Executive Function in Fragile X Syndrome: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria
- The paper was published in a peer-reviewed journal,
- At least one participant sample had full mutation FXS,
- Performance of individuals with FXS was compared against either a control population or normative sample data OR performance of individuals with FXS is documented in the context of a feasibility study,
- At least one measure of EF was used,
- The study reported quantitative scores (e.g., raw score, T-score, Standard score, etc.) beyond completion rates,
- EF was a primary or secondary research question, and
- The study was not a case study.
2.3. Study Organization and Consolidation
3. Review
3.1. Executve Function Deficits
3.1.1. Working Memory
3.1.2. Inhibitory Control
3.1.3. Cognitive Flexibility
3.1.4. Attention
3.1.5. Planning
3.1.6. Processing Speed
3.1.7. Behavioral and Psychological Correlates
3.1.8. Summary of EF Domain Findings
3.2. Neurobiology of EF Deficits in FXS
3.2.1. FMRP
3.2.2. Structural Brain Imagining Studies
3.2.3. Functional Brain Imaging Studies
3.2.4. Potential Mechanisms Underlying EF Deficits in FXS
4. Crucial Considerations
4.1. FXS Sample Characteristics
4.2. Control Group Selection
4.3. Measures
4.4. Scoring and Analysis Method
4.5. Lack of Analogous Paradigms in Translational Studies of Rodent Models of FXS
5. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kao, D.I.; Aldridge, G.M.; Weiler, I.J.; Greenough, W.T. Altered mRNA transport, docking, and protein translation in neurons lacking fragile X mental retardation protein. Proc. Natl. Acad. Sci. USA 2010, 107, 15601–15606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.H.; Kuhl, D.P.; Pizzuti, A.; Pieretti, M.; Sutcliffe, J.S.; Richards, S.; Verkerk, A.J.; Holden, J.J.; Fenwick, R.G.; Warren, S.T. Variation of the CGG repeat at the fragile X site results in genetic instability: Resolution of the Sherman paradox. Cell 1991, 67, 1047–1058. [Google Scholar] [CrossRef]
- Pieretti, M.; Zhang, F.P.; Fu, Y.H.; Warren, S.T.; Oostra, B.A.; Caskey, C.T.; Nelson, D.L. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 1991, 66, 817–822. [Google Scholar] [CrossRef]
- Park, S.; Park, J.M.; Kim, S.; Kim, J.A.; Shepherd, J.D.; Smith-Hicks, C.L.; Chowdhury, S.; Kaufmann, W.; Kuhl, D.; Ryazanov, A.G.; et al. Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 2008, 59, 70–83. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, C.H.; Moon, J.; Strawderman, M.S.; Maclean, K.N.; Evans, J.; Strupp, B.J. Evidence for social anxiety and impaired social cognition in a mouse model of fragile X syndrome. Behav. Neurosci. 2008, 122, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Antar, L.N.; Bassell, G.J. Sunrise at the synapse: The FMRP mRNP shaping the synaptic interface. Neuron 2003, 37, 555–558. [Google Scholar] [CrossRef]
- Bassell, G.J.; Warren, S.T. Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron 2008, 60, 201–214. [Google Scholar] [CrossRef]
- Heine-Suñer, D.; Torres-Juan, L.; Morlà, M.; Busquets, X.; Barceló, F.; Picó, G.; Bonilla, L.; Govea, N.; Bernués, M.; Rosell, J. Fragile-X syndrome and skewed X-chromosome inactivation within a family: A female member with complete inactivation of the functional X chromosome. Am. J. Med. Genet. A 2003, 122, 108–114. [Google Scholar] [CrossRef]
- Backes, M.; Genç, B.; Schreck, J.; Doerfler, W.; Lehmkuhl, G.; von Gontard, A. Cognitive and behavioral profile of fragile X boys: Correlations to molecular data. Am. J. Med. Genet. 2000, 95, 150–156. [Google Scholar] [CrossRef]
- Kaufmann, W.E.; Abrams, M.T.; Chen, W.; Reiss, A.L. Genotype, molecular phenotype, and cognitive phenotype: Correlations in fragile X syndrome. Am. J. Med. Genet. 1999, 83, 286–295. [Google Scholar] [CrossRef]
- Tassone, F.; Hagerman, R.J.; Iklé, D.N.; Dyer, P.N.; Lampe, M.; Willemsen, R.; Oostra, B.A.; Taylor, A.K. FMRP expression as a potential prognostic indicator in fragile X syndrome. Am. J. Med. Genet. 1999, 84, 250–261. [Google Scholar] [CrossRef]
- Dykens, E.M. Psychopathology in children with intellectual disability. J. Child Psychol. Psychiatry 2000, 41, 407–417. [Google Scholar] [CrossRef]
- Friedman, N.P.; Miyake, A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex 2017, 86, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Tonnsen, B.L.; Grefer, M.L.; Hatton, D.D.; Roberts, J.E. Developmental trajectories of attentional control in preschool males with fragile X syndrome. Res. Dev. Disabil. 2015, 36C, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Cornish, K.; Munir, F.; Wilding, J. A neuropsychological and behavioural profile of attention deficits in fragile X syndrome. Rev. Neurol. 2001, 33, S24–S29. [Google Scholar] [PubMed]
- Munir, F.; Cornish, K.M.; Wilding, J. A neuropsychological profile of attention deficits in young males with fragile X syndrome. Neuropsychologia 2000, 38, 1261–1270. [Google Scholar] [CrossRef]
- Munir, F.; Cornish, K.M.; Wilding, J. Nature of the working memory deficit in fragile-X syndrome. Brain Cogn. 2000, 44, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.; Cornish, K.; Munir, F. Further delineation of the executive deficit in males with fragile-X syndrome. Neuropsychologia 2002, 40, 1343–1349. [Google Scholar] [CrossRef]
- Scerif, G.; Cornish, K.; Wilding, J.; Driver, J.; Karmiloff-Smith, A. Visual search in typically developing toddlers and toddlers with Fragile X or Williams syndrome. Dev. Sci. 2004, 7, 116–130. [Google Scholar] [CrossRef]
- Baker, P.M.; Thompson, J.L.; Sweeney, J.A.; Ragozzino, M.E. Differential effects of 5-HT(2A) and 5-HT(2C) receptor blockade on strategy-switching. Behav. Brain Res. 2011, 219, 123–131. [Google Scholar] [CrossRef]
- Lanfranchi, S.; Cornoldi, C.; Drigo, S.; Vianello, R. Working memory in individuals with fragile X syndrome. Child Neuropsychol. 2009, 15, 105–119. [Google Scholar] [CrossRef]
- Hooper, S.R.; Hatton, D.; Sideris, J.; Sullivan, K.; Hammer, J.; Schaaf, J.; Mirrett, P.; Ornstein, P.A.; Bailey, D.P. Executive functions in young males with fragile X syndrome in comparison to mental age-matched controls: Baseline findings from a longitudinal study. Neuropsychology 2008, 22, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Loesch, D.Z.; Bui, Q.M.; Grigsby, J.; Butler, E.; Epstein, J.; Huggins, R.M.; Taylor, A.K.; Hagerman, R.J. Effect of the fragile X status categories and the fragile X mental retardation protein levels on executive functioning in males and females with fragile X. Neuropsychology 2003, 17, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Lachiewicz, A.M. Abnormal behaviors of young girls with fragile X syndrome. Am. J. Med. Genet. 1992, 43, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.; Hatton, D.; Hammer, J.; Sideris, J.; Hooper, S.; Ornstein, P.; Bailey, D. ADHD symptoms in children with FXS. Am. J. Med. Genet. A 2006, 140, 2275–2288. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Leroux, J.; White, C.D.; Reiss, A.L. Frontostriatal deficits in fragile X syndrome: Relation to FMR1 gene expression. Proc. Natl. Acad. Sci. USA 2004, 101, 3615–3620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, P.; Abbeduto, L.; Murphy, M.; Richmond, E.; Giles, N.; Bruno, L.; Schroeder, S.; Anderson, J.; Orsmond, G. Psychological well-being of mothers of youth with fragile X syndrome: Syndrome specificity and within-syndrome variability. J. Intellect. Disabil. Res. 2006, 50, 894–904. [Google Scholar] [CrossRef]
- Bishop, S.L.; Richler, J.; Cain, A.C.; Lord, C. Predictors of perceived negative impact in mothers of children with autism spectrum disorder. Am. J. Ment. Retard. 2007, 112, 450–461. [Google Scholar] [CrossRef]
- Swanson, H.; Alloway, T. Working Memory, Learning, and Academic Achievement, 1st ed.; American Psychological Association: Washington, DC, USA, 2012; pp. 327–366. [Google Scholar]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Hooper, S.R.; Hatton, D.; Sideris, J.; Sullivan, K.; Ornstein, P.A.; Bailey, D.B. Developmental trajectories of executive functions in young males with fragile X syndrome. Res. Dev. Disabil. 2018, 81, 73–88. [Google Scholar] [CrossRef]
- Van der Molen, M.J.; Huizinga, M.; Huizenga, H.M.; Ridderinkhof, K.R.; Van der Molen, M.W.; Hamel, B.J.; Curfs, L.M.; Ramakers, G.J. Profiling Fragile X Syndrome in males: Strengths and weaknesses in cognitive abilities. Res. Dev. Disabil. 2010, 31, 426–439. [Google Scholar] [CrossRef]
- Quintin, E.M.; Jo, B.; Hall, S.S.; Bruno, J.L.; Chromik, L.C.; Raman, M.M.; Lightbody, A.A.; Martin, A.; Reiss, A.L. The cognitive developmental profile associated with fragile X syndrome: A longitudinal investigation of cognitive strengths and weaknesses through childhood and adolescence. Dev. Psychopathol. 2016, 28, 1457–1469. [Google Scholar] [CrossRef]
- Bennetto, L.; Pennington, B.F.; Porter, D.; Taylor, A.K.; Hagerman, R.J. Profile of cognitive functioning in women with the fragile X mutation. Neuropsychology 2001, 15, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Hessl, D.; Sansone, S.M.; Berry-Kravis, E.; Riley, K.; Widaman, K.F.; Abbeduto, L.; Schneider, A.; Coleman, J.; Oaklander, D.; Rhodes, K.C.; et al. The NIH Toolbox Cognitive Battery for intellectual disabilities: Three preliminary studies and future directions. J. Neurodev. Disord. 2016, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Scherr, J.F.; Hahn, L.J.; Hooper, S.R.; Hatton, D.; Roberts, J.E. HPA axis function predicts development of working memory in boys with FXS. Brain Cogn. 2016, 102, 80–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson-Glenberg, M.C. Fragile X syndrome: Neural network models of sequencing and memory. Cogn. Syst. Res. 2008, 9, 274–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miezejeski, C.M.; Jenkins, E.C.; Hill, A.L.; Wisniewski, K.; French, J.H.; Brown, W.T. A profile of cognitive deficit in females from fragile X families. Neuropsychologia 1986, 24, 405–409. [Google Scholar] [CrossRef]
- Loesch, D.Z.; Huggins, R.M.; Bui, Q.M.; Epstein, J.L.; Taylor, A.K.; Hagerman, R.J. Effect of the deficits of fragile X mental retardation protein on cognitive status of fragile X males and females assessed by robust pedigree analysis. J. Dev. Behav. Pediatr. 2002, 23, 416–423. [Google Scholar] [CrossRef]
- Loesch, D.Z.; Huggins, R.M.; Hagerman, R.J. Phenotypic variation and FMRP levels in fragile X. Ment. Retard. Dev. Disabil. Res. Rev. 2004, 10, 31–41. [Google Scholar] [CrossRef]
- Schapiro, M.B.; Murphy, D.G.; Hagerman, R.J.; Azari, N.P.; Alexander, G.E.; Miezejeski, C.M.; Hinton, V.J.; Horwitz, B.; Haxby, J.V.; Kumar, A. Adult fragile X syndrome: Neuropsychology, brain anatomy, and metabolism. Am. J. Med. Genet. 1995, 60, 480–493. [Google Scholar] [CrossRef]
- Baker, S.; Hooper, S.; Skinner, M.; Hatton, D.; Schaaf, J.; Ornstein, P.; Bailey, D. Working memory subsystems and task complexity in young boys with Fragile X syndrome. J. Intellect. Disabil. Res. 2011, 55, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Mazzocco, M.M. Math learning disability and math LD subtypes: Evidence from studies of Turner syndrome, fragile X syndrome, and neurofibromatosis type 1. J. Learn. Disabil. 2001, 34, 520–533. [Google Scholar] [CrossRef] [PubMed]
- Mazzocco, M.M.; Hagerman, R.J.; Cronister-Silverman, A.; Pennington, B.F. Specific frontal lobe deficits among women with the fragile X gene. J. Am. Acad. Child Adolesc. Psychiatry 1992, 31, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- Pierpont, E.I.; Richmond, E.K.; Abbeduto, L.; Kover, S.T.; Brown, W.T. Contributions of phonological and verbal working memory to language development in adolescents with fragile X syndrome. J. Neurodev. Disord. 2011, 3, 335–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Molen, M.J.; Van der Molen, M.W.; Ridderinkhof, K.R.; Hamel, B.C.; Curfs, L.M.; Ramakers, G.J. Attentional set-shifting in fragile X syndrome. Brain Cogn. 2012, 78, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Cornish, K.M.; Munir, F.; Cross, G. Spatial cognition in males with Fragile-X syndrome: Evidence for a neuropsychological phenotype. Cortex 1999, 35, 263–271. [Google Scholar] [CrossRef]
- Kogan, C.S.; Boutet, I.; Cornish, K.; Graham, G.E.; Berry-Kravis, E.; Drouin, A.; Milgram, N.W. A comparative neuropsychological test battery differentiates cognitive signatures of Fragile X and Down syndrome. J. Intellect. Disabil. Res. 2009, 53, 125–142. [Google Scholar] [CrossRef]
- Kwon, H.; Menon, V.; Eliez, S.; Warsofsky, I.S.; White, C.D.; Dyer-Friedman, J.; Taylor, A.K.; Glover, G.H.; Reiss, A.L. Functional neuroanatomy of visuospatial working memory in fragile X syndrome: Relation to behavioral and molecular measures. Am. J. Psychiatry 2001, 158, 1040–1051. [Google Scholar] [CrossRef]
- Cornish, K.; Cole, V.; Longhi, E.; Karmiloff-Smith, A.; Scerif, G. Mapping developmental trajectories of attention and working memory in fragile X syndrome: Developmental freeze or developmental change? Dev. Psychopathol. 2013, 25, 365–376. [Google Scholar] [CrossRef]
- Freund, L.S.; Reiss, A.L. Cognitive profiles associated with the fra (X) syndrome in males and females. Am. J. Med. Genet. 1991, 38, 542–547. [Google Scholar] [CrossRef]
- Cornish, K.; Scerif, G.; Karmiloff-Smith, A. Tracing syndrome-specific trajectories of attention across the lifespan. Cortex 2007, 43, 672–685. [Google Scholar] [CrossRef]
- Scerif, G.; Karmiloff-Smith, A.; Campos, R.; Elsabbagh, M.; Driver, J.; Cornish, K. To look or not to look? Typical and atypical development of oculomotor control. J. Cogn. Neurosci. 2005, 17, 591–604. [Google Scholar] [CrossRef]
- Hoeft, F.; Hernandez, A.; Parthasarathy, S.; Watson, C.L.; Hall, S.S.; Reiss, A.L. Fronto-striatal dysfunction and potential compensatory mechanisms in male adolescents with fragile X syndrome. Hum. Brain Mapp. 2007, 28, 543–554. [Google Scholar] [CrossRef]
- Woodcock, K.A.; Oliver, C.; Humphreys, G.W. Task-switching deficits and repetitive behaviour in genetic neurodevelopmental disorders: Data from children with Prader-Willi syndrome chromosome 15 q11–q13 deletion and boys with Fragile X syndrome. Cogn. Neuropsychol. 2009, 26, 172–194. [Google Scholar] [CrossRef] [PubMed]
- Knox, A.; Schneider, A.; Abucayan, F.; Hervey, C.; Tran, C.; Hessl, D.; Berry-Kravis, E. Feasibility, reliability, and clinical validity of the Test of Attentional Performance for Children (KiTAP) in Fragile X syndrome (FXS). J. Neurodev. Disord. 2012, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Kirk, J.W.; Mazzocco, M.M.; Kover, S.T. Assessing executive dysfunction in girls with fragile X or Turner syndrome using the Contingency Naming Test (CNT). Dev. Neuropsychol. 2005, 28, 755–777. [Google Scholar] [CrossRef] [PubMed]
- Lightbody, A.A.; Hall, S.S.; Reiss, A.L. Chronological age, but not FMRP levels, predicts neuropsychological performance in girls with fragile X syndrome. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141, 468–472. [Google Scholar] [CrossRef] [Green Version]
- Martin, A.; Quintin, E.M.; Hall, S.S.; Reiss, A.L. The Role of Executive Function in Independent Living Skills in Female Adolescents and Young Adults With Fragile X Syndrome. Am. J. Intellect. Dev. Disabil. 2016, 121, 448–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamm, L.; Menon, V.; Johnston, C.K.; Hessl, D.R.; Reiss, A.L. fMRI study of cognitive interference processing in females with fragile X syndrome. J. Cogn. Neurosci. 2002, 14, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Garner, C.; Callias, M.; Turk, J. Executive function and theory of mind performance of boys with fragile-X syndrome. J. Intellect. Disabil. Res. 1999, 43, 466–474. [Google Scholar] [CrossRef]
- Scerif, G.; Longhi, E.; Cole, V.; Karmiloff-Smith, A.; Cornish, K. Attention across modalities as a longitudinal predictor of early outcomes: The case of fragile X syndrome. J. Child Psychol. Psychiatry 2012, 53, 641–650. [Google Scholar] [CrossRef]
- Sullivan, K.; Hatton, D.D.; Hammer, J.; Sideris, J.; Hooper, S.; Ornstein, P.A.; Bailey, D.B. Sustained attention and response inhibition in boys with fragile X syndrome: Measures of continuous performance. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144, 517–532. [Google Scholar] [CrossRef]
- Cornish, K.; Cole, V.; Longhi, E.; Karmiloff-Smith, A.; Scerif, G. Does attention constrain developmental trajectories in fragile x syndrome? A 3-year prospective longitudinal study. Am. J. Intellect. Dev. Disabil. 2012, 117, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Scerif, G.; Cornish, K.; Wilding, J.; Driver, J.; Karmiloff-Smith, A. Delineation of early attentional control difficulties in fragile X syndrome: Focus on neurocomputational changes. Neuropsychologia 2007, 45, 1889–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cognition, C. CANTAB Test Administration Guide; Cambridge Cognition: Cambridge, UK, 2002. [Google Scholar]
- Anderson, P.; Anderson, V.; Northam, E.; Taylor, H. Standardization of the contingency naming test (CNT) for school-ages children: A measure of reactive flexibility. Clin. Neuropsychol. Rehabil. 2000, 8, 247–273. [Google Scholar]
- Keith, R. The Auditory Continuous Performance Test; Psychological Corporation: San Antonio, TX, USA, 1994. [Google Scholar]
- Kaufman, A.; Kaufman, N.L. Kaufman Assessment Battery for Children, 2nd ed.; American Guidance Service: Circle Pines, MN, USA, 1983. [Google Scholar]
- Goldsmith, H.; Rothbart, M. The Laboratory Temperament Assessment Battery; University of Wisconsin: Madison, WI, USA, 1996. [Google Scholar]
- Wilson, B.; Cockburn, J.; Baddeley, A. The Rivermead Behavioral Memory Test Manual; Thames Valley: Suffolk, UK, 1985. [Google Scholar]
- Wilson, B.; Ivani-Chalin, R.; Aldrich, F. The Rivermead Behavioural Memory Test for Children Aged 5 to 10 Years; Thames Valley Test Co.: Bury St. Edmunds, UK, 1991. [Google Scholar]
- Thorndike, R.; Hagen, E.; Sattler, J. Stanford-Binet Intelligence Scale, 4th ed.; Riverside: Chicago, IL, USA, 1986. [Google Scholar]
- Manly, T.; Roberston, I.; Anderson, V.; Nimmo-Smith, I. The Test of Everyday Attention for Children: TEA-Ch; Thames Valley Test Company: Bury St. Edmunds, UK, 1999. [Google Scholar]
- Wilding, J.; Munir, F.; Cornish, K. The nature of attention differences between group of children differentiated by teacher ratings of attention and hyperactivity. Br. J. Psychol. 2001, 92, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. Wechsler Intelligence Scale for Children-III Revised, 3rd ed.; The Psychological Corporation, Harcourt Brace: New York, NY, USA, 1992. [Google Scholar]
- Woodcock, R.; Johnson, M.E.B. Woodcock–Johnson Tests of Cognitive Ability-III; DLM: Allen, TX, USA, 2001. [Google Scholar]
- Wechsler, D. The Wechsler Memory Scale–Revised; Psychological Corporation: San Diego, CA, USA, 1987. [Google Scholar]
- Pickering, S.; Gathercole, S. The Working Memory Test Battery for Children; The Psychological Corporation: London, UK, 2001. [Google Scholar]
- Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Finestack, L.H.; Abbeduto, L. Expressive language profiles of verbally expressive adolescents and young adults with Down syndrome or fragile X syndrome. J. Speech Lang. Hear. Res. 2010, 53, 1334–1348. [Google Scholar] [CrossRef]
- Friedman, N.P.; Miyake, A. The relations among inhibition and interference control functions: A latent-variable analysis. J. Exp. Psychol. Gen. 2004, 133, 101–135. [Google Scholar] [CrossRef] [PubMed]
- Cornish, K.M.; Munir, F.; Cross, G. Differential impact of the FMR-1 full mutation on memory and attention functioning: A neuropsychological perspective. J. Cogn. Neurosci. 2001, 13, 144–150. [Google Scholar] [CrossRef]
- Huddleston, L.B.; Visootsak, J.; Sherman, S.L. Cognitive aspects of Fragile X syndrome. Wiley Interdiscip. Rev. Cogn. Sci. 2014, 5, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Cepeda, N.J.; Blackwell, K.A.; Munakata, Y. Speed isn’t everything: Complex processing speed measures mask individual differences and developmental changes in executive control. Dev. Sci. 2013, 16, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Gathercole, S.E.; Baddeley, A.D. Evaluation of the role of phonological STM in the development of vocabulary in children: A longitudinal study. J. Mem. Lang. 1989, 28, 200–213. [Google Scholar] [CrossRef]
- Conners, F.A.; Moore, M.S.; Loveall, S.J.; Merrill, E.C. Memory profiles of Down, Williams, and fragile X syndromes: Implications for reading development. J. Dev. Behav. Pediatr. 2011, 32, 405–417. [Google Scholar] [CrossRef] [PubMed]
- South, M.; Rodgers, J. Sensory, Emotional and Cognitive Contributions to Anxiety in Autism Spectrum Disorders. Front. Hum. Neurosci. 2017, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.X.; Kelley, R.G.; Quintin, E.M.; Raman, M.; Thompson, P.M.; Reiss, A.L. Cognitive and behavioral correlates of caudate subregion shape variation in fragile X syndrome. Hum. Brain Mapp. 2014, 35, 2861–2868. [Google Scholar] [CrossRef] [PubMed]
- Bray, S.; Hirt, M.; Jo, B.; Hall, S.S.; Lightbody, A.A.; Walter, E.; Chen, K.; Patnaik, S.; Reiss, A.L. Aberrant frontal lobe maturation in adolescents with fragile X syndrome is related to delayed cognitive maturation. Biol. Psychiatry 2011, 70, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Eliez, S.; Blasey, C.M.; Freund, L.S.; Hastie, T.; Reiss, A.L. Brain anatomy, gender and IQ in children and adolescents with fragile X syndrome. Brain 2001, 124, 1610–1618. [Google Scholar] [CrossRef] [Green Version]
- Gothelf, D.; Furfaro, J.A.; Hoeft, F.; Eckert, M.A.; Hall, S.S.; O’Hara, R.; Erba, H.W.; Ringel, J.; Hayashi, K.M.; Patnaik, S.; et al. Neuroanatomy of fragile X syndrome is associated with aberrant behavior and the fragile X mental retardation protein (FMRP). Ann. Neurol. 2008, 63, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Hazlett, H.C.; Poe, M.D.; Lightbody, A.A.; Gerig, G.; Macfall, J.R.; Ross, A.K.; Provenzale, J.; Martin, A.; Reiss, A.L.; Piven, J. Teasing apart the heterogeneity of autism: Same behavior, different brains in toddlers with fragile X syndrome and autism. J. Neurodev. Disord. 2009, 1, 81–90. [Google Scholar] [CrossRef]
- Hessl, D.; Rivera, S.M.; Reiss, A.L. The neuroanatomy and neuroendocrinology of fragile X syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 2004, 10, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Hoeft, F.; Lightbody, A.A.; Hazlett, H.C.; Patnaik, S.; Piven, J.; Reiss, A.L. Morphometric spatial patterns differentiating boys with fragile X syndrome, typically developing boys, and developmentally delayed boys aged 1 to 3 years. Arch. Gen. Psychiatry 2008, 65, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Hoeft, F.; Carter, J.C.; Lightbody, A.A.; Cody Hazlett, H.; Piven, J.; Reiss, A.L. Region-specific alterations in brain development in one- to three-year-old boys with fragile X syndrome. Proc. Natl. Acad. Sci. USA 2010, 107, 9335–9339. [Google Scholar] [CrossRef] [Green Version]
- Reiss, A.L.; Abrams, M.T.; Greenlaw, R.; Freund, L.; Denckla, M.B. Neurodevelopmental effects of the FMR-1 full mutation in humans. Nat. Med. 1995, 1, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Hallahan, B.P.; Craig, M.C.; Toal, F.; Daly, E.M.; Moore, C.J.; Ambikapathy, A.; Robertson, D.; Murphy, K.C.; Murphy, D.G. In vivo brain anatomy of adult males with Fragile X syndrome: An MRI study. Neuroimage 2011, 54, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Kates, W.R.; Folley, B.S.; Lanham, D.C.; Capone, G.T.; Kaufmann, W.E. Cerebral growth in Fragile X syndrome: Review and comparison with Down syndrome. Microsc. Res. Tech. 2002, 57, 159–167. [Google Scholar] [CrossRef]
- Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The cognitive functions of the caudate nucleus. Prog. Neurobiol. 2008, 86, 141–155. [Google Scholar] [CrossRef]
- Friedlander, L.; Desrocher, M. Neuroimaging studies of obsessive-compulsive disorder in adults and children. Clin. Psychol. Rev. 2006, 26, 32–49. [Google Scholar] [CrossRef]
- Rotge, J.Y.; Guehl, D.; Dilharreguy, B.; Tignol, J.; Bioulac, B.; Allard, M.; Burbaud, P.; Aouizerate, B. Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol. Psychiatry 2009, 65, 75–83. [Google Scholar] [CrossRef]
- Levitt, J.J.; McCarley, R.W.; Dickey, C.C.; Voglmaier, M.M.; Niznikiewicz, M.A.; Seidman, L.J.; Hirayasu, Y.; Ciszewski, A.A.; Kikinis, R.; Jolesz, F.A.; et al. MRI study of caudate nucleus volume and its cognitive correlates in neuroleptic-naive patients with schizotypal personality disorder. Am. J. Psychiatry 2002, 159, 1190–1197. [Google Scholar] [CrossRef]
- Mostofsky, S.H.; Mazzocco, M.M.; Aakalu, G.; Warsofsky, I.S.; Denckla, M.B.; Reiss, A.L. Decreased cerebellar posterior vermis size in fragile X syndrome: Correlation with neurocognitive performance. Neurology 1998, 50, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Reiss, A.L.; Aylward, E.; Freund, L.S.; Joshi, P.K.; Bryan, R.N. Neuroanatomy of fragile X syndrome: The posterior fossa. Ann. Neurol. 1991, 29, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D. Disorders of the cerebellum: Ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 2004, 16, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.A.; Emory, E. Executive function and the frontal lobes: A meta-analytic review. Neuropsychol. Rev. 2006, 16, 17–42. [Google Scholar] [CrossRef] [PubMed]
- D’Cruz, A.M.; Mosconi, M.W.; Ragozzino, M.E.; Cook, E.H.; Sweeney, J.A. Alterations in the functional neural circuitry supporting flexible choice behavior in autism spectrum disorders. Transl. Psychiatry 2016, 6, e916. [Google Scholar] [CrossRef]
- Yerys, B.E.; Antezana, L.; Weinblatt, R.; Jankowski, K.F.; Strang, J.; Vaidya, C.J.; Schultz, R.T.; Gaillard, W.D.; Kenworthy, L. Neural Correlates of Set-Shifting in Children with Autism. Autism Res. 2015, 8, 386–397. [Google Scholar] [CrossRef]
- Barnea-Goraly, N.; Eliez, S.; Hedeus, M.; Menon, V.; White, C.D.; Moseley, M.; Reiss, A.L. White matter tract alterations in fragile X syndrome: Preliminary evidence from diffusion tensor imaging. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 118, 81–88. [Google Scholar] [CrossRef]
- Yuan, P.; Raz, N. Prefrontal cortex and executive functions in healthy adults: A meta-analysis of structural neuroimaging studies. Neurosci. Biobehav. Rev. 2014, 42, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.W.; Barnea-Goraly, N.; Lightbody, A.A.; Patnaik, S.S.; Hoeft, F.; Hazlett, H.; Piven, J.; Reiss, A.L. Early white-matter abnormalities of the ventral frontostriatal pathway in fragile X syndrome. Dev. Med. Child Neurol. 2009, 51, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Kemper, M.B.; Hagerman, R.J.; Altshul-Stark, D. Cognitive profiles of boys with the fragile X syndrome. Am. J. Med. Genet. 1988, 30, 191–200. [Google Scholar] [CrossRef]
- Rolls, E.T. The orbitofrontal cortex and reward. Cereb. Cortex 2000, 10, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Huber, K.M.; Gallagher, S.M.; Warren, S.T.; Bear, M.F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 2002, 99, 7746–7750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comery, T.A.; Harris, J.B.; Willems, P.J.; Oostra, B.A.; Irwin, S.A.; Weiler, I.J.; Greenough, W.T. Abnormal dendritic spines in fragile X knockout mice: Maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 1997, 94, 5401–5404. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Ku, L.; Osterhout, D.J.; Li, W.; Ahmadian, A.; Liang, Z.; Feng, Y. Developmentally-programmed FMRP expression in oligodendrocytes: A potential role of FMRP in regulating translation in oligodendroglia progenitors. Hum. Mol. Genet. 2004, 13, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Hinds, H.L.; Ashley, C.T.; Sutcliffe, J.S.; Nelson, D.L.; Warren, S.T.; Housman, D.E.; Schalling, M. Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nat. Genet. 1993, 3, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Abitbol, M.; Menini, C.; Delezoide, A.L.; Rhyner, T.; Vekemans, M.; Mallet, J. Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nat. Genet. 1993, 4, 147–153. [Google Scholar] [CrossRef]
- Gibson, J.R.; Bartley, A.F.; Hays, S.A.; Huber, K.M. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J. Neurophysiol. 2008, 100, 2615–2626. [Google Scholar] [CrossRef]
- Ronesi, J.A.; Collins, K.A.; Hays, S.A.; Tsai, N.P.; Guo, W.; Birnbaum, S.G.; Hu, J.H.; Worley, P.F.; Gibson, J.R.; Huber, K.M. Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat. Neurosci. 2012, 15, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Westmark, C.J.; Chuang, S.C.; Hays, S.A.; Filon, M.J.; Ray, B.C.; Westmark, P.R.; Gibson, J.R.; Huber, K.M.; Wong, R.K. APP Causes Hyperexcitability in Fragile X Mice. Front. Mol. Neurosci. 2016, 9, 147. [Google Scholar] [CrossRef]
- Lovelace, J.W.; Ethell, I.M.; Binder, D.K.; Razak, K.A. Translation-relevant EEG phenotypes in a mouse model of Fragile X Syndrome. Neurobiol. Dis. 2018, 115, 39–48. [Google Scholar] [CrossRef]
- Wang, J.; Ethridge, L.E.; Mosconi, M.W.; White, S.P.; Binder, D.K.; Pedapati, E.V.; Erickson, C.A.; Byerly, M.J.; Sweeney, J.A. A resting EEG study of neocortical hyperexcitability and altered functional connectivity in fragile X syndrome. J. Neurodev. Disord. 2017, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Sohal, V.S.; Zhang, F.; Yizhar, O.; Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009, 459, 698–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathalon, D.H.; Sohal, V.S. Neural Oscillations and Synchrony in Brain Dysfunction and Neuropsychiatric Disorders: It’s About Time. JAMA Psychiatry 2015, 72, 840–844. [Google Scholar] [CrossRef] [PubMed]
- Bosman, C.A.; Lansink, C.S.; Pennartz, C.M. Functions of gamma-band synchronization in cognition: From single circuits to functional diversity across cortical and subcortical systems. Eur. J. Neurosci. 2014, 39, 1982–1999. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.K.; Hoch, R.; Lee, A.T.; Patel, T.; Rubenstein, J.L.; Sohal, V.S. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/−) mice. Neuron 2015, 85, 1332–1343. [Google Scholar] [CrossRef]
- Lewis, D.A.; Curley, A.A.; Glausier, J.R.; Volk, D.W. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012, 35, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.A. Inhibitory neurons in human cortical circuits: Substrate for cognitive dysfunction in schizophrenia. Curr. Opin. Neurobiol. 2014, 26, 22–26. [Google Scholar] [CrossRef]
- Moran, L.V.; Hong, L.E. High vs. low frequency neural oscillations in schizophrenia. Schizophr. Bull. 2011, 37, 659–663. [Google Scholar] [CrossRef]
- Reilly, J.L.; Lencer, R.; Bishop, J.R.; Keedy, S.; Sweeney, J.A. Pharmacological treatment effects on eye movement control. Brain Cogn. 2008, 68, 415–435. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.L. Executive dysfunction in autism. Trends Cogn. Sci. 2004, 8, 26–32. [Google Scholar] [CrossRef]
- Craig, F.; Margari, F.; Legrottaglie, A.R.; Palumbi, R.; de Giambattista, C.; Margari, L. A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. Neuropsychiatr. Dis. Treat. 2016, 12, 1191–1202. [Google Scholar]
- Constantino, J.N. Deconstructing autism: From unitary syndrome to contributory developmental endophenotypes. Int. Rev. Psychiatry 2018, 30, 18–24. [Google Scholar] [CrossRef]
- Moreno-De-Luca, A.; Evans, D.W.; Boomer, K.B.; Hanson, E.; Bernier, R.; Goin-Kochel, R.P.; Myers, S.M.; Challman, T.D.; Moreno-De-Luca, D.; Slane, M.M.; et al. The role of parental cognitive, behavioral, and motor profiles in clinical variability in individuals with chromosome 16p11.2 deletions. JAMA Psychiatry 2015, 72, 119–126. [Google Scholar] [CrossRef]
- Mervis, C.B.; Klein-Tasman, B.P. Methodological issues in group-matching designs: Alpha levels for control variable comparisons and measurement characteristics of control and target variables. J. Autism Dev. Disord. 2004, 34, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Sansone, S.M.; Schneider, A.; Bickel, E.; Berry-Kravis, E.; Prescott, C.; Hessl, D. Improving IQ measurement in intellectual disabilities using true deviation from population norms. J. Neurodev. Disord. 2014, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Hessl, D.; Nguyen, D.V.; Green, C.; Chavez, A.; Tassone, F.; Hagerman, R.J.; Senturk, D.; Schneider, A.; Lightbody, A.; Reiss, A.L.; et al. A solution to limitations of cognitive testing in children with intellectual disabilities: The case of fragile X syndrome. J. Neurodev. Disord. 2009, 1, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Au, J.; Berkowitz-Sutherland, L.; Schneider, A.; Schweitzer, J.B.; Hessl, D.; Hagerman, R. A feasibility trial of Cogmed working memory training in fragile X syndrome. J. Pediatr. Genet. 2014, 3, 147–156. [Google Scholar]
- Berry-Kravis, E.; Sumis, A.; Kim, O.K.; Lara, R.; Wuu, J. Characterization of potential outcome measures for future clinical trials in fragile X syndrome. J. Autism Dev. Disord. 2008, 38, 1751–1757. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.J.; Asafo-Adjei, P.K.; Arnold, H.M.; Brown, R.E.; Bauchwitz, R.P. A phenotypic and molecular characterization of the fmr1-tm1Cgr fragile X mouse. Genes Brain Behav. 2004, 3, 337–359. [Google Scholar] [CrossRef] [PubMed]
- Durtch-Belgium Fragile X Consortium. Fmr1 knockout mice: A model to study fragile X mental retardation. The Dutch-Belgian Fragile X Consortium. Cell 1994, 78, 23–33. [Google Scholar]
- Peier, A.M.; McIlwain, K.L.; Kenneson, A.; Warren, S.T.; Paylor, R.; Nelson, D.L. (Over) correction of FMR1 deficiency with YAC transgenics: Behavioral and physical features. Hum. Mol. Genet. 2000, 9, 1145–1159. [Google Scholar] [CrossRef] [PubMed]
- D’Hooge, R.; Nagels, G.; Franck, F.; Bakker, C.E.; Reyniers, E.; Storm, K.; Kooy, R.F.; Oostra, B.A.; Willems, P.J.; De Deyn, P.P. Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience 1997, 76, 367–376. [Google Scholar] [CrossRef]
- Robbins, T.W. The 5-choice serial reaction time task: Behavioural pharmacology and functional neurochemistry. Psychopharmacology 2002, 163, 362–380. [Google Scholar] [CrossRef] [PubMed]
- Kramvis, I.; Mansvelder, H.D.; Loos, M.; Meredith, R. Hyperactivity, perseveration and increased responding during attentional rule acquisition in the Fragile X mouse model. Front. Behav. Neurosci. 2013, 7, 172. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Beaudin, A.E.; Verosky, S.; Driscoll, L.L.; Weiskopf, M.; Levitsky, D.A.; Crnic, L.S.; Strupp, B.J. Attentional dysfunction, impulsivity, and resistance to change in a mouse model of fragile X syndrome. Behav. Neurosci. 2006, 120, 1367–1379. [Google Scholar] [CrossRef]
- Krueger, D.D.; Osterweil, E.K.; Chen, S.P.; Tye, L.D.; Bear, M.F. Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. Proc. Natl. Acad. Sci. USA 2011, 108, 2587–2592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Cruz, A.M.; Ragozzino, M.E.; Mosconi, M.W.; Shrestha, S.; Cook, E.H.; Sweeney, J.A. Reduced behavioral flexibility in autism spectrum disorders. Neuropsychology 2013, 27, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Berry-Kravis, E.; Sumis, A.; Hervey, C.; Nelson, M.; Porges, S.W.; Weng, N.; Weiler, I.J.; Greenough, W.T. Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J. Dev. Behav. Pediatr. 2008, 29, 293–302. [Google Scholar] [CrossRef]
- Budimirovic, D.B.; Berry-Kravis, E.; Erickson, C.A.; Hall, S.S.; Hessl, D.; Reiss, A.L.; King, M.K.; Abbeduto, L.; Kaufmann, W.E. Updated report on tools to measure outcomes of clinical trials in fragile X syndrome. J. Neurodev. Disord. 2017, 9, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Executive Function Domain | Measure 1 | Findings 2 | References | |
---|---|---|---|---|
Working Memory | Males | Females | ||
Verbal | WJ-III Memory for Words; NIH Tool Box List Sorting; RAKIT Learning Names; WMTB Nonword Repetition; RBMT Story Recall; WMS-R Logical Memory I; SB-IV Sentence Memory; Weschler Digit Forward, Digit Backward; WJ-III Auditory Memory; WISC Letter-Number Sequencing; KABC Verbal Number Recall; WISC, WAIS Arithmetic; TEA-Ch Elevator Counting | vs. CA ↓ vs. MA ↓ vs. iDD ↓ vs. DS ↓≈ | vs. CA ↓ vs. IQ ≈ vs. Enviro ≈ | [15,16,21,22,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46] |
Nonverbal/Visuospatial | Leiter Spatial Memory; CANTAB Spatial Span; KABC Spatial Span; SB5 Spatial Span; Delayed-no-matching-to-position; Toy Recall | vs. CA ↓ vs. MA ↓ vs. iDD ↓ vs. DS ↓≈ | vs. CA ↓ | [16,21,22,31,32,34,41,42,47,48,49] |
Nonverbal/Visuoperceptual | Delayed-non-matching-to-sample; WMS-R Figural Memory I; Fish color; Sequence Memory Task; n-back; SB-IV Bead Memory; Card Task; Hidden Object Memory Test | vs. CA ↓ vs. MA ↓ vs. DS ↓≈ | vs. MA ↓ vs. Enviro ↓≈ | [15,16,34,35,37,43,49,50,51] |
Inhibitory Control | ||||
Prepotent Response Inhibition | KiTAP Go/No-go; Lab-TAB Snack Delay; Antisaccade; TEA-Ch Walk task | vs. CA ↓ vs. MA ↓ vs. iDD ≈ vs. DS ↓ | vs. CA≈ | [14,16,26,52,53,54,55,56] |
Distractor Interference | Stroop, Day/Night Task, CNT; Visual Selection; TEA-Ch Same-Opposite task; KiTap Distractibility, NIH Toolbox Flanker | vs. CA ≈↓ vs. MA ↓ vs. iDD ↓ vs. DS ↓ | vs. IQ ↓≈ vs. Enviro ↓ vs. TS ≈ | [16,22,31,34,35,52,55,56,57,58,59,60] |
Cognitive Flexibility | NIH Toolbox Dimensional Change Card Sort Test; CANTAB IED; Wisconsin Card Sorting; iTap FlexiContingency Naming Task Subtest 3; Kbility | vs. CA ↓ vs. MA ↓ vs. iDD vs. DS ↓≈ vs. PWS ≈ vs. Enviro ≈ | vs. Enviro ↓≈ | [15,22,23,31,32,34,35,46,48,55,56,61] |
Attention | ||||
Sustained | CPT; KiTap Vigilance; KiTAP Sustained Attention; WIAT Vigilance; WATT Vigilan task; Elevator Counting | vs. CA ↓ vs. MA ↓ vs. DS ↓≈ | n/a | [15,16,37,50,52,56,62,63,64] |
Selective | Symbol Search, Cancelation, Map Search, WATT Visearch task; WISC Symbol Search; KiTAP Visual Scanning; TEA-ch Map Search | vs. CA ↓ vs. MA ≈ vs. DS ↑ vs. WS ↑ | n/a | [15,16,18,19,52,56,65] |
Divided | KiTAP Divided Attention; WATT Visearch dual task | vs. MA ↓ vs. DS ≈ | n/a | [16,56] |
Planning | NEPSY Tower; WJ-III Planning; CANTAB Stockings of Cambridge | vs. MA ↓ | n/a | [22,31,32] |
Processing Speed | WISC Coding, Cancelation; NIH Toolbox Pattern Comparison; Reaction Time from CNT; KiTAP Alertness | vs. CA ↓ vs. MA ≈ | vs. CA ↓ | [22,31,33,35,56] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitt, L.M.; Shaffer, R.C.; Hessl, D.; Erickson, C. Executive Function in Fragile X Syndrome: A Systematic Review. Brain Sci. 2019, 9, 15. https://doi.org/10.3390/brainsci9010015
Schmitt LM, Shaffer RC, Hessl D, Erickson C. Executive Function in Fragile X Syndrome: A Systematic Review. Brain Sciences. 2019; 9(1):15. https://doi.org/10.3390/brainsci9010015
Chicago/Turabian StyleSchmitt, Lauren M., Rebecca C. Shaffer, David Hessl, and Craig Erickson. 2019. "Executive Function in Fragile X Syndrome: A Systematic Review" Brain Sciences 9, no. 1: 15. https://doi.org/10.3390/brainsci9010015
APA StyleSchmitt, L. M., Shaffer, R. C., Hessl, D., & Erickson, C. (2019). Executive Function in Fragile X Syndrome: A Systematic Review. Brain Sciences, 9(1), 15. https://doi.org/10.3390/brainsci9010015