Optimization of Pulsed Electric Field as Standalone “Green” Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Material, Handling and Sample Preparation
2.3. Dry Matter/Water Content Determination
2.4. PEF System and Calculus
2.5. Experimental Design
2.5.1. Experimental Section 1. Determination of the Optimal Extraction Chamber (Cell) Geometry
2.5.2. Experimental Section 2. Determination of the Optimal Electric Field Strength
2.5.3. Experimental Section 3a. Determination of the Optimal PEF Pulse Duration
2.5.4. Experimental Section 3b. Determination of the Optimal PEF Pulse Period
2.5.5. Experimental Section 4. Determination of the Optimal Extraction Time
2.5.6. Experimental Section 5. Verification
2.6. Total Polyphenol Content of Extracts
2.7. High-Performance Liquid Chromatography (HPLC)
2.8. Differential Scanning Calorimetry (DSC)
2.9. Statistical Analysis
3. Results
3.1. Experimental Section 1 (Exp. Series 1–4)—Rectangular vs. Cylindrical Extraction Chamber
3.2. Experimental Section 2 (Exp. Series 5–8)—Optimal Electric Field Strength
3.3. Experimental Section 3a and 3b—Optimal PEF Pulse Duration and Period (Exp. Series 9–12 and 13–16)
3.4. Experimental Section 4 (Exp. Series 17–20)—Optimal Extraction Time
3.5. Experimental Section 5 (Exp. Series 21–24)—Verification Section
3.6. Characterization of the Extracts Using HPLC—Polyphenolic Composition of Exp. Series 21–24
3.7. Differential Scanning Calorimetry (DSC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahin, S.; Bilgin, M. Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: A review. J. Sci. Food Agric. 2018, 98, 1271–1279. [Google Scholar] [CrossRef] [PubMed]
- Toledano, A.; Alegria, I.; Labidi, J. Biorefining of olive tree (Olea europea) pruning. Biomass Bioenergy 2013, 59, 503–511. [Google Scholar] [CrossRef]
- Khdair, A.; Abu-Rumman, G. Sustainable Environmental Management and Valorization Options for Olive Mill Byproducts in the Middle East and North Africa (MENA) Region. Processes 2020, 8, 671. [Google Scholar] [CrossRef]
- Romero, I.; Ruiz, E.; Castro, E.; Moya, M. Acid hydrolysis of olive tree biomass. Chem. Eng. Res. Des. 2010, 88, 633–664. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization Database. Available online: http://www.fao.org/home/search/en/?q=Olive%20mill%20wastes%20production (accessed on 4 August 2021).
- Herrero, M.; Temirzoda, T.N.; Segura-Carretero, A.; Quirantes, R.; Plaza, M.; Ibañez, E. New possibilities for the valorization of olive oil by-products. J. Chromatogr. A 2011, 1218, 7511–7520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaltsa, O.; Grigorakis, S.; Lakka, A.; Bozinou, E.; Lalas, S.; Makris, D. Green valorization of olive leaves to produce polyphenol-enriched extracts using an environmentally benign deep eutectic solvent. AgriEngineering 2020, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Lalas, S.; Athanasiadis, V.; Gortzi, O.; Bounitsi, M.; Giovanoudis, I.; Tsaknis, J.; Bogiatzis, F. Enrichment of table olives with polyphenols extracted from olive leaves. Food Chem. 2011, 127, 1521–1525. [Google Scholar] [CrossRef]
- Mylonaki, S.; Kiassos, E.; Makris, D.; Kefalas, P. Optimization of the extraction of olive (Olea europaea) leaf phenolics using water/ethanol-based solvent systems and RSM. Anal. Bioanal. Chem. 2008, 392, 977–985. [Google Scholar] [CrossRef]
- Briante, R.; La Cara, F.; Febbraio, F.; Patumi, M.; Nucci, R. Bioactive derivatives from oleuropein by a biotransformation on Olea europaea leaf extracts. J. Biotechnol. 2002, 93, 109–119. [Google Scholar] [CrossRef]
- Mahugo Santana, C.; Sosa Ferrera, Z.; Esther Torres Padrón, M.; Juan Santana Rodríguez, J. Methodologies for the extraction of phenolic compounds from environmental samples: New approaches. Molecules 2009, 14, 298. [Google Scholar] [CrossRef] [Green Version]
- Otero, D.M.; Oliveira, F.M.; Lorini, A.; Antunes, B.F.; Oliveira, R.M.; Zambiazi, R.C. Oleuropein: Methods for extraction, purifying and applying. Rev. Ceres 2020, 67, 315–329. [Google Scholar] [CrossRef]
- Sosa Ferrera, Z.; Padrón Sanz, C.; Mahugo Santana, C.; Santana Rodríguez, J.J. The use of micellar systems in the extraction and pre-concentration of organic pollutants in environmental samples. TrAC Trend. Anal. Chem. 2004, 23, 469–479. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Analysis of hydrolysable tannins. Anim. Feed Sci. Technol. 2001, 91, 3–20. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Ben Farhat, M.; Chaouch-Hamada, R.; Sotomayor, J.A.; Landoulsi, A.; Jordan, M.J. Antioxidant potential of Salvia officinalis L. residues as affected by the harvesting time. Ind. Crops Prod. 2014, 54, 78–85. [Google Scholar] [CrossRef]
- Álvarez, I.; Pagán, R.; Condon, S.; Raso, J. The influence of process parameters for the inactivation of Listeria monocytogenes by pulsed electric fields. Int. J. Food Microbiol. 2003, 87, 87–95. [Google Scholar] [CrossRef]
- Grahl, T.; Märkl, H. Killing of microorganisms by pulsed electric fields. Appl. Microbiol. Biotechnol. 1996, 45, 148–157. [Google Scholar] [CrossRef]
- Bobinaitė, R.; Pataro, G.; Lamanauskas, N.; Šatkauskas, S.; Viškelis, P.; Ferrari, G. Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J. Food Sci. Technol. 2015, 52, 5898–5905. [Google Scholar] [CrossRef]
- Carullo, D.; Pataro, G.; Ferrari, G. Effect of PEF pre-treatment and extraction temperature on the recovery of carotenoids from tomato wastes. Chem. Engineer. Trans. 2019, 75, 139–144. [Google Scholar] [CrossRef]
- Hendrawan, Y.; Larasati, R.; Wibisono, Y.; Umam, C.; Sutan, S.; Hawa, L. Extraction of phenol and antioxidant compounds from kepok banana skin with PEF pre-treatment. IOP Conf. Ser. Earth Environ. Sci. 2019, 305, 012065. [Google Scholar] [CrossRef]
- Luengo, E.; Álvarez, I.; Raso, J. Improving carotenoid extraction from tomato waste by pulsed electric fields. Front. Nutr. 2014, 1, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, B.; Tylewicz, U.; Verardo, V.; Pasini, F.; Caravaca, A.M.G.; Caboni, M.; Dalla Rosa, M. Pulsed electric field (PEF) as pre-treatment to improve the phenolic compounds recovery from brewers’ spent grains. Innov. Food Sci. Emerg. 2020, 64, 102402. [Google Scholar] [CrossRef]
- Pataro, G.; Carullo, D.; Siddique, A.; Falcone, M.; Donsì, F.; Ferrari, G. Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling. J. Food Eng. 2018, 233, 65–73. [Google Scholar] [CrossRef]
- Sukardi, S.; Purwaningsih, I.; Sita, P. Extraction of phenolic compounds from basil (Ocimum americanum L.) leaves with pretreatment using pulsed electric field (PEF). IOP Conf. Ser. Earth Environ. Sci. 2020, 475, 012056. [Google Scholar] [CrossRef]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The effect of Pulsed Electric Field as a pre-treatment step in Ultrasound Assisted Extraction of phenolic compounds from fresh rosemary and thyme by-products. Innov. Food Sci. Emerg. Technol. 2021, 69, 102644. [Google Scholar] [CrossRef]
- Bozinou, E.; Karageorgou, I.; Batra, G.; Dourtoglou, V.; Lalas, S. Pulsed electric field extraction and antioxidant activity determination of Moringa oleifera dry leaves: A comparative study with other extraction techniques. Beverages 2019, 5, 8. [Google Scholar] [CrossRef] [Green Version]
- Lakka, A.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Evaluation of Pulsed Electric Field polyphenol extraction from Vitis vinifera, Sideritis scardica and Crocus sativus. Chemengineering 2021, 5, 25. [Google Scholar] [CrossRef]
- Lakka, A.; Bozinou, E.; Stavropoulos, G.; Samanidis, I.; Athanasiadis, V.; Dourtoglou, V.G.; Makris, D.P.; Lalas, S.I. Enhancement of polyphenols recovery from Rosa canina, Calendula officinalis and Castanea sativa using Pulsed Electric Field. Beverages 2021, 7, 63. [Google Scholar] [CrossRef]
- Brodelius, P.E.; Funk, C.; Shillito, R.D. Permeabilization of cultivated plant cells by electroporation for release of intracellularly stored secondary products. Plant Cell Rep. 1988, 7, 186–188. [Google Scholar] [CrossRef]
- Drosou, F.; Yang, E.; Marinea, M.; Dourtoglou, T.; Chatzilazarou, A.; Dourtoglou, V. An assessment of potential applications with pulsed electric field in wines. BIO Web Conf. 2017, 9, 02010. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.A.; Yu, S.; Zhang, L.; Chen, X. The effects of AC electric field on wine maturation. Innov. Food Sci. Emerg. 2008, 9, 463–468. [Google Scholar] [CrossRef]
- Ntourtoglou, G.; Tsapou, E.A.; Drosou, F.; Bozinou, E.; Lalas, S.; Tataridis, P.; Dourtoglou, V. Pulsed electric field extraction of α and β-acids from pellets of Humulus lupulus (hop). Front. Bioeng. Biotechnol. 2020, 8, 297. [Google Scholar] [CrossRef]
- Tsapou, E.A.; Ntourtoglou, G.; Drosou, F.; Tataridis, P.; Dourtoglou, T.; Lalas, S.; Dourtoglou, V. In situ creation of the natural phenolic aromas of beer: A pulsed electric field applied to wort-enriched flax seeds. Front. Bioeng. Biotechnol. 2020, 8, 1219. [Google Scholar] [CrossRef]
- Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Bozinou, E.; Ntourtoglou, G.; Batra, G.; Athanasiadis, V.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Use of Pulsed Electric Field as a low-temperature and high-performance “green” extraction technique for the recovery of high added value compounds from olive leaves. Beverages 2021, 7, 45. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Lakka, A.; Palaiogiannis, D.; Pappas, V.M.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Pulsed Electric Field and Salvia officinalis L. leaves: A successful combination for the extraction of high added value compounds. Foods 2021, 10, 2014. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Karageorgou, I.; Batra, G.; Kaltsa, O.; Bozinou, E.; Lalas, S.; Makris, D.P. Saffron processing wastes as a bioresource of high-value added compounds: Development of a green extraction process for polyphenol recovery using a natural deep eutectic solvent. Antioxidants 2019, 8, 586. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, G.A. Cells in Electric Fields: Physical and Practical Electronic Aspects of Electro Cell Fusion and Electroporation. In Electroporation and Electrofusion in Cell Biology, 1st ed.; Jordan, C.A., Neumann, E., Sowers, A.E., Eds.; Plenum Press: New York, NY, USA, 1989; Volume 1, pp. 389–407. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G.; Pataro, G. Applications of Pulsed Electric Field Treatments for the Enhancement of Mass Transfer from Vegetable Tissue. Food Eng. Rev. 2010, 2, 109–130. [Google Scholar] [CrossRef]
- Olmo-García, L.; Bajoub, A.; Benlamaalam, S.; Hurtado-Fernández, E.; Bagur-González, M.; Chigr, M.; Mbarki, M.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Establishing the phenolic composition of Olea europaea L. leaves from cultivars grown in morocco as a crucial step towards their subsequent exploitation. Molecules 2018, 23, 2524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmeri, R.; Parafati, L.; Trippa, D.; Siracusa, L.; Arena, E.; Restuccia, C.; Fallico, B. Addition of olive leaf extract (ole) for producing fortified fresh pasteurized milk with an extended shelf life. Antioxidants 2019, 8, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brahmi, F.; Mechri, B.; Dabbou, S.; Dhibi, M.; Hammami, M. The efficacy of phenolics compounds with different polarities as antioxidants from olive leaves depending on seasonal variations. Ind. Crops Prod. 2012, 38, 146–152. [Google Scholar] [CrossRef]
- Brahmi, F.; Mechri, B.; Dhibi, M.; Hammami, M. Variations in phenolic compounds and antiradical scavenging activity of Olea europaea leaves and fruits extracts collected in two different seasons. Ind. Crops Prod. 2013, 49, 256–264. [Google Scholar] [CrossRef]
- El, S.N.; Karakaya, S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr. Rev. 2009, 67, 632–638. [Google Scholar] [CrossRef]
- Cifa, D.; Skrt, M.; Pittia, P.; Di Mattia, C.; Poklar Ulrih, N. Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Sci. Nutr. 2018, 6, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Batra, G.; Gortzi, O.; Lalas, S.I.; Galidi, A.; Alibade, A.; Nanos, G.D. Enhanced antioxidant activity of Capsicum annuum L. and Moringa oleifera L. extracts after encapsulation in microemulsions. ChemEngineering 2017, 1, 15. [Google Scholar] [CrossRef] [Green Version]
- Gabrić, D.; Barba, F.; Roohinejad, S.; Gharibzahedi, S.M.T.; Radojčin, M.; Putnik, P.; Bursać Kovačević, D. Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. J. Food Process. Eng. 2018, 41, e12638. [Google Scholar] [CrossRef]
- Niu, D.; Zeng, X.A.; Ren, E.F.; Xu, F.Y.; Li, J.; Wang, M.S.; Wang, R. Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Res. Int. 2020, 137, 109715. [Google Scholar] [CrossRef] [PubMed]
Exp. Section | Exp. Series | Cell Geometry | textraxtion (min) | E (kV cm−1) | tpulse (μs) | Τ (μs) | N | tPEFtreatment (s) | Energy Input (kWh) | Specific Energy Input (kJ kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | Rectangular | 30 | 1 | 10 | 1000 | 1.80 × 106 | 18 | 2.52 × 10−6 | 1.29 × 10−1 |
2 | Rectangular | 30 | - | - | - | - | - | - | - | |
3 | Cylindrical | 30 | 1 | 10 | 1000 | 1.80 × 106 | 18 | 2.52 × 10−6 | 1.29 × 10−1 | |
4 | Cylindrical | 30 | - | - | - | - | - | - | - | |
2 | 5 | Rectangular | 30 | 1 | 10 | 1000 | 1.80 × 106 | 18 | 2.52 × 10−6 | 1.29 × 10−1 |
6 | Rectangular | 30 | 0.85 | 10 | 1000 | 1.80 × 106 | 18 | 2.14 × 10−6 | 1.09 × 10−1 | |
7 | Rectangular | 30 | 0.7 | 10 | 1000 | 1.80 × 106 | 18 | 1.76 × 10−6 | 9.00 × 10−2 | |
8 | Rectangular | 30 | - | - | - | - | - | - | - | |
3a | 9 | Rectangular | 30 | 0.85 | 10 | 1000 | 1.80 × 106 | 18 | 2.14 × 10−6 | 1.09 × 10−1 |
10 | Rectangular | 30 | 0.85 | 5 | 500 | 3.60 × 106 | 18 | 2.14 × 10−6 | 1.09 × 10−1 | |
11 | Rectangular | 30 | 0.85 | 1 | 100 | 1.80 × 107 | 18 | 2.14 × 10−6 | 1.09 × 10−1 | |
12 | Rectangular | 30 | - | - | - | - | - | - | - | |
3b | 13 | Rectangular | 30 | 0.85 | 1 | 1000 | 1.80 × 106 | 2 | 2.14 × 10−7 | 1.09 × 10−2 |
14 | Rectangular | 30 | 0.85 | 5 | 1000 | 1.80 × 106 | 9 | 1.07 × 10−6 | 5.46 × 10−2 | |
15 | Rectangular | 30 | 0.85 | 20 | 1000 | 1.80 × 106 | 36 | 4.28 × 10−6 | 2.19 × 10−1 | |
16 | Rectangular | 30 | - | - | - | - | - | - | - | |
4 | 17 | Rectangular | 30 | 0.85 | 2 | 100 | 1.80 × 107 | 36 | 4.28 × 10−6 | 2.19 × 10−1 |
18 | Rectangular | 15 | 0.85 | 2 | 100 | 9.00 × 106 | 18 | 2.14 × 10−6 | 1.09 × 10−1 | |
19 | Rectangular | 10 | 0.85 | 2 | 100 | 6.00 × 106 | 12 | 1.43 × 10−6 | 7.29 × 10−2 | |
20 | Rectangular | 30 | - | - | - | - | - | - | - | |
5 | 21 | Rectangular | 15 | 0.85 | 10 | 1000 | 9.00 × 105 | 9 | 1.07 × 10−6 | 5.46 × 10−2 |
22 | Rectangular | 15 | 0.85 | 2 | 100 | 9.00 × 106 | 18 | 2.14 × 10−6 | 1.09 × 10−1 | |
23 | Rectangular | 15 | 0.85 | 1 | 100 | 9.00 × 106 | 9 | 1.07 × 10−6 | 5.46 × 10−2 | |
24 | Rectangular | 15 | - | - | - | - | - | - | - |
Exp. Section | Exp. Series | Cell Geometry | textraxtion (min) | E (kV cm−1) | tpulse (μs) | Τ (μs) | Average YTP (mg GAE g−1 dw) 1 | SD | % Increase 1 | SD |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | Rectangular | 30 | 1 | 10 | 1000 | 24.98 c | 0.56 | 33.8 B | 4.7 |
2 | Rectangular | 30 | - 2 | - | - | 18.69 b | 1.08 | - | - | |
3 | Cylindrical | 30 | 1 | 10 | 1000 | 16.66 a | 1.55 | 16.0 A | 5.5 | |
4 | Cylindrical | 30 | - | - | - | 14.42 a | 2.01 | - | - | |
2 | 5 | Rectangular | 30 | 1 | 10 | 1000 | 24.80 b | 1.36 | 29.1 A | 2.6 |
6 | Rectangular | 30 | 0.85 | 10 | 1000 | 26.51 b | 0.75 | 38.1 B | 0.8 | |
7 | Rectangular | 30 | 0.7 | 10 | 1000 | 26.30 b | 1.28 | 36.9 B | 2 | |
8 | Rectangular | 30 | - | - | - | 19.20 a | 0.66 | - | - | |
3a | 9 | Rectangular | 30 | 0.85 | 10 | 1000 | 24.69 b,c | 2.24 | 29.8 A | 2.2 |
10 | Rectangular | 30 | 0.85 | 5 | 500 | 24.50 b | 0 | 29.1 A | 2.6 | |
11 | Rectangular | 30 | 0.85 | 1 | 100 | 24.91 c | 0.18 | 31.2 A | 2.8 | |
12 | Rectangular | 30 | - | - | - | 19.00 a | 0.68 | - | - | |
3b | 13 | Rectangular | 30 | 0.85 | 1 | 1000 | 21.90 b | 0.42 | 18.4 A | 0.6 |
14 | Rectangular | 30 | 0.85 | 5 | 1000 | 23.53 c | 0.94 | 27.2 B | 2 | |
15 | Rectangular | 30 | 0.85 | 20 | 1000 | 24.57 c | 0.83 | 32.8 C | 1.3 | |
16 | Rectangular | 30 | - | - | - | 18.50 a | 0.45 | - | - | |
4 | 17 | Rectangular | 30 | 0.85 | 2 | 100 | 24.75 b | 0.73 | 35.6 B | 2.7 |
18 | Rectangular | 15 | 0.85 | 2 | 100 | 25.35 b | 0.66 | 38.9 B | 2.4 | |
19 | Rectangular | 10 | 0.85 | 2 | 100 | 17.04 a | 0.21 | −6.6 A | 2.2 | |
20 | Rectangular | 30 | - | - | - | 18.30 a | 1.44 | - | - | |
5 | 21 | Rectangular | 15 | 0.85 | 10 | 1000 | 23.71 b | 0.29 | 25.5 A | 3.1 |
22 | Rectangular | 15 | 0.85 | 2 | 100 | 25.49 c | 0.88 | 34.9 B | 0.3 | |
23 | Rectangular | 15 | 0.85 | 1 | 100 | 25.34 c | 1.1 | 34.1 B | 0.9 | |
24 | Rectangular | 15 | - | - | - | 18.90 a | 0.69 | - | - |
Exp. Series | Concentration Parameters | Peak 1 1 | Quercetin- 3-O- Rutinoside | Peak 3 1 | Luteolin- 7-O- Glucoside | Apigenin- 7-O- Rutinoside 2 | Luteolin- 3′-O- Glucoside 1 | Oleuropein | Peak 7 1 |
---|---|---|---|---|---|---|---|---|---|
21 | Average 3 | 0.14 a | 0.25 b | 0.27 b | 1.30 c | 0.39 c | 0.31 b | 1.12 c | 0.09 b |
SD | 0.02 | 0.03 | 0.01 | 0.04 | 0.01 | 0.02 | 0.06 | 0 | |
% Increase 3 | 26.87 B | 55.87 A | 42.11 B | 70.31 C | 56.06 B | 24.56 A | 72.36 B | 42.86 B | |
SD | 6.68 | 9.03 | 5.26 | 0.72 | 2.24 | 7 | 1.38 | 12.37 | |
22 | Average | 0.13 a | 0.24 b | 0.20 a | 1.08 b | 0.36 b,c | 0.28 a | 1.41 d | 0.07 a |
SD | 0.02 | 0.01 | 0.01 | 0.05 | 0.02 | 0.01 | 0.07 | 0 | |
% Increase | 17.73 A,B | 50.13 A | 6.14 A | 41.02 A | 43.94 A | 10.73 A | 117.58 C | 11.11 A | |
SD | 7.51 | 3.14 | 4.02 | 1.6 | 2.24 | 9.52 | 3.46 | 9.62 | |
23 | Average | 0.13 a | 0.24 b | 0.28 b | 1.24 c | 0.37 b | 0.31 b | 1.01 b | 0.10 b |
SD | 0.01 | 0.02 | 0.01 | 0.03 | 0 | 0.02 | 0.03 | 0.01 | |
% Increase | 18.28 A | 49.87 A | 47.37 B | 62.48 B | 48.16 A,B | 25.32 A | 55.59 A | 57.94 B | |
SD | 1.67 | 3.14 | 5.26 | 1.5 | 5.93 | 8.2 | 4.97 | 8.36 | |
24 | Average | 0.11 a | 0.16 a | 0.19 a | 0.76 a | 0.25 a | 0.25 a | 0.65 a | 0.06 a |
SD | 0.01 | 0.01 | 0 | 0.03 | 0.01 | 0.03 | 0.04 | 0.01 | |
% Increase | - 4 | - | - | - | - | - | - | - |
Exp. Section | Exp. Series | PEF Treated Extract | Exp. Series | Control Extract | % Increase 1 | SD | ||
---|---|---|---|---|---|---|---|---|
Average Oxidation Temperature (°C) 1 | SD | Average Oxidation Temperature (°C) 1 | SD | |||||
1 | 1 | 476 a | 1 | 2 | 415 b | 1 | 14.78 B | 0.81 |
3 | 411 c | 2 | 4 | 401 c | 1 | 2.49 A | 0.24 | |
2 | 5 | 475 a | 1 | 8 | 418 d | 2 | 13.63 A | 0.89 |
6 | 488 b | 2 | 16.82 B | 0.76 | ||||
7 | 484 c | 1 | 15.95 B | 0.53 | ||||
3a | 9 | 473 a | 1 | 12 | 416 c | 1 | 13.70 A | 0.67 |
10 | 472 a | 1 | 13.46 A | 0.69 | ||||
11 | 477 b | 1 | 14.66 A | 0.56 | ||||
3b | 13 | 459 a | 2 | 16 | 414 d | 2 | 10.95 A | 0.19 |
14 | 468 b | 1 | 13.04 B | 0.18 | ||||
15 | 474 c | 1 | 14.57 C | 0.09 | ||||
4 | 17 | 475 a | 2 | 20 | 414 d | 2 | 14.73 B | 0.65 |
18 | 480 b | 1 | 15.94 B | 0.89 | ||||
19 | 412 c | 1 | −0.48 A | 0.24 | ||||
5 | 21 | 469 a | 2 | 24 | 416 c | 1 | 12.74 A | 0.21 |
22 | 482 b | 1 | 15.87 B | 0.24 | ||||
23 | 480 b | 2 | 15.38 B | 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappas, V.M.; Lakka, A.; Palaiogiannis, D.; Athanasiadis, V.; Bozinou, E.; Ntourtoglou, G.; Makris, D.P.; Dourtoglou, V.G.; Lalas, S.I. Optimization of Pulsed Electric Field as Standalone “Green” Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves. Antioxidants 2021, 10, 1554. https://doi.org/10.3390/antiox10101554
Pappas VM, Lakka A, Palaiogiannis D, Athanasiadis V, Bozinou E, Ntourtoglou G, Makris DP, Dourtoglou VG, Lalas SI. Optimization of Pulsed Electric Field as Standalone “Green” Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves. Antioxidants. 2021; 10(10):1554. https://doi.org/10.3390/antiox10101554
Chicago/Turabian StylePappas, Vasileios M., Achillia Lakka, Dimitrios Palaiogiannis, Vassilis Athanasiadis, Eleni Bozinou, George Ntourtoglou, Dimitris P. Makris, Vassilis G. Dourtoglou, and Stavros I. Lalas. 2021. "Optimization of Pulsed Electric Field as Standalone “Green” Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves" Antioxidants 10, no. 10: 1554. https://doi.org/10.3390/antiox10101554
APA StylePappas, V. M., Lakka, A., Palaiogiannis, D., Athanasiadis, V., Bozinou, E., Ntourtoglou, G., Makris, D. P., Dourtoglou, V. G., & Lalas, S. I. (2021). Optimization of Pulsed Electric Field as Standalone “Green” Extraction Procedure for the Recovery of High Value-Added Compounds from Fresh Olive Leaves. Antioxidants, 10(10), 1554. https://doi.org/10.3390/antiox10101554