LC-MS Based Analysis and Biological Properties of Pseudocedrela kotschyi (Schweinf.) Harms Extracts: A Valuable Source of Antioxidant, Antifungal, and Antibacterial Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Preparation of Extracts
2.3. Determination of Secondary Metabolites
2.4. LC-MSn Analysis
2.5. Determination of Antioxidant Capacity
2.6. Determination of Enzyme Inhibitory Effect
2.7. Antimicrobial Activities
2.8. Computational Tests
2.8.1. Receptor Preparation
2.8.2. Self-Docking Validation
2.8.3. Ligand Preparation
2.9. Molecular Docking
2.10. Data Analysis
3. Results
3.1. Chemical Composition
3.2. In Vitro Antioxidant Properties and Enzyme Inhibitory Activities
3.3. Antifungal and Antibacterial Activities
3.4. Antioxidant, Enzyme Inhibitory, Antifungal, and Antibacterial Activities Variation among Extraction Solvents and Plant Parts
3.5. Molecular Docking
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Lautié, E.; Russo, O.; Ducrot, P.; Boutin, J.A. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front. Pharmacol. 2020, 11, 397. [Google Scholar] [CrossRef] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Shakya, A.K. Medicinal plants: Future source of new drugs. Int. J. Herb. Med. 2016, 4, 59–64. [Google Scholar]
- Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 2012, 3, 200. [Google Scholar] [CrossRef]
- Di, Y.T. The advances in the limonoid chemistry of the Meliaceae family. Curr. Org. Chem. 2011, 15, 1363–1391. [Google Scholar]
- Alhassan, A.M.; Ahmed, Q.U.; Malami, I.; Zakaria, Z.A. Pseudocedrela kotschyi: A review of ethnomedicinal uses, pharmacology and phytochemistry. Pharm. Biol. 2021, 59, 955–963. [Google Scholar] [CrossRef]
- Jolanta, P.; Daniel Jan, S.; Agata, K.; Stanislaw, L. Variability of biological activities of limonoids derived from plant sources. Mini Rev. Org. Chem. 2014, 11, 269–279. [Google Scholar] [CrossRef]
- Tan, Q.-G.; Luo, X.-D. Meliaceous limonoids: Chemistry and biological activities. Chem. Rev. 2011, 111, 7437–7522. [Google Scholar] [CrossRef]
- Castillo-Sánchez, L.E.; Jiménez-Osornio, J.J.; Delgado-Herrera, M.A. Secondary metabolites of the Annonaceae, Solanaceae and Meliaceae families used as biological control of insects. Trop. Subtrop. Agroecosyst. 2010, 12, 445–462. [Google Scholar]
- Georgewill, U.O.; Georgewill, O.A. Effect of extract of Pseudocedrela kotschyi on blood glucose conccentration of alloxan induced diabetic albino rats. East. J. Med. 2009, 14, 17. [Google Scholar]
- Ojewale, A.O.; Adekoya, A.O.; Odukanmi, O.A.; Olaniyan, O.T.; Samson, O. Protective effect of ethanolic roots extract of Pseudocedrela kotschyi (Pk) on some hematological and biochemical parameters in alloxan-induced diabetic rats. World J. Pharm. Pharm. Sci. 2013, 2, 852–866. [Google Scholar]
- Akah, P.; Nwafor, S.; Okoli, C.; Orji, U. Evaluation of the antiulcer properties of Pseudocedrela kotschyi Stem Bark Extract. Discov. Innov. 2001, 13, 132–135. [Google Scholar]
- Akuodor, G.; Essien, A.; Essiet, G.; David-Oku, E.; Akpan, J.; Udoh, F. Evaluation of antipyretic potential of Pseudocedrela kotschyi Schweint. Harms (Meliaceae). Eur. J. Med. Plants 2013, 105–113. [Google Scholar] [CrossRef]
- Essiet, G.A.; Christian, A.G.; Ogbonna, A.D.; Uchenna, M.A.; Azubuike, E.J.; Michael, N.E. Antidiarrhoeal and antioxidant properties of ethanol leaf extract of Pseudocedrela kotschyi. J. Appl. Pharm. Sci. 2016, 6, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Hay, A.-E.; Ioset, J.-R.; Ahua, K.M.; Diallo, D.; Brun, R.; Hostettmann, K. Limonoid orthoacetates and antiprotozoal compounds from the roots of Pseudocedrela kotschyi. J. Nat. Prod. 2007, 70, 9–13. [Google Scholar] [CrossRef]
- Kassim, O.O.; Copeland, R.L.; Kenguele, H.M.; Nekhai, S.; Ako-Nai, K.A.; Kanaan, Y.M. Antiproliferative activities of Fagara xanthoxyloides and Pseudocedrela kotschyi against prostate cancer cell lines. Anticancer Res. 2015, 35, 1453–1458. [Google Scholar]
- Otimenyin, S.; Uguru, M.; Atang, B. Antiinflamatory and analgesic activities of Ficus thonningii and Pseudocedrela kotschyi extracts. Niger. J. Pharm. Res. 2004, 3, 82–85. [Google Scholar] [CrossRef]
- Alhassan, A.M.; Malami, I.; Abdullahi, M.I. Phytochemical screening and antimicrobial évaluation of stem bark extract of Pseudocedrela kotschyi (Schweinf.) Herms. J. Pharm. Res. Int. 2014, 1937–1944. [Google Scholar] [CrossRef]
- Asase, A.; Kokubun, T.; Grayer, R.J.; Kite, G.; Simmonds, M.S.; Oteng-Yeboah, A.A.; Odamtten, G.T. Chemical constituents and antimicrobial activity of medicinal plants from Ghana: Cassia sieberiana, Haematostaphis barteri, Mitragyna inermis and Pseudocedrela kotschyi. Phytother. Res. 2008, 22, 1013–1016. [Google Scholar] [CrossRef]
- Atinga, V.; Ahmed, A.; Nuhu, H.; Ayeni, E.; Dauda, G. Phytochemical and Structure Elucidation of Stigmasterol from the Stem Bark of Pseudocedrela kotschyi (Harms)(Meliaceae). Asian J. Res. Med. Pharm. Sci. 2018, 1–7. [Google Scholar] [CrossRef]
- Ekong, D.; Olagbemi, E. Novel meliacins (limonoids) from the wood of Pseudocedrela kotschyii. Tetrahedron Lett. 1967, 8, 3525–3527. [Google Scholar] [CrossRef]
- Niven, M.L.; Taylor, D.A. Revision of the structure of the limonoid pseudrelone B from Pseudocedrela kotschyii. Phytochemistry 1988, 27, 1542. [Google Scholar] [CrossRef]
- Oliver-Bever, B. Medicinal Plants in Tropical West Africa; Cambridge University Press: Cambridge, UK, 1986. [Google Scholar]
- Vladimir-Knežević, S.; Blažeković, B.; Bival Štefan, M.; Alegro, A.; Kőszegi, T.; Petrik, J. Antioxidant activities and polyphenolic contents of three selected Micromeria species from Croatia. Molecules 2011, 16, 1454–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zengin, G.; Aktumsek, A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complementary Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Berman, H.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.; Weissig, H.; Shindyalov, I.; Bourne, P. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011, 50, 5477–5486. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Schrödinger, 2017–3: Maestro; Schrödinger: New York, NY, USA, 2017.
- Jacobson, M.P.; Kaminski, G.A.; Friesner, R.A.; Rapp, C.S. Force field validation using protein side chain prediction. J. Phys. Chem. B 2002, 106, 11673–11680. [Google Scholar] [CrossRef] [Green Version]
- Placines, C.; Castañeda-Loaiza, V.; João Rodrigues, M.; Pereira, C.G.; Stefanucci, A.; Mollica, A.; Zengin, G.; Llorent-Martínez, E.J.; Castilho, P.C.; Custódio, L. Phenolic Profile, Toxicity, Enzyme Inhibition, In Silico Studies, and Antioxidant Properties of Cakile maritima Scop. (Brassicaceae) from Southern Portugal. Plants 2020, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Llorent-Martínez, E.J.; Zengin, G.; Fernández-de Córdova, M.L.; Bender, O.; Atalay, A.; Ceylan, R.; Mollica, A.; Mocan, A.; Uysal, S.; Guler, G.O.; et al. Traditionally Used Lathyrus Species: Phytochemical Composition, Antioxidant Activity, Enzyme Inhibitory Properties, Cytotoxic Effects, and in silico Studies of L. czeczottianus and L. nissolia. Front. Pharmacol. 2017, 8, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uysal, S.; Aktumsek, A.; Picot, C.M.N.; Sahan, A.; Mollica, A.; Zengin, G.; Fawzi Mahomoodally, M. A comparative in vitro and in silico study of the biological potential and chemical fingerprints of Dorcycinum pentapyllum subsp. haussknechtii using three extraction procedures. New J. Chem. 2017, 41, 13952–13960. [Google Scholar] [CrossRef]
- Bender, O.; Llorent-Martínez, E.J.; Zengin, G.; Mollica, A.; Ceylan, R.; Molina-García, L.; Fernández-de Córdova, M.L.; Atalay, A. Integration of in vitro and in silico perspectives to explain chemical characterization, biological potential and anticancer effects of Hypericum salsugineum: A pharmacologically active source for functional drug formulations. PLoS ONE 2018, 13, e0197815. [Google Scholar] [CrossRef]
- Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997, 267, 727–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanucci, A.; Dimmito, M.P.; Tenore, G.; Pieretti, S.; Minosi, P.; Zengin, G.; Sturaro, C.; Calò, G.; Novellino, E.; Cichelli, A.; et al. Plant-derived peptides rubiscolin-6, soymorphin-6 and their c-terminal amide derivatives: Pharmacokinetic properties and biological activity. J. Funct. Foods 2020, 73, 104154. [Google Scholar] [CrossRef]
- Stefanucci, A.; Lei, W.; Pieretti, S.; Novellino, E.; Dimmito, M.P.; Marzoli, F.; Streicher, J.M.; Mollica, A. On resin click-chemistry-mediated synthesis of novel enkephalin analogues with potent anti-nociceptive activity. Sci. Rep. 2019, 9, 5771. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, M.; Yerlikaya, S.; Baloglu, M.C.; Zengin, G.; Altunoglu, Y.C.; Cacciagrano, F.; Campestre, C.; Mahomoodally, M.F.; Mollica, A. Investigations into the therapeutic potential of Asphodeline liburnica roots: In vitro and in silico biochemical and toxicological perspectives. Food Chem. Toxicol. 2018, 120, 172–182. [Google Scholar] [CrossRef]
- Schrödinger, 2017–3: LigPrep; Schrödinger: New York, NY, USA, 2017.
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L. OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 2015, 12, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Sadeer, N.B.; Llorent-Martínez, E.J.; Bene, K.; Mahomoodally, M.F.; Mollica, A.; Sinan, K.I.; Stefanucci, A.; Ruiz-Riaguas, A.; Fernández-de Córdova, M.L.; Zengin, G. Chemical profiling, antioxidant, enzyme inhibitory and molecular modelling studies on the leaves and stem bark extracts of three African medicinal plants. J. Pharm. Biomed. Anal. 2019, 174, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Llorent-Martínez, E.J.; Zengin, G.; Lobine, D.; Molina-García, L.; Mollica, A.; Mahomoodally, M.F. Phytochemical characterization, in vitro and in silico approaches for three Hypericum species. New J. Chem. 2018, 42, 5204–5214. [Google Scholar] [CrossRef]
- Zengin, G.; Lobine, D.; Mollica, A.; Locatelli, M.; Carradori, S.; Mahomoodally, M.F. Multiple pharmacological approaches on Fibigia eriocarpa extracts by in vitro and computational assays. Fundam. Clin. Pharmacol. 2018, 32, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Pinto, G.; De Pascale, S.; Aponte, M.; Scaloni, A.; Addeo, F.; Caira, S. Polyphenol Profiling of Chestnut Pericarp, Integument and Curing Water Extracts to Qualify These Food By-Products as a Source of Antioxidants. Molecules 2021, 26, 2335. [Google Scholar] [CrossRef]
- Friedrich, W.; Eberhardt, A.; Galensa, R. Investigation of proanthocyanidins by HPLC with electrospray ionization mass spectrometry. Eur. Food Res. Technol. 2000, 211, 56–64. [Google Scholar] [CrossRef]
- Kachlicki, P.; Piasecka, A.; Stobiecki, M.; Marczak, Ł. Structural characterization of flavonoid glycoconjugates and their derivatives with mass spectrometric techniques. Molecules 2016, 21, 1494. [Google Scholar] [CrossRef] [Green Version]
- Vukics, V.; Guttman, A. Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom. Rev. 2010, 29, 1–16. [Google Scholar] [CrossRef]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Annamala, M.K.; Inampudi, K.K.; Guruprasad, L. Docking of phosphonate and trehalose analog inhibitors into M. tuberculosis mycolyltransferase Ag85C: Comparison of the two scoring fitness functions GoldScore and ChemScore, in the GOLD software. Bioinformation 2007, 1, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.-O.; Dommes, J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009, 113, 1226–1233. [Google Scholar] [CrossRef]
- Abubakar, K.; Danjuma, N.; Maiha, B.; Anuka, J.; Magaji, M.; Malami, S. In Vitro and in Vivo Antioxidant Effect of the Stem Bark Extract of Pseudocedrela kotschyi in Pentylenetetrazole-kindled Rats. Niger. J. Pharm. Appl. Sci. Res. 2016, 5, 7–15. [Google Scholar]
- Dafam, D.G.; Agunu, A.; Ibrahim, H.; Ojerinde, O.S.; Ohemu, T.L.; Okwori, V.A.; Olotu, P.N.; Ilyas, N. Phytochemical screening and antioxidant activity of Pseudocedrela kotschyi Schweinf Harms (Meliaceae) and Strophanthus sarmentosus DC (Apocynaceae). J. Pharm. Bioresour. 2018, 15, 78–83. [Google Scholar] [CrossRef]
- Eleha, S.I.; Ola, M.A.; Oyewole, O.S.; Ganiyu, A.O.; Onaolapo, A.O.; Afodun, A.M. Anti-oxidative and Hepato-protective Effects of Pseudocedrela kotschyi against Paracetamol Induced Liver Damage: A Biochemical and Histological Evaluation in Rats. J. Adv. Med. Pharm. Sci. 2016, 1–11. [Google Scholar] [CrossRef]
- Khlebnikov, A.I.; Schepetkin, I.A.; Domina, N.G.; Kirpotina, L.N.; Quinn, M.T. Improved quantitative structure–activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorganic Med. Chem. 2007, 15, 1749–1770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masek, A.; Chrzescijanska, E.; Latos, M.; Zaborski, M. Influence of hydroxyl substitution on flavanone antioxidants properties. Food Chem. 2017, 215, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.-G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef]
- Van Acker, S.A.; Tromp, M.N.; Griffioen, D.H.; Van Bennekom, W.P.; Van Der Vijgh, W.J.; Bast, A. Structural aspects of antioxidant activity of flavonoids. Free Radic. Biol. Med. 1996, 20, 331–342. [Google Scholar] [CrossRef]
- Sut, S.; Dall’Acqua, S.; Sinan, K.I.; Bene, K.; Kumar, G.; Mahomoodally, M.F.; Picot-Allain, C.; Zengin, G. Cola caricifolia (G. Don) K. Schum and Crotalaria retusa L. from Ivory Coast as sources of bioactive constituents. Ind. Crop. Prod. 2020, 147, 112246. [Google Scholar] [CrossRef]
- Horbańczuk, O.K.; Kurek, M.A.; Atanasov, A.G.; Brnčić, M.; Brnčić, S.R. The Effect of Natural Antioxidants on Quality and Shelf Life of Beef and Beef Products. Food Technol. Biotechnol. 2019, 57, 439. [Google Scholar] [CrossRef] [PubMed]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef]
- Fernandez-Panchon, M.; Villano, D.; Troncoso, A.; Garcia-Parrilla, M. Antioxidant activity of phenolic compounds: From in vitro results to in vivo evidence. Crit. Rev. Food Sci. Nutr. 2008, 48, 649–671. [Google Scholar] [CrossRef]
- Martins, N.; Barros, L.; Ferreira, I.C. In vivo antioxidant activity of phenolic compounds: Facts and gaps. Trends Food Sci. Technol. 2016, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Marucci, G.; Buccioni, M.; Dal Ben, D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2020, 190, 108352. [Google Scholar] [CrossRef]
- Khan, H.; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother. 2018, 101, 860–870. [Google Scholar] [CrossRef]
- Okello, E.J.; Mather, J. Comparative kinetics of acetyl-and butyryl-cholinesterase inhibition by green tea catechins|relevance to the symptomatic treatment of Alzheimer’s disease. Nutrients 2020, 12, 1090. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.A.; Cho, E.J.; Yokozawa, T. Effects of proanthocyanidin preparations on hyperlipidemia and other biomarkers in mouse model of type 2 diabetes. J. Agric. Food Chem. 2008, 56, 7781–7789. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Wu, L.-Y.; Hwang, L.S. Effect of a proanthocyanidin-rich extract from longan flower on markers of metabolic syndrome in fructose-fed rats. J. Agric. Food Chem. 2008, 56, 11018–11024. [Google Scholar] [CrossRef]
- Apraj, V.D.; Pandita, N.S. Evaluation of skin anti-aging potential of Citrus reticulata blanco peel. Pharmacogn. Res. 2016, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Yodkeeree, S.; Thippraphan, P.; Punfa, W.; Srisomboon, J.; Limtrakul, P. Skin anti-aging assays of proanthocyanidin rich red rice extract, oryzanol and other phenolic compounds. Nat. Prod. Commun. 2018, 13, 1934578X1801300812. [Google Scholar] [CrossRef] [Green Version]
- Archer, D.L.; Young, F.E. Contemporary issues: Diseases with a food vector. Clin. Microbiol. Rev. 1988, 1, 377–398. [Google Scholar] [CrossRef]
- Alain, K.Y.; Oronce, D.O.; Boniface, Y.; Mhudro, Y.; Pascal, A.D.C.; Paul, T.F.; Alain, A.G.; Akpovi, A.; Dominique, S.K. Free radical scavenging and antibacterial potential of two plants extracts (Khaya senegalensis and Pseudocedrela kotschyi) used in veterinary pharmacopoeia in Benin. Elixir Appl. Chem. 2014, 76, 28720–28726. [Google Scholar]
- Ayo, R.; Audu, O.; Ndukwe, G.; Ogunshola, A. Antimicrobial activity of extracts of leaves of Pseudocedrela kotschyi (Schweinf.) Harms. Afr. J. Biotechnol. 2010, 9, 7733–7737. [Google Scholar]
- Akande, J.; Hayashi, Y. Potency of extract contents from selected tropical chewing sticks against Staphylococcus aureus and Staphylococcus auricularis. World J. Microbiol. Biotechnol. 1997, 14, 235–238. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Patel, S.; Pan, X.; Naz, S.; Silva, A.S.; Saeed, F.; Suleria, H.A.R. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef] [PubMed]
- De la Iglesia, R.; Milagro, F.I.; Campión, J.; Boqué, N.; Martínez, J.A. Healthy properties of proanthocyanidins. Biofactors 2010, 36, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Rempe, C.S.; Burris, K.P.; Lenaghan, S.C.; Stewart, C.N., Jr. The potential of systems biology to discover antibacterial mechanisms of plant phenolics. Front. Microbiol. 2017, 8, 422. [Google Scholar] [CrossRef] [Green Version]
- Ansari, M.A.; Anurag, A.; Fatima, Z.; Hameed, S. Natural phenolic compounds: A potential antifungal agent. Microb. Pathog. Strateg. Combat. Sci. Technol. Educ. 2013, 1, 1189–1195. [Google Scholar]
- Dirar, A.; Alsaadi, D.; Wada, M.; Mohamed, M.; Watanabe, T.; Devkota, H. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 2019, 120, 261–267. [Google Scholar] [CrossRef]
- De la Luz Cádiz-Gurrea, M.; Sinan, K.I.; Zengin, G.; Bene, K.; Etienne, O.K.; Leyva-Jiménez, F.J.; Fernández-Ochoa, Á.; del Carmen Villegas-Aguilar, M.; Mahomoodally, M.F.; Lobine, D. Bioactivity assays, chemical characterization, ADMET predictions and network analysis of Khaya senegalensis A. Juss (Meliaceae) extracts. Food Res. Int. 2020, 139, 109970. [Google Scholar] [CrossRef] [PubMed]
Compound Name | GOLD Fitness Score (Gold Score) |
---|---|
Epigallocatechin | 54.83 |
Prodelphynidin B3 | 68.18 |
Procyanidin B2 | 52.04 |
Procyanidin B3 | 66.74 |
Catechin | 58.02 |
Epicatechin | 54.97 |
Quinic acid | 50.97 |
Myricetin-7-glucoside | 57.64 |
Myricetin-3-rutinoside | 53.46 |
Quercetin-3-O-rutinoside | 55.53 |
p-Value | Leaves Methanol | Leaves Water | Stem Bark Methanol | Stem Bark Water | |
---|---|---|---|---|---|
Total phenolic content (mg GAE/g) | 0.0001 | 127.18 ± 1.85 b | 126.81 ± 0.89 b | 131.83 ± 1.81 a | 125.67 ± 0.89 b |
Total flavonoid content (mg RE/g) | 0.0001 | 43.79 ± 0.30 b | 44.95 ± 0.38 a | 0.63 ± 0.17 d | 3.30 ± 0.14 c |
Total phenolic acids content (mg CAE/g) | 0.0001 | 24.88 ± 0.58 c | 63.58 ± 2.00 a | 54.44 ± 2.91 b | 53.76 ± 4.01 b |
Total flavanols content (mg CE/g) | 0.0001 | 7.77 ± 0.06 b | 5.99 ± 0.05 d | 14.14 ± 0.11 a | 6.24 ± 0.01 c |
Retention Time (min) | Identification | [M−H]− HR-MS | Molecular Formula (Exact Mass) | Fragments | Leaves Methanol | Leaves Water | Stem Bark Methanol | Stem Bark Water |
---|---|---|---|---|---|---|---|---|
2.3 | P1 prodelphynidin gallocatechin-gallocatechin | 609.1263 | C30H25O14 (609.1244) | 441 423 305 297 255 | n.d. | n.d. | 0.74 ± 0.02 | 0.15 ± 0.01 |
2.5 | P2 prodelphynidin B3 isomer 1 | 593.1341 | C30H25O13 (593.1295) | 467 441 425 407 289 | 1.55 ± 0.01 | 0.36 ± 0.01 | 0.94 ± 0.02 | 0.27 ± 0.01 |
3.6 | P3 prodelphynidin gallocatechin-gallocatechin | 609.1265 | C30H25O14 (609.1244) | 441 423 305 297 255 | n.d. | n.d. | 0.47 ± 0.01 | 0.08 ± 0.01 |
5.2 | P4 prodelphynidin B3 isomer 2 | 593.1315 | C30H25O13 (593.1295) | 467 441 425 407 289 | n.d. | n.d. | 1.06 ± 0.01 | 0.16 ± 0.01 |
5.7 | P5 prodelphynidin gallocatechin-gallocatechin | 609.1274 | C30H25O14 (609.1244) | 441 423 305 297 255 | n.d. | n.d. | 0.97 ± 0.01 | 0.09 ± 0.01 |
6.6 | P6 epigallocatechin * | 305.0715 | C15H13O7 (305.0661) | 261 219 218 179 165 125 | 3.32 ± 0.02 | 0.71 ± 0.01 | 1.69 ± 0.02 | 0.63 ± 0.01 |
6.7 | P7 prodelphynidin B3 isomer 3 | 593.132 | C30H25O13 (593.1295) | 467 441 425 407 289 | 1.63 ± 0.01 | 0.77 ± 0.02 | 9.20 ± 0.02 | 0.60 ± 0.01 |
7.0 | P8 prodelphinidin B3 isomer 4 | 593.132 | C30H25O13 (593.1295) | 467 441 425 407 289 | n.d. | 0.77 ± 0.01 | 1.35 ± 0.02 | 0.31 ± 0.01 |
7.3 | P9 prodelphinidin B3 | 593.1332 | C30H25O13 (593.1295) | 467 441 425 407 289 | n.d. | 0.77 ± 0.02 | 1.32 ± 0.02 | 0.57 ± 0.01 |
7.7 | P10 procyanidin B2 * | 577.11394 | C30H25O12 (577.1346) | 451 425 407 289 | 2.08 ± 0.01 | 1.22 ± 0.02 | 3.46 ± 0.02 | 1.26 ± 0.02 |
7.9 | P11 gallocatechin | 305.0742 | C15H13O7 (305.0661) | 261 219 218 179 165 125 | n.d. | 0.71 ± 0.01 | 1.34 ± 0.01 | 0.45 ± 0.01 |
8.3 | P12 procyanidin B dimer | 577.1407 | C30H25O12 (577.1346) | 452 425 407 289 | 3.57 ± 0.02 | 1.45 ± 0.02 | 3.28 ± 0.02 | 1.62 ± 0.02 |
8.6 | P13 catechin * | 289.0761 | C15H13O6(289.0712) | - | - | 0.12 ± 0.02 | 0.21 ± 0.01 | |
9.7 | P14 procyanidin C1 isomer | 865.2001 | C45H37O18 (865.1980) | 739 713 696 577 451 407 | 0.18 ± 0.02 | 0.15 ± 0.03 | 0.32 ± 0.02 | 0.18 ± 0.01 |
8.5 | P15 procyanidin C1 isomer | 865.1995 | C45H37O18 (865.1980) | 739 713 696 577 451 407 | 0.18 ± 0.02 | 0.13 ± 0.02 | 0.26 ± 0.02 | 0.19 ± 0.02 |
9.4 | P16 epicatechin * | 289.0777 | C15H13O6 (289.0712) | 245 205 179 | 14.78 ± 0.02 | 3.08 ± 0.02 | 1.48 ± 0.02 | 0.10 ± 0.01 |
9.4 | P17 galloyl procyanidin B2 | 729.1489 | C37H29O16 (729.1456) | 245 205 179 | 1.47 ± 0.02 | 0.47 ± 0.01 | 0.95 ± 0.02 | 0.11 ± 0.01 |
11.8 | P18 catechin gallate | 441.0823 | C22H17O10 (441.0821) | 577 425 407 289 | nd | nd | 0.37 ± 0.02 | 0.09 ± 0.01 |
12.9 | P19 acetyl Procyanidin dimer | 635.1358 | C32H27O14 (635.1401) | 576 467 423 | n.d. | n.d. | 0.28 ± 0.01 | |
total | 28.7 | 13.7 | 31.0 | 9.1 | ||||
2.1 | O1 quinic acid * | 191.0556 | C7H11O6 (191.0556) | 173 127 111 93 85 | 3.07 ± 0.02 | 3.40 ± 0.01 | 4.18 ± 0.02 | 4.57 ± 0.01 |
3.3 | O2 galloyl glucoside | 331.0649 | C13H15O10 (331.0665) | 271 211 169 125 | 0.11 ± 0.01 | 0.02 ± 0.01 | 0.27 ± 0.01 | 0.02 ± 0.01 |
- | total | 3.18 | 3.42 | 4.45 | 4.59 | |||
9.9 | F1 myricetin-7-O-galloyl glucoside | 631.09351 | C28H23O17 (631.0935) | 479 326 287 271 179 | 0.31 ± 0.01 | 0.20 ± 0.01 | n.d. | n.d. |
10.0 | F2 myrecitin-3-O-rutinoside * | 625.1385 | C27H29O17 (625.1405) | 420 316 | 0.31 ± 0.01 | 0.08 ± 0.01 | 0.01 ± 0.01 | n.d. |
10.2 | F3 myrecitin-7-O-glucoside * | 479.0819 | C21H19O13 (479.0826) | 316 271 179 | 4.24 ± 0.02 | 0.96 ± 0.02 | 0.03 ± 0.01 | n.d. |
10.8 | F4 quercetin-3-O-glucoside gallate | 615.0986 | C28H23O16 (615.0986) | 463 301 271 255 179 152 | 0.27 ± 0.01 | 0.19 ± 0.01 | 0.06 ± 0.01 | n.d. |
11.1 | F5 myricetin-3-O-rutinoside | 463.0876 | C21H19O12 (463.0872) | 316 287 271 179 | 8.92 ± 0.02 | 2.10 ± 0.02 | 0.12 ± 0.01 | 0.08 ± 0.01 |
12.3 | F6 quercetin-3-O-rutinoside * | 447.0925 | C21H19O11 (447.0927) | 301 271 179 151 | 3.47 ± 0.02 | 0.84 ± 0.02 | 0.05 ± 0.01 | n.d. |
12.7 | F7 myricetin-rhamnoside-glucoside | 625.1399 | C27H29O17 (625.1405) | 479 316 271 | 0.25 ± 0.01 | 0.14 ± 0.01 | 0.01 ± 0.01 | n.d. |
13.0 | F8 kaempferol-3-O-rhamnoside * | 431.0958 | C21H19O10 (431.0978) | 285 267 229 | 0.14 ± 0.03 | 0.04 ± 0.01 | 0.01 ± 0.01 | n.d. |
13.2 | F9 methoxy-quercetin | 317.03105 | C15H9O8 (317.0297) | 299 179 151 | 0.49 ± 0.02 | 0.11 ± 0.01 | n.d. | n.d. |
13.6 | F10 quercetin-3-rhamnosyl-7-glucoside | 609.1449 | C27H29O17 (609.1456) | 463 301 151 | 0.21 ± 0.04 | 0.14 ± 0.04 | n.d. | n.d. |
15.0 | F11 quercetin * | 301.041 | C15H9O7 (301.3482) | 179 151 | 0.43 ± 0.01 | 0.44 ± 0.02 | n.d. | n.d. |
total | 18.83 | 5.24 | 0.29 | 0.08 |
p-Value | Leaves Methanol | Leaves Water | Stem Bark Methanol | Stem Bark Water | ||
---|---|---|---|---|---|---|
Antioxidant assays | ABTS (mmol TE/g) | 0.0001 | 2.95 ± 0.02 b | 2.15 ± 0.08 d | 3.31 ± 0.01 a | 2.28 ± 0.04 c |
DPPH (mmol TE/g) | 0.0001 | 1.91 ± 0.01 a | 1.65 ± 0.03 b | 1.94 ± 0.01 a | 1.59 ± 0.08 b | |
CUPRAC (mmol TE/g) | 0.0001 | 3.59 ± 0.07 b | 3.43 ± 0.02 c | 5.09 ± 0.08 a | 3.14 ± 0.01 d | |
FRAP (mmol TE/g) | 0.0001 | 1.86 ± 0.04 c | 2.11 ± 0.01 b | 2.86 ± 0.02 a | 1.66 ± 0.01 d | |
Phosphomolybdenum (mmol TE/g) | 0.0001 | 3.78 ± 0.23 b | 3.48 ± 0.04 bc | 5.16 ± 0.23 a | 3.25 ± 0.09 c | |
Metal chelating (mg EDTAE/g) | 0.0001 | 9.28 ± 0.44 c | 11.56 ± 0.07 b | 17.12 ± 0.46 a | 5.36 ± 0.34 d | |
Enzyme inhibitory assays | AChE inhibition (mg GALAE/g) | 0.0001 | 2.36 ± 0.02 b | 2.27 ± 0.03 c | 2.54 ± 0.02 a | 1.90 ± 0.04 d |
BChE inhibition (mg GALAE/g) | 0.0001 | 3.46 ± 0.16 b | 2.18 ± 0.25 c | 5.48 ± 0.10 a | 3.47 ± 0.25 b | |
Tyrosinase inhibition (mg KAE/g) | 0.0001 | 77.39 ± 0.21 a | 68.32 ± 0.18 c | 75.93 ± 0.68 b | 57.32 ± 0.38 d | |
Amylase inhibition (mmol ACAE/g) | 0.0001 | 0.72 ± 0.01 b | 0.97 ± 0.01 a | 0.67 ± 0.01 c | 0.36 ± 0.01 d | |
Glucosidase inhibition (mmol ACAE/g) | 0.0001 | 0.91 ± 0.02 b | na | 0.97 ± 0.01 a | na | |
Elastase inhibition (mmol CE/g) | 0.0001 | 1.07 ± 0.07 b | 1.98 ± 0.10 a | 2.21 ± 0.12 a | 2.08 ± 0.06 a |
Samples | A.v. | A.o. | A.n. | A.f. | P.o. | P.f. | T.v. | P.v.c | |
---|---|---|---|---|---|---|---|---|---|
Minimum inhibitory concentration (MIC) | Leaves Methanol | 0.21 ± 0.01 a | 0.10 ± 0.01 c | 0.15 ± 0.01 b | 0.20 ± 0.01 a | 0.20 ± 0.01 b | 0.15 ± 0.01 b | 0.10 ± 0.01 c | 0.30 ± 0.01 a |
Leaves Water | 0.10 ± 0.01 c | 0.10 ± 0.01 c | 0.15 ± 0.01 b | 0.21 ± 0.01 a | 0.10 ± 0.01 d | 0.10 ± 0.01 c | 0.11 ± 0.01 c | 0.20 ± 0.01 b | |
Stem Bark Methanol | 0.15 ± 0.01 b | 0.15 ± 0.01 b | 0.20 ± 0.01 a | 0.15 ± 0.01 b | 0.20 ± 0.01 b | 0.20 ± 0.01 a | 0.15 ± 0.01 b | 0.20 ± 0.01 b | |
Stem Bark Water | 0.15 ± 0.01 b | 0.15 ± 0.01 b | 0.21 ± 0.01 a | 0.11 ± 0.01 c | 0.15 ± 0.01 c | 0.15 ± 0.01 b | 0.11 ± 0.01 c | 0.20 ± 0.01 b | |
Ketoconazole | 0.20 ± 0.01 a | 0.20 ± 0.01 a | 0.15 ± 0.01 b | 0.20 ± 0.01 a | 1.00 ± 0.01 a | 0.20 ± 0.01 a | 1.00 ± 0.01 a | 0.20 ± 0.01 b | |
Bifonazole | 0.10 ± 0.01 c | 0.15 ± 0.01 b | 0.10 ± 0.01 c | 0.15 ± 0.01 b | 0.20 ± 0.01 b | 0.20 ± 0.01 a | 0.15 ± 0.01 b | 0.10 ± 0.01 c | |
Minimum fungicidal concentration (MFC) | Leaves Methanol | 0.40 ± 0.01 b | 0.40 ± 0.01 b | 0.21 ± 0.01 b | 0.41 ± 0.01 b | 0.41 ± 0.01 b | 0.20 ± 0.01 d | 0.20 ± 0.01 c | 0.40 ± 0.01 a |
Leaves Water | 0.21 ± 0.01 d | 0.20 ± 0.01 d | 0.20 ± 0.01 b | 0.41 ± 0.01 b | 0.21 ± 0.01 e | 0.21 ± 0.01 d | 0.20 ± 0.01 c | 0.41 ± 0.01 a | |
Stem Bark Methanol | 0.30 ± 0.01 c | 0.30 ± 0.01 c | 0.31 ± 0.01 a | 0.30 ± 0.01 c | 0.30 ± 0.01 c | 0.30 ± 0.01 b | 0.30 ± 0.01 b | 0.30 ± 0.01 b | |
Stem Bark Water | 0.30 ± 0.01 c | 0.31 ± 0.01 c | 0.30 ± 0.01 a | 0.15 ± 0.01 e | 0.30 ± 0.01 c | 0.31 ± 0.01 b | 0.15 ± 0.01 d | 0.30 ± 0.01 b | |
Ketoconazole | 0.50 ± 0.01 a | 0.50 ± 0.01 a | 0.20 ± 0.01 b | 0.50 ± 0.01 a | 1.50 ± 0.01 a | 0.50 ± 0.01 a | 1.50 ± 0.01 a | 0.30 ± 0.01 b | |
Bifonazole | 0.20 ± 0.01 d | 0.20 ± 0.01 d | 0.15 ± 0.01 c | 0.20 ± 0.01 d | 0.25 ± 0.01 d | 0.25 ± 0.01 c | 0.20 ± 0.01 c | 0.20 ± 0.01 c |
Samples | B.c. | M.f. | S.a. | L.m. | E. coli | P.a. | E.c. | S.t. | |
---|---|---|---|---|---|---|---|---|---|
Minimum inhibitory concentration (MIC) | Leaves Methanol | 0.15 ± 0.01 b | 0.31 ± 0.01 a | 0.10 ± 0.01 b | 0.05 ± 0.01 c | 0.30 ± 0.01 b | 0.30 ± 0.01 a | 0.61 ± 0.01 a | 0.60 ± 0.01 a |
Leaves Water | 0.15 ± 0.01 b | 0.30 ± 0.01 a | 0.21 ± 0.01 a | 0.20 ± 0.01 a | 0.31 ± 0.01 b | 0.30 ± 0.01 a | 0.20 ± 0.01 b | 0.15 ± 0.01 b | |
Stem Bark Methanol | 0.11 ± 0.01 c | 0.04 ± 0.01 d | 0.04 ± 0.01 c | 0.04 ± 0.01 d | 0.11 ± 0.01 d | 0.11 ± 0.01 c | 0.03 ± 0.01 e | 0.07 ± 0.01 d | |
Stem Bark Water | 0.20 ± 0.01 a | 0.31 ± 0.01 a | 0.03 ± 0.01 c | 0.21 ± 0.01 a | 0.40 ± 0.01 a | 0.15 ± 0.01 b | 0.15 ± 0.01 c | 0.16 ± 0.01 b | |
Streptomycin | 0.10 ± 0.01 d | 0.05 ± 0.01 c | 0.10 ± 0.01 b | 0.15 ± 0.01 b | 0.10 ± 0.01 d | 0.10 ± 0.01 d | 0.10 ± 0.01 d | 0.10 ± 0.01 c | |
Ampicillin | 0.10 ± 0.01 d | 0.10 ± 0.01 b | 0.10 ± 0.01 b | 0.15 ± 0.01 b | 0.15 ± 0.01 c | 0.30 ± 0.01 a | 0.15 ± 0.01 c | 0.10 ± 0.01 c | |
Minimum bactericidal concentration (MBC) | Leaves Methanol | 0.20 ± 0.01 b | 0.40 ± 0.01 b | 0.20 ± 0.01 b | 0.21 ± 0.01 d | 0.40 ± 0.01 b | 0.40 ± 0.01 b | 0.80 ± 0.01 a | 0.80 ± 0.01 a |
Leaves Water | 0.20 ± 0.01 b | 0.41 ± 0.01 b | 0.40 ± 0.01 a | 0.40 ± 0.01 b | 0.41 ± 0.01 b | 0.41 ± 0.01 b | 0.40 ± 0.01 c | 0.20 ± 0.01 c | |
Stem Bark Methanol | 0.15 ± 0.01 c | 0.07 ± 0.01 e | 0.08 ± 0.01 d | 0.08 ± 0.01 e | 0.15 ± 0.01 d | 0.16 ± 0.01 e | 0.07 ± 0.01 e | 0.15 ± 0.01 d | |
Stem Bark Water | 0.30 ± 0.01 a | 0.60 ± 0.01 a | 0.07 ± 0.01 d | 0.30 ± 0.01 c | 0.61 ± 0.01 a | 0.31 ± 0.01 c | 0.60 ± 0.01 b | 0.30 ± 0.01 b | |
Streptomycin | 0.15 ± 0.01 c | 0.10 ± 0.01 d | 0.20 ± 0.01 b | 0.30 ± 0.01 c | 0.20 ± 0.01 c | 0.20 ± 0.01 d | 0.20 ± 0.01 d | 0.20 ± 0.01 c | |
Ampicillin | 0.15 ± 0.01 c | 0.15 ± 0.01 c | 0.15 ± 0.01 c | 0.50 ± 0.01 a | 0.20 ± 0.01 c | 0.50 ± 0.01 a | 0.20 ± 0.01 d | 0.20 ± 0.01 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinan, K.I.; Dall’Acqua, S.; Ferrarese, I.; Mollica, A.; Stefanucci, A.; Glamočlija, J.; Sokovic, M.; Nenadić, M.; Aktumsek, A.; Zengin, G. LC-MS Based Analysis and Biological Properties of Pseudocedrela kotschyi (Schweinf.) Harms Extracts: A Valuable Source of Antioxidant, Antifungal, and Antibacterial Compounds. Antioxidants 2021, 10, 1570. https://doi.org/10.3390/antiox10101570
Sinan KI, Dall’Acqua S, Ferrarese I, Mollica A, Stefanucci A, Glamočlija J, Sokovic M, Nenadić M, Aktumsek A, Zengin G. LC-MS Based Analysis and Biological Properties of Pseudocedrela kotschyi (Schweinf.) Harms Extracts: A Valuable Source of Antioxidant, Antifungal, and Antibacterial Compounds. Antioxidants. 2021; 10(10):1570. https://doi.org/10.3390/antiox10101570
Chicago/Turabian StyleSinan, Kouadio Ibrahime, Stefano Dall’Acqua, Irene Ferrarese, Adriano Mollica, Azzurra Stefanucci, Jasmina Glamočlija, Marina Sokovic, Marija Nenadić, Abdurrahman Aktumsek, and Gokhan Zengin. 2021. "LC-MS Based Analysis and Biological Properties of Pseudocedrela kotschyi (Schweinf.) Harms Extracts: A Valuable Source of Antioxidant, Antifungal, and Antibacterial Compounds" Antioxidants 10, no. 10: 1570. https://doi.org/10.3390/antiox10101570
APA StyleSinan, K. I., Dall’Acqua, S., Ferrarese, I., Mollica, A., Stefanucci, A., Glamočlija, J., Sokovic, M., Nenadić, M., Aktumsek, A., & Zengin, G. (2021). LC-MS Based Analysis and Biological Properties of Pseudocedrela kotschyi (Schweinf.) Harms Extracts: A Valuable Source of Antioxidant, Antifungal, and Antibacterial Compounds. Antioxidants, 10(10), 1570. https://doi.org/10.3390/antiox10101570