Inhibitory Effects of Six Types of Tea on Aging and High-Fat Diet-Related Amyloid Formation Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ethical Statement
2.3. Preparation of 10 mol/L MDA
2.4. Aging-Related Amyloid Preparation and Tea Processing
2.5. Fluorescence Intensity Detection and Analysis
2.6. Determination of Antioxidant Capacity
2.7. Preparation and Determination of Physicochemical Components of Tea Extract
2.8. Animal Experiments
2.9. Kit Detection of Lipid Levels and Oxidative Stress
2.10. Elisa Kit Detection of IL-6 and Beta-Amyloid 42 (Aβ42)
2.11. Kit Detection of ATP
2.12. Histological Analysis
2.13. Western Blotting Analysis
2.14. Statistical Analysis
3. Results
3.1. Comparison of Inhibitory Activity of 30 Teas on Aging-Associated Amyloid Formation In Vitro
3.2. Correlation Analysis of Amyloid Inhibitory Activity and Catechin Content of 30 Teas
3.3. Correlation Analysis of 30 Teas’ Antioxidant Capacity and Catechin Content
3.4. Correlation Analysis between the Inhibition of Amyloid Formation and Antioxidant Capacity of 30 Teas
3.5. Improved Effect of Different Teas on Lipid Metabolism in SAMP8 Mice on High-Fat Diet
3.6. Inhibitory Effects of Different Teas on the Formation of Amyloid in the Cerebral Cortex of SAMP8 Mice on High-Fat Diet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890. [Google Scholar] [CrossRef]
- Rochet, J.C.; Lansbury, P.T., Jr. Amyloid fibrillogenesis: Themes and variations. Curr. Opin. Struct. Biol. 2000, 10, 60–68. [Google Scholar] [CrossRef]
- Kayed, R.; Head, E.; Thompson, J.L.; McIntire, T.M.; Milton, S.C.; Cotman, C.W.; Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 2003, 300, 486–489. [Google Scholar] [CrossRef] [Green Version]
- Goh, B.C.; Leong, H.W.; Qu, X.; Chew, L.Y. The mechanism of antiparallel β-sheet formation based on conditioned self-avoiding walk. Eur. Phys. J. E 2012, 35, 27. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Zhong, Y.; Li, Y.; Huang, J.; Zhang, J.; Luo, G.; Liu, Z. Blockade of the formation of insoluble ubiquitinated protein aggregates by EGCG3″ Me in the alloxan-induced diabetic kidney. PLoS ONE 2013, 8, e75687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raleigh, D.; Zhang, X.; Hastoy, B.; Clark, A. The β-cell assassin: IAPP cytotoxicity. J. Mol. Endocrinol. 2017, 59, R121–R140. [Google Scholar] [CrossRef] [PubMed]
- Mok, K.H.; Pettersson, J.; Orrenius, S.; Svanborg, C. HAMLET, protein folding, and tumor cell death. Biochem. Biophys. Res. Commun. 2007, 354, 1–7. [Google Scholar] [CrossRef]
- Pettersson-Kastberg, J.; Aits, S.; Gustafsson, L.; Mossberg, A.; Storm, P.; Trulsson, M.; Persson, F.; Mok, K.H.; Svanborg, C. Can misfolded proteins be beneficial? The HAMLET case. Ann. Med. 2009, 41, 162–176. [Google Scholar] [CrossRef]
- Chiti, F.; Dobson, C.M. Amyloid formation by globular proteins under native conditions. Nat. Chem. Biol. 2009, 5, 15–22. [Google Scholar] [CrossRef]
- Chiti, F.; Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 2006, 75, 333–366. [Google Scholar] [CrossRef] [Green Version]
- Obici, L.; Perfetti, V.; Palladini, G.; Moratti, R.; Merlini, G. Clinical aspects of systemic amyloid diseases. Biochim. Biophys. Acta BBA Proteins Proteom. 2005, 1753, 11–22. [Google Scholar] [CrossRef]
- Ott, C.; Jacobs, K.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014, 2, 1679. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.; Hasegawa, Y.; Takane, K.; Koibuchi, N.; Cao, C.; Kim-Mitsuyama, S. High-Fat-Diet Intake Enhances Cerebral Amyloid Angiopathy and Cognitive Impairment in a Mouse Model of Alzheimer's Disease, Independently of Metabolic Disorders. J. Am. Heart Assoc. 2016, 5, e003154. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Liu, L.; Wang, Q.; Gao, Y. Naringenin alleviates cognition deficits in high-fat diet-fed SAMP8 mice. J. Food Biochem. 2020, 44, e13375. [Google Scholar] [CrossRef]
- Jang, W.Y.; Jeong, J.; Kim, S.; Kang, M.C.; Sung, Y.H.; Choi, M.; Park, S.J.; Kim, M.O.; Kim, S.H.; Ryoo, Z.Y. Serum amyloid A1 levels and amyloid deposition following a high-fat diet challenge in transgenic mice overexpressing hepatic serum amyloid A1. Appl. Physiol. Nutr. Metab. 2016, 41, 640–648. [Google Scholar] [CrossRef]
- Den Hartigh, L.J.; Wang, S.; Goodspeed, L.; Ding, Y.; Averill, M.; Subramanian, S.; Wietecha, T.; O'Brien, K.D.; Chait, A. Deletion of serum amyloid A3 improves high fat high sucrose diet-induced adipose tissue inflammation and hyperlipidemia in female mice. PLoS ONE 2014, 9, e108564. [Google Scholar]
- Saiyasit, N.; Chunchai, T.; Prus, D.; Suparan, K.; Pittayapong, P.; Apaijai, N.; Pratchayasakul, W.; Sripetchwandee, J.; Chattipakorn, M.D.P.D.N.; Chattipakorn, S.C. Gut dysbiosis develops before metabolic disturbance and cognitive decline in high-fat diet-induced obese condition. Nutrition 2020, 69, 110576. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Nian, T.; Wu, B.; Xiao, F.; He, B.; Bi, K.; Jia, Y. Okra polysaccharides can reverse the metabolic disorder induced by high-fat diet and cognitive function injury in Aβ(1-42) mice. Exp. Gerontol. 2020, 130, 110802. [Google Scholar] [CrossRef] [PubMed]
- Jansen, W.J.; Ossenkoppele, R.; Knol, D.L.; Tijms, B.M.; Scheltens, P.; Verhey, F.R.; Visser, P.J.; Aalten, P.; Aarsland, D.; Alcolea, D.; et al. Prevalence of cerebral amyloid pathology in persons without dementia: A meta-analysis. JAMA 2015, 313, 1924–1938. [Google Scholar] [CrossRef]
- Cai, S.; Yang, H.; Zeng, K.; Zhang, J.; Zhong, N.; Wang, Y.; Ye, J.; Tu, P.; Liu, Z. EGCG Inhibited Lipofuscin Formation Based on Intercepting Amyloidogenic β-Sheet-Rich Structure Conversion. PLoS ONE 2016, 11, e0152064. [Google Scholar]
- Butterfield, D.A.; Mattson, M.P. Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer’s disease. Neurobiol. Dis. 2020, 138, 104795. [Google Scholar] [CrossRef] [PubMed]
- Höhn, A.; Jung, T.; Grune, T. Pathophysiological importance of aggregated damaged proteins. Free Radic. Biol. Med. 2014, 71, 70–89. [Google Scholar] [CrossRef]
- Höglund, K.; Syversen, S.; Lewczuk, P.; Wallin, A.; Wiltfang, J.; Blennow, K. Statin treatment and a disease-specific pattern of beta-amyloid peptides in Alzheimer’s disease. Exp. Brain Res. 2005, 164, 205–214. [Google Scholar] [CrossRef]
- Richards, D.B.; Cookson, L.M.; Berges, A.C.; Barton, S.V.; Lane, T.; Ritter, J.M.; Fontana, M.; Moon, J.C.; Pinzani, M.; Gillmore, J.D.; et al. Therapeutic Clearance of Amyloid by Antibodies to Serum Amyloid P Component. N. Engl. J. Med. 2015, 373, 1106–1114. [Google Scholar] [CrossRef] [Green Version]
- Ng, T.P.; Feng, L.; Niti, M.; Kua, E.H.; Yap, K.B. Tea consumption and cognitive impairment and decline in older Chinese adults. Am. J. Clin. Nutr. 2008, 88, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Duangjan, C.; Tencomnao, T.; Liu, J.; Lin, J.; Wink, M. Neuroprotective effects of oolong tea extracts against glutamate-induced toxicity in cultured neuronal cells and β-amyloid-induced toxicity in Caenorhabditis elegans. Food Funct. 2020, 11, 8179–8192. [Google Scholar] [CrossRef]
- Gauci, A.J.; Caruana, M.; Giese, A.; Scerri, C.; Vassallo, N. Identification of polyphenolic compounds and black tea extract as potent inhibitors of lipid membrane destabilization by Aβ₄₂ aggregates. J. Alzheimer’s Dis. 2011, 27, 767–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Smid, S.D.; Lin, J.; Gong, Z.; Chen, S.; You, F.; Zhang, Y.; Hao, Z.; Lin, H.; Yu, X.; et al. Neuroprotective and Anti-Amyloid β Effect and Main Chemical Profiles of White Tea: Comparison Against Green, Oolong and Black Tea. Molecules 2019, 24, 1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, F.; Zhou, L.; Jiao, Y.; Bai, S.; Wang, L.; Ma, J.; Fu, X. Ingredients in Zijuan Pu’er Tea Extract Alleviate β-Amyloid Peptide Toxicity in a Caenorhabditis elegans Model of Alzheimer’s Disease Likely through DAF-16. Molecules 2019, 24, 729. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Kebede, M.T.; Kemeh, M.M.; Islam, S.; Lee, B.; Bleck, S.D.; Wurfl, L.A.; Lazo, N.D. Inhibition of the Self-Assembly of Aβ and of Tau by Polyphenols: Mechanistic Studies. Molecules 2019, 24, 2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Tang, Y.; Wei, G. Epigallocatechin Gallate Destabilizes α-Synuclein Fibril by Disrupting the E46-K80 Salt-Bridge and Inter-protofibril Interface. ACS Chem. Neurosci. 2020, 11, 4351–4361. [Google Scholar] [CrossRef]
- Zhan, C.; Chen, Y.; Tang, Y.; Wei, G. Green Tea Extracts EGCG and EGC Display Distinct Mechanisms in Disrupting Aβ42 Protofibril. ACS Chem. Neurosci. 2020, 11, 1841–1851. [Google Scholar] [CrossRef]
- Jing, Z.; Shuxian, C.; Jian'an, H.; Juan, L.; Ni, Z.; Heng, Y.; Zhonghua, L. Inhibition of Theaflavins on Protein Carbonylation and Aggregation in the System of BSA/MDA Carbonyl-ammonia Cross Linking Reaction in vitro. J. Tea Sci. 2016, 36, 363–371. [Google Scholar]
- Cai, S.; Yang, H.; Wen, B.; Zhu, K.; Zheng, X.; Huang, J.; Wang, Y.; Liu, Z.; Tu, P. Inhibition by microbial metabolites of Chinese dark tea of age-related neurodegenerative disorders in senescence-accelerated mouse prone 8 (SAMP8) mice. Food Funct. 2018, 9, 5455–5462. [Google Scholar] [CrossRef] [PubMed]
- Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2015, 55, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Wang, H. Cancer Preventive Activities of Tea Catechins. Molecules 2016, 21, 1679. [Google Scholar] [CrossRef] [PubMed]
- You-Ying, T.; Hui-Ling, L.; Xuan, C.; Yuan-yuan, W.; Wen-feng, C. Analysis of catechins and organic acids in pressed tea. J. Tea 2002, 28, 22–24. [Google Scholar]
- Pervin, M.; Unno, K.; Ohishi, T.; Tanabe, H.; Miyoshi, N.; Nakamura, Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules 2018, 23, 1297. [Google Scholar] [CrossRef] [Green Version]
- Gancar, M.; Kurin, E.; Bednarikova, Z.; Marek, J.; Mucaji, P.; Nagy, M.; Gazova, Z. Amyloid Aggregation of Insulin: An Interaction Study of Green Tea Constituents. Sci. Rep. 2020, 10, 9115. [Google Scholar] [CrossRef]
- Kikugawa, K.; Tsukuda, K.; Kurechi, T. Studies on peroxidized lipids I. Interaction of malondialdehyde with secondary amines and its relevance to nitrosamine formation. Chem. Pharm. Bull. 2008, 28, 3323–3331. [Google Scholar] [CrossRef] [Green Version]
- Hipkiss, A.R.; Worthington, V.C.; Himsworth, D.T.; Herwig, W. Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite. Biochim. Biophys. Acta BBA Gen. Subj. 1998, 1380, 46–54. [Google Scholar] [CrossRef]
- Qu, Z.; Liu, C.; Li, P.; Xiong, W.; Zeng, Z.; Liu, A.; Xiao, W.; Huang, J.; Liu, Z.; Zhang, S. Theaflavin Promotes Myogenic Differentiation by Regulating the Cell Cycle and Surface Mechanical Properties of C2C12 Cells. J. Agric. Food Chem. 2020, 68, 9978–9992. [Google Scholar] [CrossRef]
- Nieva, J.; Shafton, A.; Altobell, L.J., 3rd; Tripuraneni, S.; Rogel, J.K.; Wentworth, A.D.; Lerner, R.A.; Wentworth, P., Jr. Lipid-derived aldehydes accelerate light chain amyloid and amorphous aggregation. Biochemistry 2008, 47, 7695–7705. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Maley, J.; Yu, P.H. Potential inplications of endogenous aldehydes in beta-amyloid misfolding, oligomerization and fibrillogenesis. J. Neurochem. 2006, 99, 1413–1424. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hagerman, A.E. Effect of (-)-epigallocatechin-3-gallate on glucose-induced human serum albumin glycation. Free Radic. Res. 2015, 49, 946–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Q.; Li, S.; Huang, J.; Wei, C.C.; Wan, X.; Sang, S.; Ho, C.T. Importance of the Nucleophilic Property of Tea Polyphenols. J. Agric. Food Chem. 2019, 67, 5379–5383. [Google Scholar] [CrossRef] [PubMed]
- Bernatoniene, J.; Kopustinskiene, D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [Green Version]
- Sang, S.; Shao, X.; Bai, N.; Lo, C.Y.; Yang, C.S.; Ho, C.T. Tea polyphenol (-)-epigallocatechin-3-gallate: A new trapping agent of reactive dicarbonyl species. Chem. Res. Toxicol. 2007, 20, 1862–1870. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Liang, C.P.; Cheng, K.W.; Peng, X.; Lo, C.Y.; Shahidi, F.; Chen, F.; Ho, C.T.; Wang, M. Trapping effects of green and black tea extracts on peroxidation-derived carbonyl substances of seal blubber oil. J. Agric. Food Chem. 2009, 57, 1065–1069. [Google Scholar] [CrossRef]
- Beretta, G.; Furlanetto, S.; Regazzoni, L.; Zarrella, M.; Facino, R.M. Quenching of alpha,beta-unsaturated aldehydes by green tea polyphenols: HPLC-ESI-MS/MS studies. J. Pharm. Biomed. Anal. 2008, 48, 606–611. [Google Scholar] [CrossRef]
- Cheng, K.W.; Wong, C.C.; Chao, J.; Lo, C.; Chen, F.; Chu, I.K.; Che, C.M.; Ho, C.T.; Wang, M. Inhibition of mutagenic PhIP formation by epigallocatechin gallate via scavenging of phenylacetaldehyde. Mol. Nutr. Food Res. 2009, 53, 716–725. [Google Scholar] [CrossRef]
- Shu-Xian, C.; Zhong-Hua, L.; Jian-An, H.; Guo-An, L.; Xing-Long, Y.; Xing-Rong, D.; Zhi-Hui, Y.; Fei, Y. Study on Inhibiting Effects of Tea Catechins on the Formation of Age Pigment Fluorescence Products. J. Tea Sci. 2010, 30, 1–8. [Google Scholar]
- Rho, T.; Choi, M.S.; Jung, M.; Kil, H.W.; Hong, Y.D.; Yoon, K.D. Identification of fermented tea (Camellia sinensis) polyphenols and their inhibitory activities against amyloid-beta aggregation. Phytochemistry 2019, 160, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.D.; Huang, L.; Meng, L.; Lin, Y.F.; Xu, X.; Dong, M.S. Soy protein isolate-(-)-epigallocatechin gallate conjugate: Covalent binding sites identification and IgE binding ability evaluation. Food Chem. 2020, 333, 127400. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.N.; Tang, G.Y.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Liu, Q.; Mao, Q.Q.; Shang, A.; Li, H.B. Phenolic Profiles and Antioxidant Activities of 30 Tea Infusions from Green, Black, Oolong, White, Yellow and Dark Teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Q.; Zhang, B.; Zheng, W.; Chen, X.; Zhang, J.; Yan, R.; Zhang, T.; Yu, L.; Dong, Y.; Ma, B. Liupao tea extract alleviates diabetes mellitus and modulates gut microbiota in rats induced by streptozotocin and high-fat, high-sugar diet. Biomed. Pharmacother. 2019, 118, 109262. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Wang, Q.; Yang, X. Fu Brick Tea Alleviates Chronic Kidney Disease of Rats with High Fat Diet Consumption through Attenuating Insulin Resistance in Skeletal Muscle. J. Agric. Food Chem. 2019, 67, 2839–2847. [Google Scholar] [CrossRef]
- Poitou, C.; Viguerie, N.; Cancello, R.; De Matteis, R.; Cinti, S.; Stich, V.; Coussieu, C.; Gauthier, E.; Courtine, M.; Zucker, J.D.; et al. Serum amyloid A: Production by human white adipocyte and regulation by obesity and nutrition. Diabetologia 2005, 48, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Perea, J.R.; Bolós, M.; Avila, J. Microglia in Alzheimer’s Disease in the Context of Tau Pathology. Biomolecules 2020, 10, 1439. [Google Scholar] [CrossRef]
- Van der Heijden, R.A.; Bijzet, J.; Meijers, W.C.; Yakala, G.K.; Kleemann, R.; Nguyen, T.Q.; de Boer, R.A.; Schalkwijk, C.G.; Hazenberg, B.P.; Tietge, U.J.; et al. Obesity-induced chronic inflammation in high fat diet challenged C57BL/6J mice is associated with acceleration of age-dependent renal amyloidosis. Sci. Rep. 2015, 5, 16474. [Google Scholar] [CrossRef] [PubMed]
- Kleinrichert, K.; Alappat, B. Comparative Analysis of Antioxidant and Anti-Amyloidogenic Properties of Various Polyphenol Rich Phytoceutical Extracts. Antioxidants 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.T.T.; Samarat, K.; Takamura, Y.; Azo-Oussou, A.F.; Nakazono, Y.; Vestergaard, M.C. Polyphenols Modulate Alzheimer’s Amyloid Beta Aggregation in a Structure-Dependent Manner. Nutrients 2019, 11, 756. [Google Scholar] [CrossRef] [Green Version]
- Halder, J.; Bhaduri, A.N. Protective role of black tea against oxidative damage of human red blood cells. Biochem. Biophys. Res. Commun. 1998, 244, 903–907. [Google Scholar] [CrossRef]
- Subramanian, N.; Venkatesh, P.; Ganguli, S.; Sinkar, V.P. Role of polyphenol oxidase and peroxidase in the generation of black tea theaflavins. J. Agric. Food Chem. 1999, 47, 2571–2578. [Google Scholar] [CrossRef]
- Yin, D. Biochemical basis of lipofuscin, ceroid, and age pigment-like fluorophores. Free Radic. Biol. Med. 1996, 21, 871–888. [Google Scholar] [CrossRef]
- Vu, H.T.; Song, F.V.; Tian, K.V.; Su, H.; Chass, G.A. Systematic characterisation of the structure and radical scavenging potency of Pu’Er tea () polyphenol theaflavin. Org. Biomol. Chem. 2019, 17, 9942–9950. [Google Scholar] [CrossRef]
- Grelle, G.; Otto, A.; Lorenz, M.; Frank, R.F.; Wanker, E.E.; Bieschke, J. Black tea theaflavins inhibit formation of toxic amyloid-β and α-synuclein fibrils. Biochemistry 2011, 50, 10624–10636. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Murata, M.; Kawanishi, S.; Oikawa, S. Polyphenols with Anti-Amyloid β Aggregation Show Potential Risk of Toxicity Via Pro-Oxidant Properties. Int. J. Mol. Sci. 2020, 21, 3561. [Google Scholar] [CrossRef]
- Wang, X.; Ho, C.T.; Huang, Q. Investigation of adsorption behavior of (-)-epigallocatechin gallate on bovine serum albumin surface using quartz crystal microbalance with dissipation monitoring. J. Agric. Food Chem. 2007, 55, 4987–4992. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Feng, M.; Wan, J.; Shi, Y.; Xie, X.; Pan, W.; Hu, B.; Wang, Y.; Wen, H.; Wang, K.; et al. Anti-damage effect of theaflavin-3′-gallate from black tea on UVB-irradiated HaCaT cells by photoprotection and maintaining cell homeostasis. J. Photochem. Photobiol. B Biol. 2021, 224, 112304. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Hu, Y.; Zhang, S.; Liu, D.; Li, Q.; Lin, Y.; Liu, Z. Untargeted metabolomic and lipid metabolism-related gene expression analyses of the effects and mechanism of aged Liupao tea treatment in HFD-induced obese mice. RSC Adv. 2021, 11, 23791–23800. [Google Scholar] [CrossRef]
- Qi, D.; Miao, A.; Cao, J.; Wang, W.; Chen, W.; Pang, S.; He, X.; Ma, C. Study on the effects of rapid aging technology on the aroma quality of white tea using GC-MS combined with chemometrics: In comparison with natural aged and fresh white tea. Food Chem. 2018, 265, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Yang-Bo, Z.; Xin, Z.; Hai-Yan, L. Effect of White Tea Extract on LPS-induced inflammation of RAW264.7 Cells. J. Tea Commun. 2019, 46, 455–462. [Google Scholar]
- Cao, S.Y.; Li, B.Y.; Gan, R.Y.; Mao, Q.Q.; Wang, Y.F.; Shang, A.; Meng, J.M.; Xu, X.Y.; Wei, X.L.; Li, H.B. The In Vivo Antioxidant and Hepatoprotective Actions of Selected Chinese Teas. Foods 2020, 9, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Name | Storage Years | Category | Production Place |
---|---|---|---|---|
T1 | Fuliang Green Tea | 0 | Green Tea (Unfermented) | Jiangxi |
T2 | Guzhang Maojian | 0 | Hunan | |
T3 | Huangjin Tea | 0 | Hunan | |
T4 | Enshi Green Tea | 0 | Hubei | |
T5 | Fengyu | 0 | Sichuan | |
T6 | Baihao Yinzhen | 4 | White Tea (Slight-fermented) | Fujian |
T7 | Huangye Yinzhen | 2 | Fujian | |
T8 | Gongmei | 5 | Fujian | |
T9 | Baimudan | 6 | Fujian | |
T10 | Shoumei | 0 | Fujian | |
T11 | Junshan Yinzhen | 6 | Yellow Tea (Light-fermented) | Hunan |
T12 | Mengding Huangya | 1 | Sichuan | |
T13 | Bianhuang | 0 | Hunan | |
T14 | Huangdacha | 0 | Anhui | |
T15 | Maojian | 0 | Hunan | |
T16 | Hongyin | 6 | Oolong Tea (Semi-fermented) | Guangdong |
T17 | Xuepian | 6 | Guangdong | |
T18 | Baiye | 6 | Guangdong | |
T19 | Dancong | 4 | Guangdong | |
T20 | Dahongpao | 4 | Fujian | |
T21 | Yunnan Jinzhen | 6 | Black Tea (Fully-fermented) | Yunnan |
T22 | Dianhong | 1 | Yunnan | |
T23 | Fuliang Black Tea | 0 | Jiangxi | |
T24 | Yingde Black Tea | 0 | Guangdong | |
T25 | Qihong | 0 | Anhui | |
T26 | Liupao Tea | 7 | Dark Tea (Post-fermented) | Guangxi |
T27 | Yangloudong | 8 | Hubei | |
T28 | Jingwei Fuzhuan | 6 | Shanxi | |
T29 | Pu-erh | 6 | Yunnan | |
T30 | Jiangkang Fuzhuan | 6 | Hunan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Feng, M.; Pan, W.; Zheng, X.; Xie, X.; Hu, B.; Teng, C.; Wang, Y.; Liu, Z.; Wu, J.; et al. Inhibitory Effects of Six Types of Tea on Aging and High-Fat Diet-Related Amyloid Formation Activities. Antioxidants 2021, 10, 1513. https://doi.org/10.3390/antiox10101513
Wan J, Feng M, Pan W, Zheng X, Xie X, Hu B, Teng C, Wang Y, Liu Z, Wu J, et al. Inhibitory Effects of Six Types of Tea on Aging and High-Fat Diet-Related Amyloid Formation Activities. Antioxidants. 2021; 10(10):1513. https://doi.org/10.3390/antiox10101513
Chicago/Turabian StyleWan, Juan, Meiyan Feng, Wenjing Pan, Xin Zheng, Xinya Xie, Baozhu Hu, Cuiqin Teng, Yingzi Wang, Zhonghua Liu, Jianhua Wu, and et al. 2021. "Inhibitory Effects of Six Types of Tea on Aging and High-Fat Diet-Related Amyloid Formation Activities" Antioxidants 10, no. 10: 1513. https://doi.org/10.3390/antiox10101513
APA StyleWan, J., Feng, M., Pan, W., Zheng, X., Xie, X., Hu, B., Teng, C., Wang, Y., Liu, Z., Wu, J., & Cai, S. (2021). Inhibitory Effects of Six Types of Tea on Aging and High-Fat Diet-Related Amyloid Formation Activities. Antioxidants, 10(10), 1513. https://doi.org/10.3390/antiox10101513