017, 34, 229–236. [Google Scholar] [CrossRef]
- Toro-Funes, N.; Odriozola-Serrano, I.; Bosch-Fusté, J.; Latorre-Moratalla, M.L.; Veciana-Nogués, M.T.; Izquierdo-Pulido, M.; Vidal-Carou, M.C. Fast simultaneous determination of free and conjugated isoflavones in soy milk by uhplc–uv. Food Chem. 2012, 135, 2832–2838. [Google Scholar] [CrossRef]
- Wen, R.; Lv, H.; Jiang, Y.; Tu, P. Anti-inflammatory isoflavones and isoflavanones from the roots of pongamia pinnata (l.) pierre. Bioorganic Med. Chem. Lett. 2018, 28, 1050–1055. [Google Scholar] [CrossRef]
- Fellah, B.; Rocchetti, G.; Senizza, B.; Giuberti, G.; Bannour, M.; Ferchichi, A.; Lucini, L. Untargeted metabolomics reveals changes in phenolic profile following in vitro large intestine fermentation of non-edible parts of punica granatum L. Food Res. Int. 2020, 128, 108807. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Bellocco, E.; Caristi, C.; Leuzzi, U.; Gattuso, G. Elucidation of the flavonoid and furocoumarin composition and radical-scavenging activity of green and ripe chinotto (citrus myrtifolia raf.) fruit tissues, leaves and seeds. Food Chem. 2011, 129, 1504–1512. [Google Scholar] [CrossRef]
- Cao, W.; Ye, L.-H.; Cao, J.; Xu, J.-J.; Peng, L.-Q.; Zhu, Q.-Y.; Zhang, Q.-Y.; Hu, S.-S. Quantitative analysis of flavanones from citrus fruits by using mesoporous molecular sieve-based miniaturized solid phase extraction coupled to ultrahigh-performance liquid chromatography and quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2015, 1406, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Teresa, D.; Moreno, D.A.; García-Viguera, C. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. Int. J. Mol. Sci. 2010, 11, 1679–1703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Li, X.; Saleri, F.; Guo, M. Analysis of flavonoids in rhamnus davurica and its antiproliferative activities. Molecules 2016, 21, 1275. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, V.; Dörnyei, Á.; Márk, L.; Vojnoski, B.; Stafilov, T.; Stefova, M.; Kilár, F. Polyphenolic content of vranec wines produced by different vinification conditions. Food Chem. 2011, 124, 316–325. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, Q.; Peng, J.; Tu, S.; Pan, L.; Tu, K. Metabolic analysis of phenolic profiles reveals the enhancements of anthocyanins and procyanidins in postharvest peach as affected by hot air and ultraviolet c. Postharvest Biol. Technol. 2020, 167, 111227. [Google Scholar] [CrossRef]
- Liang, N.-N.; He, F.; Bi, H.-Q.; Duan, C.-Q.; Reeves, M.J.; Wang, J. Evolution of flavonols in berry skins of different grape cultivars during ripening and a comparison of two vintages. Eur. Food Res. Technol. 2012, 235, 1187–1197. [Google Scholar] [CrossRef]
- Getasetegn, M. Chemical composition of catha edulis (khat): A review. Phytochem. Rev. 2016, 15, 907–920. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules 2019, 24, 917. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Vorsa, N.; Harrington, P.d.B.; Chen, P. Nontargeted metabolomic study on variation of phenolics in different cranberry cultivars using uplc-im–hrms. J. Agric. Food Chem. 2018, 66, 12206–12216. [Google Scholar] [CrossRef]
- Huimin, Z.; Quan, L.; Guang, Q.; Zhilang, Q.; Zhuang, W.; Xiaopeng, W. Optimizing the supercritical carbon dioxide extraction of sweet cherry (prunus avium l.) leaves and uplc-ms/ms analysis. Anal. Methods 2020, 12, 3004–3013. [Google Scholar]
- Rocchetti, G.; Senizza, B.; Zengin, G.; Mahomodally, M.F.; Senkardes, I.; Lobine, D.; Lucini, L. Untargeted metabolomic profiling of three crataegus species (hawthorn) and their in vitro biological activities. J. Sci. Food Agric. 2020, 100, 1998–2006. [Google Scholar] [CrossRef]
- Becerra-Herrera, M.; Sánchez-Astudillo, M.; Beltrán, R.; Sayago, A. Determination of phenolic compounds in olive oil: New method based on liquid–liquid micro extraction and ultra high performance liquid chromatography-triple–quadrupole mass spectrometry. LWT Food Sci. Technol. 2014, 57, 49–57. [Google Scholar] [CrossRef]
- Campbell, O.E.; Padilla-Zakour, O.I. Phenolic and carotenoid composition of canned peaches (prunus persica) and apricots (prunus armeniaca) as affected by variety and peeling. Food Res. Int. 2013, 54, 448–455. [Google Scholar] [CrossRef]
- Cevallos-Casals, B.A.; Byrne, D.; Okie, W.R.; Cisneros-Zevallos, L. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem. 2006, 96, 273–280. [Google Scholar] [CrossRef]
- Cantín, C.M.; Moreno, M.A.; Gogorcena, Y. Evaluation of the antioxidant capacity, phenolic compounds, and vitamin c content of different peach and nectarine [prunus persica (l.) batsch] breeding progenies. J. Agric. Food Chem. 2009, 57, 4586–4592. [Google Scholar] [CrossRef]
- Brito, A.; Ramirez, J.E.; Areche, C.; Sepúlveda, B.; Simirgiotis, M.J. Hplc-uv-ms profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in northern chile. Molecules 2014, 19, 17400–17421. [Google Scholar] [CrossRef]
- Stojanovic, B.T.; Mitic, S.S.; Stojanovic, G.S.; Mitic, M.N.; Kostic, D.A.; Paunovic, D.D.; Arsic, B.B. Phenolic profile and antioxidant activity of pulp and peel from peach and nectarine fruits. Not. Bot. Horti Agrobot. Cluj-Napoca 2016, 44, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Biesaga, M.; Ochnik, U.; Pyrzynska, K.J.J.o.s.s. Analysis of phenolic acids in fruits by hplc with monolithic columns. J. Sep. Sci. 2007, 30, 2929–2934. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Greenspan, P.; Pegg, R.B.J.F.c. Characterizing the phenolic constituents and antioxidant capacity of georgia peaches. J. Sep. Sci. 2019, 271, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Turkmen, N.; Velioglu, Y.S.; Sari, F.; Polat, G. Effect of extraction conditions on measured total polyphenol contents and antioxidant and antibacterial activities of black tea. Molecules 2007, 12, 484–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Antioxidant Assays | Peach | Nectarine | Plum | Apricot |
---|---|---|---|---|
TPC (mg GAE/g) | 0.47 ± 0.08 c | 0.31 ± 0.05 d | 0.94 ± 0.07 a | 0.65 ± 0.12 b |
TFC (mg QE/g) | 0.18 ± 0.01 c | 0.16 ± 0.09 c | 0.34 ± 0.01 a | 0.23 ± 0.07 b |
TTC (mg CE/g) | 0.07 ± 0.02 c | 0.10 ± 0.06 b | 0.09 ± 0.02 c | 0.19 ± 0.03 a |
DPPH (mg AAE/g) | 0.98 ± 0.07 b | 1.42 ± 0.04 a | 0.94 ± 0.17 b | 1.47 ± 0.12 a |
FRAP (mg AAE/g) | 0.54 ± 0.01 c | 0.98 ± 0.02 a | 0.63 ± 0.04 b | 0.93 ± 0.04 a |
ABTS (mg AAE/g) | 0.43 ± 0.09 a | 0.23 ± 0.04 b | 0.21 ± 0.01 b | 0.25 ± 0.11 b |
TAC (mg AAE/g) | 0.27 ± 0.10 d | 0.91 ± 0.09 a | 0.61 ± 0.12 b | 0.54 ± 0.09 c |
Variables | TPC | TFC | TTC | DPPH | FRAP | ABTS |
---|---|---|---|---|---|---|
TFC | 0.982 ** | |||||
TTC | 0.124 | 0.040 | ||||
DPPH | −0.482 | −0.485 | 0.744 | |||
ABTS | −0.400 | −0.353 | 0.653 | 0.960 * | ||
FRAP | −0.369 | −0.477 | −0.402 | −0.396 | −0.604 | |
TAC | −0.221 | −0.067 | 0.125 | 0.550 | 0.756 | −0.799 |
No. | Compound Name | Moleular Formula | RT (min) | Ionization (ESI−/ESI+) | Molecular Weight | Theoretical Weight (m/z) | Observed Weight (m/z) | Error (ppm) | MS/MS Product Ions | Samples |
---|---|---|---|---|---|---|---|---|---|---|
Phenolic acids | ||||||||||
Hydroxycinnamic acids | ||||||||||
1 | 1,5-Dicaffeoylquinic acid | C25H24O12 | 4.134 | [M − H]− | 516.1268 | 515.1195 | 515.1198 | 0.6 | 353, 335, 191, 179 | NE |
2 | Isoferulic acid 3-sulfate | C10H10O7S | 5.341 | [M − H]− | 274.0147 | 273.0074 | 273.0067 | −2.6 | 193, 178 | PL |
3 | Cinnamic acid | C9H8O2 | 9.317 | [M − H]− | 148.0524 | 147.0451 | 147.0449 | −1.4 | 103 | NE, *AP, PL |
4 | Caffeoyl glucose | C15H18O9 | 14.833 | [M − H]− | 342.0951 | 341.0878 | 341.0887 | 2.6 | 179, 161 | NE, *PL |
5 | p-Coumaric acid 4-O-glucoside | C15H18O8 | 14.953 | [M − H]− | 326.1002 | 325.0929 | 325.0926 | −0.9 | 163 | *PE, PL |
6 | 3-Caffeoylquinic acid | C16H18O9 | 20.038 | [M − H]− | 354.0951 | 353.0878 | 353.0864 | −4.0 | 253, 190, 144 | *NE, AP, PE, PL |
7 | 3-Feruloylquinic acid | C17H20O9 | 20.817 | [M − H]− | 368.1107 | 367.1034 | 367.1023 | −3.0 | 298, 288, 192, 191 | NE, AP, *PE, PL |
8 | Ferulic acid 4-O-glucuronide | C16H18O10 | 22.305 | [M − H]− | 370.0900 | 369.0827 | 369.0826 | −0.3 | 193 | AP, *PL |
9 | Ferulic acid | C10H10O4 | 23.467 | [M − H]− | 194.0579 | 193.0506 | 193.0501 | −2.6 | 178, 149, 134 | *NE, PL, AP |
10 | Ferulic acid 4-O-glucoside | C16H20O9 | 23.500 | [M − H]− | 356.1107 | 355.1034 | 355.1032 | −0.6 | 193, 178, 149, 134 | *NE, AP, PL |
11 | 3-p-Coumaroylquinic acid | C16H18O8 | 27.013 | [M − H]− | 338.1002 | 337.0929 | 337.0918 | −3.3 | 265, 173, 162 | PL, *PE, AP, NE |
12 | m-Coumaric acid | C9H8O3 | 27.808 | [M − H]− | 164.0473 | 163.0400 | 163.0394 | −3.7 | 119 | *NE, AP, PE, PL |
13 | Caffeic acid | C9H8O4 | 32.032 | [M − H]− | 180.0423 | 179.0350 | 179.0347 | −1.7 | 143, 133 | *NE, PL |
14 | 1-Sinapoyl-2-feruloylgentiobiose | C33H40O18 | 36.370 | [M − H]− | 724.2215 | 723.2142 | 723.2124 | −2.5 | 529, 499 | AP |
15 | Hydroxycaffeic acid | C9H8O5 | 37.033 | [M − H]− | 196.0372 | 195.0299 | 195.0298 | −0.5 | 151 | PE, *PL |
16 | 3-Sinapoylquinic acid | C18H22O10 | 41.574 | [M − H]− | 398.1213 | 397.1140 | 397.1129 | −2.8 | 233, 179 | NE |
Hydroxybenzoic acids | ||||||||||
17 | Ellagic acid acetyl-xyloside | C21H16O13 | 4.101 | [M − H]− | 476.0591 | 475.0518 | 475.0498 | −4.2 | 301 | PE |
18 | Gallic acid 4-O-glucoside | C13H16O10 | 6.914 | [M − H]− | 332.0743 | 331.0670 | 331.0675 | 1.5 | 169, 125 | *PL, AP |
19 | Protocatechuic acid 4-O-glucoside | C13H16O9 | 7.382 | [M − H]− | 316.0794 | 315.0721 | 315.0732 | 3.5 | 153 | *PE, APt, PL |
20 | 2-Hydroxybenzoic acid | C7H6O3 | 20.237 | [M − H]− | 138.0317 | 137.0244 | 137.0240 | −2.9 | 93 | *NE, AP, PE |
21 | 2,3-Dihydroxybenzoic acid | C7H6O4 | 32.082 | [M − H]− | 154.0266 | 153.0193 | 153.0190 | −2.0 | 109 | *NE, PE, PL |
22 | 3-O-Methylgallic acid | C8H8O5 | 84.390 | **[M + H]+ | 184.0372 | 185.0445 | 185.0450 | 2.7 | 170, 142 | PE |
Hydroxyphenylpropanoic acids | ||||||||||
23 | Dihydroferulic acid 4-O-glucuronide | C16H20O10 | 5.689 | [M − H]− | 372.1056 | 371.0983 | 371.0988 | 1.3 | 195 | NE, AP, *PL |
24 | 3-Hydroxy-3-(3-hydroxyphenyl)propionic acid | C9H10O4 | 7.083 | [M − H]− | 182.0579 | 181.0506 | 181.0511 | 2.8 | 163, 135, 119 | PE |
25 | Dihydrocaffeic acid 3-O-glucuronide | C15H18O10 | 17.454 | [M − H]− | 358.0900 | 357.0827 | 357.0819 | −2.2 | 181 | PE |
Hydroxyphenylacetic acids | ||||||||||
26 | 3,4-Dihydroxyphenylacetic acid | C8H8O4 | 20.715 | [M − H]− | 168.0423 | 167.0350 | 167.0344 | −3.6 | 149, 123 | NE, *AP, PE, PL |
Flavonoids | ||||||||||
Flavonols | ||||||||||
27 | Isorhamnetin | C16H12O7 | 27.076 | [M − H]− | 316.0583 | 315.0510 | 315.0504 | −1.9 | 300, 271 | PL |
28 | Myricetin 3-O-rutinoside | C27H30O17 | 32.960 | [M − H]− | 626.1483 | 625.1410 | 625.1399 | −1.8 | 301 | *NE, PE |
29 | Quercetin 3-O-glucosyl-xyloside | C26H28O16 | 34.730 | [M − H]− | 596.1377 | 595.1304 | 595.1290 | −2.4 | 265, 138, 116 | NE, *PL |
30 | Kaempferol 3,7-O-diglucoside | C27H30O16 | 37.284 | [M − H]− | 610.1534 | 609.1461 | 609.1445 | −2.6 | 447, 285 | *NE, AP, PE, PL |
31 | Myricetin 3-O-rhamnoside | C21H20O12 | 39.355 | [M − H]− | 464.0955 | 463.0882 | 463.0874 | −1.7 | 317 | *NE, PE, PL |
32 | Kaempferol 3-O-glucosyl-rhamnosyl-galactoside | C33H40O20 | 40.283 | [M − H]− | 756.2113 | 755.2040 | 755.2064 | 3.2 | 285 | *PE, PL |
33 | Kaempferol 3-O-(2″-rhamnosyl-galactoside) 7-O-rhamnoside | C33H40O19 | 42.036 | [M − H]− | 740.2164 | 739.2091 | 739.2106 | 2.0 | 593, 447, 285 | AP, *PL |
34 | Quercetin 3-O-arabinoside | C20H18O11 | 42.798 | [M − H]− | 434.0849 | 433.0776 | 433.0772 | −0.9 | 301 | PE, *PL |
Flavanols | ||||||||||
35 | Procyanidin dimer B1 | C30H26O12 | 17.139 | [M − H]− | 578.1424 | 577.1351 | 577.1342 | −1.6 | 451 | NE, *PE, PL |
36 | Procyanidin trimer C1 | C45H38O18 | 19.177 | [M − H]− | 866.2058 | 865.1985 | 865.1959 | −3.0 | 739, 713, 695 | *PE, PL |
37 | Cinnamtannin A2 | C60H50O24 | 19.422 | [M − H]− | 1154.2692 | 1153.2619 | 1153.2609 | −0.9 | 739 | PL |
38 | (+)-Catechin | C15H14O6 | 19.704 | [M − H]− | 290.0790 | 289.0717 | 289.0717 | 0.0 | 245, 205, 179 | *AP, PL, PE |
39 | 4′-O-Methyl-(-)-epigallocatechin 7-O-glucuronide | C22H24O13 | 32.112 | [M − H]− | 496.1217 | 495.1144 | 495.1138 | −1.2 | 451, 313 | NE, PE, *PL |
Flavones | ||||||||||
40 | Apigenin 7-O-(6″-malonyl-apiosyl-glucoside) | C29H30O17 | 4.416 | [M − H]− | 650.1483 | 649.1410 | 649.1429 | 2.9 | 605 | PE |
41 | Apigenin 6,8-di-C-glucoside | C27H30O15 | 43.461 | [M − H]− | 594.1585 | 593.1512 | 593.1500 | −2.0 | 503, 473 | *AP, PE, PL |
42 | 6-Hydroxyluteolin 7-O-rhamnoside | C21H20O11 | 46.460 | [M − H]− | 448.1006 | 447.0933 | 447.0938 | 1.1 | 301 | *AP, PE, PL |
43 | Apigenin 6-C-glucoside | C21H20O10 | 55.256 | [M − H]− | 432.1056 | 431.0983 | 431.0984 | 0.2 | 413, 341, 311 | PL |
Isoflavonoids | ||||||||||
44 | 6″-O-Acetyldaidzin | C23H22O10 | 4.413 | [M − H]− | 458.1213 | 457.1140 | 457.1125 | −3.3 | 221 | PL |
45 | Violanone | C17H16O6 | 20.267 | [M − H]− | 316.0947 | 315.0874 | 315.0868 | −1.9 | 300, 285, 135 | PL |
46 | 3′-Hydroxydaidzein | C15H10O5 | 81.970 | [M + H]+ | 270.0528 | 271.0601 | 271.0610 | 3.3 | 253, 241, 225 | AP |
Flavanones | ||||||||||
47 | Neoeriocitrin | C27H32O15 | 34.931 | [M − H]− | 596.1741 | 595.1668 | 595.1650 | −3.0 | 431, 287 | NE |
48 | Narirutin | C27H32O14 | 41.624 | [M − H]− | 580.1792 | 579.1719 | 579.1696 | −4.0 | 271 | NE |
49 | Hesperetin 3′-O-glucuronide | C22H22O12 | 46.562 | [M − H]− | 478.1111 | 477.1038 | 477.1044 | 1.3 | 301, 175, 113, 85 | NE, *PE |
Dihydroflavonols | ||||||||||
50 | Dihydroquercetin | C15H12O7 | 5.775 | [M − H]− | 304.0583 | 303.0510 | 303.0507 | −1.0 | 285, 275, 151 | PE |
51 | Dihydromyricetin 3-O-rhamnoside | C21H22O12 | 23.846 | [M − H]− | 466.1111 | 465.1038 | 465.1050 | 2.6 | 301 | *NE, PE, PL |
52 | Dihydroquercetin 3-O-rhamnoside | C21H22O11 | 27.029 | [M − H]− | 450.1162 | 449.1089 | 449.1069 | −4.5 | 303 | NE |
Anthocyanins | ||||||||||
53 | Cyanidin 3-O-(2-O-(6-O-(E)-caffeoyl-D glucoside)-D-glucoside)-5-O-D-glucoside | C43H49O24 | 39.482 | [M + H]+ | 949.2614 | 950.2687 | 950.2676 | −1.2 | 787, 463, 301 | PE |
Dihydrochalcones | ||||||||||
54 | Phloridzin | C21H24O10 | 51.681 | [M − H]− | 436.1369 | 435.1296 | 435.1307 | 2.5 | 273 | PE |
Lignans | ||||||||||
55 | 7-Hydroxymatairesinol | C20H22O7 | 41.309 | [M − H]− | 374.1366 | 373.1293 | 373.1298 | 1.3 | 343, 313, 298, 285 | NE |
Other polyphenols | ||||||||||
Hydroxybenzaldehydes | ||||||||||
56 | 4-Hydroxybenzaldehyde | C7H6O2 | 44.769 | [M − H]− | 122.0368 | 121.0295 | 121.0298 | 2.5 | 77 | PE, *PL |
57 | p-Anisaldehyde | C8H8O2 | 55.681 | **[M + H]+ | 136.0524 | 137.0597 | 137.0599 | 1.5 | 122, 109 | NE, AP, PE, *PL |
Hydroxycoumarins | ||||||||||
58 | Scopoletin | C10H8O4 | 36.851 | [M − H]− | 192.0423 | 191.0350 | 191.0345 | −2.6 | 176 | AP |
Tyrosols | ||||||||||
59 | 3,4-DHPEA-AC | C10H12O4 | 11.802 | [M − H]− | 196.0736 | 195.0663 | 195.0657 | −3.1 | 135 | AP |
No. | Compound Name | Peach (mg/g fw) | Nectarine (mg/g fw) | Plum (mg/g fw) | Apricot (mg/g fw) | Phenolic Class |
---|---|---|---|---|---|---|
1 | Gallic acid | 2.98 ± 0.18 a | - | 2.75 ± 0.22 a | 1.25 ± 0.06 b | Phenolic acids |
2 | Protocatechuic acid | - | 1.27 ± 0.09 c | 3.12 ± 0.15 a | 2.47 ± 0.22 b | Phenolic acids |
3 | p-Hydroxybenzoic acid | 18.64 ± 1.30 a | 9.67 ± 0.48 b | 14.25 ± 0.99 a | 3.69 ± 0.26 c | Phenolic acids |
4 | Chlorogenic acid | 15.96 ± 0.80 a | 3.59 ± 0.32 c | 12.35 ± 0.74 a | 4.58 ± 0.23 b | Phenolic acids |
5 | Caffeic acid | 0.98 ± 0.06 c | 4.58 ± 0.27 a | 3.29 ± 0.26 b | - | Phenolic acids |
6 | Catechin | 7.45 ± 0.59 c | 9.64 ± 0.58 b | 14.58 ± 1.31 a | 7.58 ± 0.61 c | Flavonoids |
7 | Epicatechin | 1.25 ± 0.08 b | 0.78 ± 0.04 c | 2.39 ± 0.19 a | 1.39 ± 0.11 b | Flavonoids |
8 | Epicatechin gallate | 2.45 ± 0.12 a | - | - | 0.98 ± 0.06 b | Flavonoids |
9 | Quercetin | 19.68 ± 1.38 a | 12.47 ± 0.87 b | 14.78 ± 1.18 b | 6.37 ± 0.45 c | Flavonoids |
10 | Kaempferol | 5.98 ± 0.36 b | 2.17 ± 0.20 c | 7.98 ± 0.40 a | 1.87 ± 0.16 c | Flavonoids |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants 2021, 10, 234. https://doi.org/10.3390/antiox10020234
Hong Y, Wang Z, Barrow CJ, Dunshea FR, Suleria HAR. High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants. 2021; 10(2):234. https://doi.org/10.3390/antiox10020234
Chicago/Turabian StyleHong, Yili, Zening Wang, Colin J. Barrow, Frank R. Dunshea, and Hafiz A. R. Suleria. 2021. "High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities" Antioxidants 10, no. 2: 234. https://doi.org/10.3390/antiox10020234
APA StyleHong, Y., Wang, Z., Barrow, C. J., Dunshea, F. R., & Suleria, H. A. R. (2021). High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants, 10(2), 234. https://doi.org/10.3390/antiox10020234