The Current State of Deep Brain Stimulation for Chronic Pain and Its Context in Other Forms of Neuromodulation
Abstract
:1. Introduction
2. Management of Chronic Pain
2.1. Pharmacotherapy and Non-Invasive Neuromodulation
2.2. Spinal Cord Stimulation
2.3. Deep Brain Stimulation
3. Anterior Cingulate Cortex: A More Recent DBS Target for Chronic Pain
4. Motor Cortex Stimulation and Its Comparison with Deep Brain Stimulation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouhassira, D.; Lantéri-Minet, M.; Attal, N.; Laurent, B.; Touboul, C. Prevalence of chronic pain with neuropathic characteristics in the general population. Pain 2008, 136, 380–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, A.M.; Smith, B.H.; Penny, K.I.; Smith, W.C.; Chambers, W.A. The epidemiology of chronic pain in the community. Lancet 1999, 354, 1248–1252. [Google Scholar] [CrossRef]
- Gureje, O.; Von Korff, M.; Simon, G.E.; Gater, R. Persistent pain and well-being: A world health organization study in primary care. JAMA 1998, 280, 147–151. [Google Scholar] [CrossRef] [PubMed]
- McCracken, L.M.; Iverson, G.L. Predicting complaints of impaired cognitive functioning in patients with chronic pain. J. Pain Symptom Manag. 2001, 21, 392–396. [Google Scholar] [CrossRef]
- Stewart, W.F.; Ricci, J.A.; Chee, E.; Morganstein, D.; Lipton, R. Lost productive time and cost due to common pain conditions in the us workforce. JAMA 2003, 290, 2443–2454. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, P.A.; Clark, N.M. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research; National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Jensen, T.S.; Baron, R.; Haanpää, M.; Kalso, E.; Loeser, J.D.; Rice, A.S.; Treede, R.D. A new definition of neuropathic pain. Pain 2011, 152, 2204–2205. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Coderre, T.J.; Katz, J.; Vaccarino, A.L. Central neuroplasticity and pathological pain. Ann. N. Y. Acad. Sci. 2001, 933, 157–174. [Google Scholar] [CrossRef] [PubMed]
- Apkarian, A.V.; Bushnell, M.C.; Treede, R.D.; Zubieta, J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 2005, 9, 463–484. [Google Scholar] [CrossRef] [PubMed]
- Anderson, W.S.; O’Hara, S.; Lawson, H.C.; Treede, R.D.; Lenz, F.A. Plasticity of pain-related neuronal activity in the human thalamus. Prog. Brain Res. 2006, 157, 353–364. [Google Scholar] [PubMed]
- Coderre, T.J.; Katz, J.; Vaccarino, A.L.; Melzack, R. Contribution of central neuroplasticity to pathological pain: Review of clinical and experimental evidence. Pain 1993, 52, 259–285. [Google Scholar] [CrossRef]
- Schweinhardt, P.; Lee, M.; Tracey, I. Imaging pain in patients: Is it meaningful? Curr. Opin. Neurol. 2006, 19, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.; Jeanmonod, D.; Sarnthein, J. Persistent eeg overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage 2006, 31, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Cruccu, G.; Aziz, T.Z.; Garcia-Larrea, L.; Hansson, P.; Jensen, T.S.; Lefaucheur, J.P.; Simpson, B.A.; Taylor, R.S. Efns guidelines on neurostimulation therapy for neuropathic pain. Eur. J. Neurol. 2007, 14, 952–970. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.A.; Green, A.L.; Aziz, T.Z. Deep brain stimulation for pain. Handb. Clin. Neurol. 2013, 116, 277–294. [Google Scholar] [PubMed]
- Wilkinson, H.A.; Davidson, K.M.; Davidson, R.I. Bilateral anterior cingulotomy for chronic noncancer pain. Neurosurgery 1999, 45, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.M.; Logan, J.; Gladden, R.M.; Bohm, M.K. Vital signs: Demographic and substance use trends among heroin users—United States, 2002–2013. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 719–725. [Google Scholar] [PubMed]
- Dowell, D.; Haegerich, T.M.; Chou, R. Cdc guideline for prescribing opioids for chronic pain—United States, 2016. JAMA 2016, 315, 1624–1645. [Google Scholar] [CrossRef] [PubMed]
- Ranapurwala, S.I.; Naumann, R.B.; Austin, A.E.; Dasgupta, N.; Marshall, S.W. Methodologic limitations of prescription opioid safety research and recommendations for improving the evidence base. Pharmacoepidemiol. Drug Saf. 2018. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Duarte, I.; Morse, L.R.; Alam, M.; Bikson, M.; Zafonte, R.; Fregni, F. Targeted therapies using electrical and magnetic neural stimulation for the treatment of chronic pain in spinal cord injury. Neuroimage 2014, 85 Pt 3, 1003–1013. [Google Scholar] [CrossRef]
- Strafella, A.P.; Vanderwerf, Y.; Sadikot, A.F. Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur. J. Neurosci. 2004, 20, 2245–2249. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.; Siebner, H.R.; Ward, N.S.; Lee, L.; Nitsche, M.A.; Paulus, W.; Rothwell, J.C.; Lemon, R.N.; Frackowiak, R.S. How does transcranial dc stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur. J. Neurosci. 2005, 22, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Papuć, E.; Rejdak, K. The role of neurostimulation in the treatment of neuropathic pain. Ann. Agric. Environ. Med. 2013, 1, 14–17. [Google Scholar]
- Gao, F.; Chu, H.; Li, J.; Yang, M.; DU, L.; Chen, L.; Yang, D.; Zhang, H.; Chan, C. Repetitive transcranial magnetic stimulation for pain after spinal cord injury: A systematic review and meta-analysis. J. Neurosurg. Sci. 2017, 61, 514–522. [Google Scholar] [PubMed]
- Lefaucheur, J.P.; Ménard-Lefaucheur, I.; Goujon, C.; Keravel, Y.; Nguyen, J.P. Predictive value of rtms in the identification of responders to epidural motor cortex stimulation therapy for pain. J. Pain 2011, 12, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- André-Obadia, N.; Mertens, P.; Lelekov-Boissard, T.; Afif, A.; Magnin, M.; Garcia-Larrea, L. Is life better after motor cortex stimulation for pain control? Results at long-term and their prediction by preoperative rtms. Pain Physician 2014, 17, 53–62. [Google Scholar] [PubMed]
- Lefaucheur, J.P. Cortical neurostimulation for neuropathic pain: State of the art and perspectives. Pain 2016, 157 (Suppl. 1), S81–S89. [Google Scholar] [CrossRef]
- Yoon, E.J.; Kim, Y.K.; Kim, H.R.; Kim, S.E.; Lee, Y.; Shin, H.I. Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: A mechanistic pet study. Neurorehabil. Neural Repair 2014, 28, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Guy, S.D.; Mehta, S.; Casalino, A.; Côté, I.; Kras-Dupuis, A.; Moulin, D.E.; Parrent, A.G.; Potter, P.; Short, C.; Teasell, R.; et al. The canpain sci clinical practice guidelines for rehabilitation management of neuropathic pain after spinal cord: Recommendations for treatment. Spinal Cord 2016, 54 (Suppl. 1), S14–S23. [Google Scholar] [CrossRef] [PubMed]
- Shealy, C.N.; Mortimer, J.T.; Reswick, J.B. Electrical inhibition of pain by stimulation of the dorsal columns: Preliminary clinical report. Anesth Analg 1967, 46, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Shealy, C.N.; Mortimer, J.T.; Hagfors, N.R. Dorsal column electroanalgesia. J. Neurosurg. 1970, 32, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Wall, P.D. Pain mechanisms: A new theory. Science 1965, 150, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, K.; Kent, A.R.; Raza, A.; Xing, F.; Kinfe, T.M. Burst spinal cord stimulation: Review of preclinical studies and comments on clinical outcomes. Neuromodulation 2018, 21, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Toth, C.; Nath, R.K.; Laing, P. Epidural spinal cord stimulation for treatment of chronic pain—Some predictors of success. A 15-year experience. Surg. Neurol. 1998, 50, 110–120. [Google Scholar] [CrossRef]
- Cho, J.H.; Lee, J.H.; Song, K.S.; Hong, J.Y.; Joo, Y.S.; Lee, D.H.; Hwang, C.J.; Lee, C.S. Treatment outcomes for patients with failed back surgery. Pain Physician 2017, 20, E29–E43. [Google Scholar] [PubMed]
- Baber, Z.; Erdek, M.A. Failed back surgery syndrome: Current perspectives. J. Pain Res. 2016, 9, 979–987. [Google Scholar] [CrossRef] [PubMed]
- North, R.B.; Kidd, D.H.; Farrokhi, F.; Piantadosi, S.A. Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: A randomized, controlled trial. Neurosurgery 2005, 56, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Taylor, R.S.; Jacques, L.; Eldabe, S.; Meglio, M.; Molet, J.; Thomson, S.; O’Callaghan, J.; Eisenberg, E.; Milbouw, G.; et al. The effects of spinal cord stimulation in neuropathic pain are sustained: A 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery 2008, 63, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Taylor, R.S.; Jacques, L.; Eldabe, S.; Meglio, M.; Molet, J.; Thomson, S.; O’Callaghan, J.; Eisenberg, E.; Milbouw, G.; et al. Spinal cord stimulation versus conventional medical management for neuropathic pain: A multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 2007, 132, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Rigoard, P.; Desai, M.J.; North, R.B.; Taylor, R.S.; Annemans, L.; Greening, C.; Tan, Y.; Van den Abeele, C.; Shipley, J.; Kumar, K. Spinal cord stimulation for predominant low back pain in failed back surgery syndrome: Study protocol for an international multicenter randomized controlled trial (promise study). Trials 2013, 14, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemler, M.A.; Barendse, G.A.; van Kleef, M.; de Vet, H.C.; Rijks, C.P.; Furnée, C.A.; van den Wildenberg, F.A. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N. Engl. J. Med. 2000, 343, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Kemler, M.A.; de Vet, H.C.; Barendse, G.A.; van den Wildenberg, F.A.; van Kleef, M. Effect of spinal cord stimulation for chronic complex regional pain syndrome type i: Five-year final follow-up of patients in a randomized controlled trial. J. Neurosurg. 2008, 108, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Slangen, R.; Schaper, N.C.; Faber, C.G.; Joosten, E.A.; Dirksen, C.D.; van Dongen, R.T.; Kessels, A.G.; van Kleef, M. Spinal cord stimulation and pain relief in painful diabetic peripheral neuropathy: A prospective two-center randomized controlled trial. Diabetes Care 2014, 37, 3016–3024. [Google Scholar] [CrossRef] [PubMed]
- De Vos, C.C.; Meier, K.; Zaalberg, P.B.; Nijhuis, H.J.; Duyvendak, W.; Vesper, J.; Enggaard, T.P.; Lenders, M.W. Spinal cord stimulation in patients with painful diabetic neuropathy: A multicentre randomized clinical trial. Pain 2014, 155, 2426–2431. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.S.; Van Buyten, J.P.; Buchser, E. Spinal cord stimulation for chronic back and leg pain and failed back surgery syndrome: A systematic review and analysis of prognostic factors. Spine 2005, 30, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Tiede, J.; Brown, L.; Gekht, G.; Vallejo, R.; Yearwood, T.; Morgan, D. Novel spinal cord stimulation parameters in patients with predominant back pain. Neuromodulation 2013, 16, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Kapural, L.; Yu, C.; Doust, M.W.; Gliner, B.E.; Vallejo, R.; Sitzman, B.T.; Amirdelfan, K.; Morgan, D.M.; Brown, L.L.; Yearwood, T.L.; et al. Novel 10-khz high-frequency therapy (hf10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: The senza-rct randomized controlled trial. Anesthesiology 2015, 123, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Thomson, S.J.; Tavakkolizadeh, M.; Love-Jones, S.; Patel, N.K.; Gu, J.W.; Bains, A.; Doan, Q.; Moffitt, M. Effects of rate on analgesia in kilohertz frequency spinal cord stimulation: Results of the proco randomized controlled trial. Neuromodulation 2018, 21, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Deer, T.; Slavin, K.V.; Amirdelfan, K.; North, R.B.; Burton, A.W.; Yearwood, T.L.; Tavel, E.; Staats, P.; Falowski, S.; Pope, J.; et al. Success using neuromodulation with burst (sunburst) study: Results from a prospective, randomized controlled trial using a novel burst waveform. Neuromodulation 2018, 21, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Kriek, N.; Groeneweg, J.G.; Stronks, D.L.; de Ridder, D.; Huygen, F.J. Preferred frequencies and waveforms for spinal cord stimulation in patients with complex regional pain syndrome: A multicentre, double-blind, randomized and placebo-controlled crossover trial. Eur. J. Pain 2017, 21, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Sdrulla, A.D.; Guan, Y.; Raja, S.N. Spinal cord stimulation: Clinical efficacy and potential mechanisms. Pain Pract. 2018. [Google Scholar] [CrossRef] [PubMed]
- Deer, T.R.; Levy, R.M.; Kramer, J.; Poree, L.; Amirdelfan, K.; Grigsby, E.; Staats, P.; Burton, A.W.; Burgher, A.H.; Obray, J.; et al. Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: A randomized comparative trial. Pain 2017, 158, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Mole, J.A.; Prangnell, S.J. Role of clinical neuropsychology in deep brain stimulation: Review of the literature and considerations for clinicians. Appl. Neuropsychol. Adult 2017, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Hosomi, K.; Maruo, T.; Goto, Y.; Shimokawa, T.; Haruhiko, K.; Saitoh, Y. Repetitive transcranial magnetic stimulation accuracy as a spinal cord stimulation outcome predictor in patients with neuropathic pain. J. Clin. Neurosci. 2018, 53, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Katayama, Y.; Yamamoto, T.; Kobayashi, K.; Kasai, M.; Oshima, H.; Fukaya, C. Motor cortex stimulation for phantom limb pain: Comprehensive therapy with spinal cord and thalamic stimulation. Stereotact. Funct. Neurosurg. 2001, 77, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Katayama, Y.; Yamamoto, T.; Kobayashi, K.; Kasai, M.; Oshima, H.; Fukaya, C. Motor cortex stimulation for post-stroke pain: Comparison of spinal cord and thalamic stimulation. Stereotact. Funct. Neurosurg. 2001, 77, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Nandi, D.; Smith, H.; Owen, S.; Joint, C.; Stein, J.; Aziz, T. Peri-ventricular grey stimulation versus motor cortex stimulation for post stroke neuropathic pain. J. Clin. Neurosci. 2002, 9, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Neuman, S.A.; Eldrige, J.S.; Hoelzer, B.C. Atypical facial pain treated with upper thoracic dorsal column stimulation. Clin. J. Pain 2011, 27, 556–558. [Google Scholar] [CrossRef] [PubMed]
- Chivukula, S.; Tempel, Z.J.; Weiner, G.M.; Gande, A.V.; Chen, C.J.; Ding, D.; Moossy, J.J. Cervical and cervicomedullary spinal cord stimulation for chronic pain: Efficacy and outcomes. Clin. Neurol. Neurosurg. 2014, 127, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Nandi, D.; Yianni, J.; Humphreys, J.; Wang, S.; O’sullivan, V.; Shepstone, B.; Stein, J.F.; Aziz, T.Z. Phantom limb pain relieved with different modalities of central nervous system stimulation: A clinical and functional imaging case report of two patients. Neuromodulation 2004, 7, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Bittar, R.G.; Yianni, J.; Wang, S.; Liu, X.; Nandi, D.; Joint, C.; Scott, R.; Bain, P.G.; Gregory, R.; Stein, J.; et al. Stereotactic and functional neurosurgery resident award: Deep brain stimulation for generalized dystonia and spasmodic torticollis: Rate and extent of postoperative improvement. Clin. Neurosurg. 2005, 52, 379–383. [Google Scholar] [PubMed]
- Pereira, E.A.; Muthusamy, K.A.; De Pennington, N.; Joint, C.A.; Aziz, T.Z. Deep brain stimulation of the pedunculopontine nucleus in parkinson’s disease. Preliminary experience at oxford. Br. J. Neurosurg. 2008, 22 (Suppl. 1), S41–S44. [Google Scholar] [CrossRef] [PubMed]
- Boccard, S.G.J.; Prangnell, S.J.; Pycroft, L.; Cheeran, B.; Moir, L.; Pereira, E.A.C.; Fitzgerald, J.J.; Green, A.L.; Aziz, T.Z. Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain. World Neurosurg. 2017, 106, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Keifer, O.P.; Riley, J.P.; Boulis, N.M. Deep brain stimulation for chronic pain: Intracranial targets, clinical outcomes, and trial design considerations. Neurosurg. Clin. N. Am. 2014, 25, 671–692. [Google Scholar] [CrossRef] [PubMed]
- Hosobuchi, Y.; Rossier, J.; Bloom, F.E.; Guillemin, R. Stimulation of human periaqueductal gray for pain relief increases immunoreactive beta-endorphin in ventricular fluid. Science 1979, 203, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Fessler, R.G.; Brown, F.D.; Rachlin, J.R.; Mullan, S.; Fang, V.S. Elevated beta-endorphin in cerebrospinal fluid after electrical brain stimulation: Artifact of contrast infusion? Science 1984, 224, 1017–1019. [Google Scholar] [CrossRef] [PubMed]
- Sims-Williams, H.; Matthews, J.C.; Talbot, P.S.; Love-Jones, S.; Brooks, J.C.; Patel, N.K.; Pickering, A.E. Deep brain stimulation of the periaqueductal gray releases endogenous opioids in humans. Neuroimage 2017, 146, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Maarrawi, J.; Peyron, R.; Mertens, P.; Costes, N.; Magnin, M.; Sindou, M.; Laurent, B.; Garcia-Larrea, L. Brain opioid receptor density predicts motor cortex stimulation efficacy for chronic pain. Pain 2013, 154, 2563–2568. [Google Scholar] [CrossRef] [PubMed]
- Maarrawi, J.; Peyron, R.; Mertens, P.; Costes, N.; Magnin, M.; Sindou, M.; Laurent, B.; Garcia-Larrea, L. Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 2007, 69, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.A.; Wang, S.; Peachey, T.; Lu, G.; Shlugman, D.; Stein, J.F.; Aziz, T.Z.; Green, A.L. Elevated gamma band power in humans receiving naloxone suggests dorsal periaqueductal and periventricular gray deep brain stimulation produced analgesia is opioid mediated. Exp. Neurol. 2013, 239, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Mehdizadeh, A.R. Deep brain stimulation and gene expression alterations in parkinson’s disease. J. Biomed. Phys. Eng. 2016, 6, 47–50. [Google Scholar] [PubMed]
- Tilley, D.M.; Cedeño, D.L.; Kelley, C.A.; Benyamin, R.; Vallejo, R. Spinal cord stimulation modulates gene expression in the spinal cord of an animal model of peripheral nerve injury. Reg. Anesth Pain Med. 2016, 41, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Olds, J.; Milner, P. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 1954, 47, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Heath, R.G. Psychiatry. Annu. Rev. Med. 1954, 5, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Gol, A. Relief of pain by electrical stimulation of the septal area. J. Neurol. Sci. 1967, 5, 115–120. [Google Scholar] [CrossRef]
- Sweet, W.H.; Wepsic, J.G. Treatment of chronic pain by stimulation of fibers of primary afferent neuron. Trans. Am. Neurol. Assoc. 1968, 93, 103–107. [Google Scholar] [PubMed]
- Reynolds, D.V. Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 1969, 164, 444–445. [Google Scholar] [CrossRef] [PubMed]
- Mayer, D.J.; Wolfle, T.L.; Akil, H.; Carder, B.; Liebeskind, J.C. Analgesia from electrical stimulation in the brainstem of the rat. Science 1971, 174, 1351–1354. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.E.; Akil, H. Long term results of periventricular gray self-stimulation. Neurosurgery 1977, 1, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.E.; Akil, H. Pain reduction by electrical brain stimulation in man. Part 1: Acute administration in periaqueductal and periventricular sites. J. Neurosurg. 1977, 47, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.E.; Akil, H. Pain reduction by electrical brain stimulation in man. Part 2: Chronic self-administration in the periventricular gray matter. J. Neurosurg. 1977, 47, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Hosobuchi, Y.; Adams, J.E.; Linchitz, R. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 1977, 197, 183–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mark, V.H.; Ervin, F.R.; Hackett, T.P. Clinical aspects of stereotactic thalamotomy in the human. Part i. The treatment of chronic severe pain. Arch. Neurol. 1960, 3, 351–367. [Google Scholar] [CrossRef] [PubMed]
- Mark, V.H.; Ervin, F.R. Role of thalamotomy in treatment of chronic severe pain. Postgrad. Med. 1965, 37, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Ervin, F.R.; Brown, C.E.; Mark, V.H. Striatal influence on facial pain. Confin. Neurol. 1966, 27, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Mazars, G.; Mérienne, L.; Ciolocca, C. Intermittent analgesic thalamic stimulation. Preliminary note. Rev. Neurol. 1973, 128, 273–279. [Google Scholar] [PubMed]
- Mazars, G.; Roge, R.; Mazars, Y. Results of the stimulation of the spinothalamic fasciculus and their bearing on the physiopathology of pain. Rev Neurol 1960, 103, 136–138. [Google Scholar] [PubMed]
- Mazars, G.; Merienne, L.; Cioloca, C. Treatment of certain types of pain with implantable thalamic stimulators. Neurochirurgie 1974, 20, 117–124. [Google Scholar] [PubMed]
- Mazars, G.J. Intermittent stimulation of nucleus ventralis posterolateralis for intractable pain. Surg. Neurol. 1975, 4, 93–95. [Google Scholar] [CrossRef]
- Hosobuchi, Y.; Adams, J.E.; Rutkin, B. Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch. Neurol. 1973, 29, 158–161. [Google Scholar] [CrossRef] [PubMed]
- Hosobuchi, Y.; Adams, J.E.; Rutkin, B. Chronic thalamic and internal capsule stimulation for the control of central pain. Surg. Neurol. 1975, 4, 91–92. [Google Scholar] [CrossRef]
- Adams, J.E.; Hosobuchi, Y.; Fields, H.L. Stimulation of internal capsule for relief of chronic pain. J. Neurosurg. 1974, 41, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Fields, H.L.; Adams, J.E. Pain after cortical injury relieved by electrical stimulation of the internal capsule. Brain 1974, 97, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Thoden, U.; Doerr, M.; Dieckmann, G.; Krainick, J.U. Medial thalamic permanent electrodes for pain control in man: An electrophysiological and clinical study. Electroencephalogr. Clin. Neurophysiol. 1979, 47, 582–591. [Google Scholar] [CrossRef]
- Andy, O.J. Parafascicular-center median nuclei stimulation for intractable pain and dyskinesia (painful-dyskinesia). Appl. Neurophysiol. 1980, 43, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Ray, C.D.; Burton, C.V. Deep brain stimulation for severe, chronic pain. Acta Neurochir. Suppl. 1980, 30, 289–293. [Google Scholar] [PubMed]
- Boivie, J.; Meyerson, B.A. A correlative anatomical and clinical study of pain suppression by deep brain stimulation. Pain 1982, 13, 113–126. [Google Scholar] [CrossRef]
- Levy, R.M.; Lamb, S.; Adams, J.E. Treatment of chronic pain by deep brain stimulation: Long term follow-up and review of the literature. Neurosurgery 1987, 21, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Marchand, S.; Kupers, R.C.; Bushnell, M.C.; Duncan, G.H. Analgesic and placebo effects of thalamic stimulation. Pain 2003, 105, 481–488. [Google Scholar] [CrossRef]
- Coffey, R.J. Deep brain stimulation for chronic pain: Results of two multicenter trials and a structured review. Pain Med. 2001, 2, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, D.; Hamani, C.; Lozano, A. Efficacy and safety of motor cortex stimulation for chronic neuropathic pain: Critical review of the literature. J. Neurosurg. 2009, 110, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Boccard, S.G.; Pereira, E.A.; Moir, L.; Aziz, T.Z.; Green, A.L. Long-term outcomes of deep brain stimulation for neuropathic pain. Neurosurgery 2013, 72, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Toth, C.; Nath, R.K. Deep brain stimulation for intractable pain: A 15-year experience. Neurosurgery 1997, 40, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Rasche, D.; Rinaldi, P.C.; Young, R.F.; Tronnier, V.M. Deep brain stimulation for the treatment of various chronic pain syndromes. Neurosurg. Focus 2006, 21, E8. [Google Scholar] [CrossRef] [PubMed]
- Son, B.C.; Kim, D.R.; Kim, H.S.; Lee, S.W. Simultaneous trial of deep brain and motor cortex stimulation in chronic intractable neuropathic pain. Stereotact Funct. Neurosurg. 2014, 92, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Chassin, O.; Morand, D.; Pereira, B.; Debilly, B.; Derost, P.; Ulla, M.; Lemaire, J.J.; Durif, F. Central pain modulation after subthalamic nucleus stimulation: A crossover randomized trial. Neurology 2013, 81, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Lempka, S.F.; Malone, D.A.; Hu, B.; Baker, K.B.; Wyant, A.; Ozinga, J.G.; Plow, E.B.; Pandya, M.; Kubu, C.S.; Ford, P.J.; et al. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann. Neurol. 2017, 81, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Sears, N.C.; Machado, A.G.; Nagel, S.J.; Deogaonkar, M.; Stanton-Hicks, M.; Rezai, A.R.; Henderson, J.M. Long-term outcomes of spinal cord stimulation with paddle leads in the treatment of complex regional pain syndrome and failed back surgery syndrome. Neuromodulation 2011, 14, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Kamano, S. Author’s experience of lateral medullary infarction—Thermal perception and muscle allodynia. Pain 2003, 104, 49–53. [Google Scholar] [CrossRef]
- Pereira, E.A.; Lu, G.; Wang, S.; Schweder, P.M.; Hyam, J.A.; Stein, J.F.; Paterson, D.J.; Aziz, T.Z.; Green, A.L. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp. Neurol. 2010, 223, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.A.; Wang, S.; Paterson, D.J.; Stein, J.F.; Aziz, T.Z.; Green, A.L. Sustained reduction of hypertension by deep brain stimulation. J. Clin. Neurosci. 2010, 17, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.; Neumann, W.J.; Degen, K.; Schneider, G.H.; Kühn, A.A. Toward an electrophysiological “Sweet spot” For deep brain stimulation in the subthalamic nucleus. Hum. Brain Mapp. 2017, 38, 3377–3390. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.; Harsh, V.; Pereira, E.A.; Aziz, T.Z. Cingulotomy for medically refractory cancer pain. Neurosurg. Focus 2013, 35, E1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, E.A.; Paranathala, M.; Hyam, J.A.; Green, A.L.; Aziz, T.Z. Anterior cingulotomy improves malignant mesothelioma pain and dyspnoea. Br. J. Neurosurg. 2014, 28, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, G.R.; Rauch, S.L. Stereotactic cingulotomy. Neurosurg. Clin. N. Am. 2003, 14, 225–235. [Google Scholar] [CrossRef]
- Foltz, E.L.; White, L.E. Pain “Relief” By frontal cingulumotomy. J. Neurosurg. 1962, 19, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Ballantine, H.T.; Cassidy, W.L.; Flanagan, N.B.; Marino, R. Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J. Neurosurg. 1967, 26, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.P.; Kung, S.S.; Su, Y.F.; Lin, W.C.; Howng, S.L.; Kwan, A.L. Stereotactic bilateral anterior cingulotomy for intractable pain. J. Clin. Neurosci. 2005, 12, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Assaf, Y.; Pasternak, O. Diffusion tensor imaging (dti)-based white matter mapping in brain research: A review. J. Mol. Neurosci. 2008, 34, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Osaka, N.; Osaka, M.; Morishita, M.; Kondo, H.; Fukuyama, H. A word expressing affective pain activates the anterior cingulate cortex in the human brain: An fmri study. Behav. Brain Res. 2004, 153, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.D.; Taub, E.; Duffner, F.; Lozano, A.M.; Tasker, R.R.; Houle, S.; Dostrovsky, J.O. Activation of the anterior cingulate cortex by thalamic stimulation in patients with chronic pain: A positron emission tomography study. J. Neurosurg. 2000, 92, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Spooner, J.; Yu, H.; Kao, C.; Sillay, K.; Konrad, P. Neuromodulation of the cingulum for neuropathic pain after spinal cord injury. Case report. J. Neurosurg. 2007, 107, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Boccard, S.G.; Pereira, E.A.; Moir, L.; Van Hartevelt, T.J.; Kringelbach, M.L.; FitzGerald, J.J.; Baker, I.W.; Green, A.L.; Aziz, T.Z. Deep brain stimulation of the anterior cingulate cortex: Targeting the affective component of chronic pain. Neuroreport 2014, 25, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Boccard, S.G.; Fitzgerald, J.J.; Pereira, E.A.; Moir, L.; Van Hartevelt, T.J.; Kringelbach, M.L.; Green, A.L.; Aziz, T.Z. Targeting the affective component of chronic pain: A case series of deep brain stimulation of the anterior cingulate cortex. Neurosurgery 2014, 74, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Maslen, H.; Cheeran, B.; Pugh, J.; Pycroft, L.; Boccard, S.; Prangnell, S.; Green, A.L.; FitzGerald, J.; Savulescu, J.; Aziz, T. Unexpected complications of novel deep brain stimulation treatments: Ethical issues and clinical recommendations. Neuromodulation 2018, 21, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Carroll, D.; Joint, C.; Maartens, N.; Shlugman, D.; Stein, J.; Aziz, T.Z. Motor cortex stimulation for chronic neuropathic pain: A preliminary study of 10 cases. Pain 2000, 84, 431–437. [Google Scholar] [CrossRef]
- Radic, J.A.; Beauprie, I.; Chiasson, P.; Kiss, Z.H.; Brownstone, R.M. Motor cortex stimulation for neuropathic pain: A randomized cross-over trial. Can. J. Neurol. Sci. 2015, 42, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Sachs, A.J.; Babu, H.; Su, Y.F.; Miller, K.J.; Henderson, J.M. Lack of efficacy of motor cortex stimulation for the treatment of neuropathic pain in 14 patients. Neuromodulation 2014, 17, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Drouot, X.; Cunin, P.; Bruckert, R.; Lepetit, H.; Créange, A.; Wolkenstein, P.; Maison, P.; Keravel, Y.; Nguyen, J.P. Motor cortex stimulation for the treatment of refractory peripheral neuropathic pain. Brain 2009, 132, 1463–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, J.P.; Velasco, F.; Brugières, P.; Velasco, M.; Keravel, Y.; Boleaga, B.; Brito, F.; Lefaucheur, J.P. Treatment of chronic neuropathic pain by motor cortex stimulation: Results of a bicentric controlled crossover trial. Brain Stimul. 2008, 1, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Velasco, F.; Argüelles, C.; Carrillo-Ruiz, J.D.; Castro, G.; Velasco, A.L.; Jiménez, F.; Velasco, M. Efficacy of motor cortex stimulation in the treatment of neuropathic pain: A randomized double-blind trial. J. Neurosurg. 2008, 108, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Velasco, F.; Carrillo-Ruiz, J.D.; Castro, G.; Argüelles, C.; Velasco, A.L.; Kassian, A.; Guevara, U. Motor cortex electrical stimulation applied to patients with complex regional pain syndrome. Pain 2009, 147, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Rasche, D.; Ruppolt, M.; Stippich, C.; Unterberg, A.; Tronnier, V.M. Motor cortex stimulation for long-term relief of chronic neuropathic pain: A 10 year experience. Pain 2006, 121, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Monsalve, G.A. Motor cortex stimulation for facial chronic neuropathic pain: A review of the literature. Surg. Neurol. Int. 2012, 3, S290–S311. [Google Scholar] [CrossRef] [PubMed]
- Rasche, D.; Tronnier, V.M. Clinical significance of invasive motor cortex stimulation for trigeminal facial neuropathic pain syndromes. Neurosurgery 2016, 79, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Honey, C.M.; Tronnier, V.M.; Honey, C.R. Deep brain stimulation versus motor cortex stimulation for neuropathic pain: A minireview of the literature and proposal for future research. Comput. Struct. Biotechnol. J. 2016, 14, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Lilford, R.J.; Thornton, J.G.; Braunholtz, D. Clinical trials and rare diseases: A way out of a conundrum. BMJ 1995, 311, 1621–1625. [Google Scholar] [CrossRef] [PubMed]
- Owen, S.L.; Green, A.L.; Nandi, D.; Bittar, R.G.; Wang, S.; Aziz, T.Z. Deep brain stimulation for neuropathic pain. Neuromodulation 2006, 9, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Owen, S.L.; Green, A.L.; Stein, J.F.; Aziz, T.Z. Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain 2006, 120, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.A.; Boccard, S.G.; Aziz, T.Z. Deep brain stimulation for pain: Distinguishing dorsolateral somesthetic and ventromedial affective targets. Neurosurgery 2014, 61 (Suppl. 1), 175–181. [Google Scholar] [CrossRef] [PubMed]
- Green, A.L.; Wang, S.; Stein, J.F.; Pereira, E.A.; Kringelbach, M.L.; Liu, X.; Brittain, J.S.; Aziz, T.Z. Neural signatures in patients with neuropathic pain. Neurology 2009, 72, 569–571. [Google Scholar] [CrossRef] [PubMed]
- Kringelbach, M.L.; Jenkinson, N.; Green, A.L.; Owen, S.L.; Hansen, P.C.; Cornelissen, P.L.; Holliday, I.E.; Stein, J.; Aziz, T.Z. Deep brain stimulation for chronic pain investigated with magnetoencephalography. Neuroreport 2007, 18, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, N.J.; Jenkinson, N.; Kringelbach, M.L.; Hansen, P.C.; Pereira, E.A.; Brittain, J.S.; Holland, P.; Holliday, I.E.; Owen, S.; Stein, J.; et al. Abnormal thalamocortical dynamics may be altered by deep brain stimulation: Using magnetoencephalography to study phantom limb pain. J. Clin. Neurosci. 2009, 16, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.A.; Green, A.L.; Bradley, K.M.; Soper, N.; Moir, L.; Stein, J.F.; Aziz, T.Z. Regional cerebral perfusion differences between periventricular grey, thalamic and dual target deep brain stimulation for chronic neuropathic pain. Stereotact. Funct. Neurosurg. 2007, 85, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Hentall, I.D.; Luca, C.C.; Widerstrom-Noga, E.; Vitores, A.; Fisher, L.D.; Martinez-Arizala, A.; Jagid, J.R. The midbrain central gray best suppresses chronic pain with electrical stimulation at very low pulse rates in two human cases. Brain Res. 2016, 1632, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Paper | Article Type | Patient N | Aetiology of Pain | Target | Outcome Measures | Follow up Times | Results | Conclusion |
---|---|---|---|---|---|---|---|---|
Boccard, Prangnell et al. (2017) [63] | case series | 24 | aFBSS (6), post-stroke (9), SCI (2), brachial plexus injury (3), unknown chest pain (1), head injury (1), bRTA (2). | cACC (bilateral) | dNRS, eSF-36, EQ-f5D, gMPQ | 6 months, 1 year, 12 people f/u at 38.9, some at 42 months | At 6 months. NRS decreased from 8 to 4.27 (p = 0.004), MPQ improved (mean −36%; p = 0.021), EQ-5D score decreased (mean −21%; p = 0.036). The physical functioning domain of SF-36 was significantly improved (mean +54.2%; p = 0.01). At 1 year NRS score decreased by 43% (p < 0.01). EQ-5D reduced (mean −30.8; p = 0.01). Improvements in domains of SF-36. At the longer f/u; efficacy was sustained up to 42 months. NRS score as low as 3. | ACC stimulation alleviates chronic neuropathic pain refractory to pharmacotherapy. |
Boccard, Fitzgerald et al. (2014) [124] | case series | 16 (15 internalized; 11 followed up) | FBSS (6), Post-stroke (4), Spinal Cord Injury (1), Brachial plexus (3), unknown chest (1), head injury (1) | ACC (bilateral) | hVAS, SF-36, EQ-5D, McGill Pain Questionnaire | mean 13.2 months | Post-surgery, VAS decreased to <4 in five patients, and one patient reported to be pain free. Significant improvements on EQ-5D observed (mean 20.3%; range 0%–83%; p = 0.008). Statistically significant improvements were observed for the physical functioning and bodily pain domains of SF-36 quality of life survey; mean +64.7% (range, −8.9%–+27%; p = 0.015) and mean +39.0% (range −33.8%–+159%; p = 0.05). | ACC DBS can relieve chronic neuropathic pain refractory to pharmacotherapy and restore quality of life. |
Boccard, Pereira et al. (2014) [123] | case study | 1 | RTA/brachial plexus injury | ACC (bilateral implants) | VAS, SF-36, McGill pain questionnaire, EQ-5D, Neuropsychological measures | 2 years post-surgery | VAS decreased from 6.7 to 3; McGill improved by 43%, EQ-5D Health state increased by 150%. | ACC DBS efficacious; ACC target has potential for long-term control |
Spooner, Yu et al. (2007) [122] | case report | 1 | Spinal Cord Injury at C4 | ACC (bilateral); iPVG (unilateral) | VAS, pain medication usage, described mood. | 1–5 days post-surgery, 4 months post-surgery, 1 year not possible (patient died due to pulmonary issues) | Results most striking at 3 months with cingulum stimulus scoring VAS 3 and lidocaine usage of 2 (cc/hr), mood described as ‘best’. Compared to PVG (VAS 4, lidocaine 2, mood ‘average’) or no stimulation (VAS 10, lidocaine 5, mood ‘worst’). | Bilateral cingulate stimulation improved the patient’s mood and reduced pain more completely than PVG stimulation or medication alone |
Paper | Article Type | Patient N | Aetiology of Pain | Target | Outcome Measures | f/u Times | Results | Conclusion |
---|---|---|---|---|---|---|---|---|
Nandi et al. (2002) [57] | case-series | 10 | All post-stroke pain. aMCS patients: post-stroke hemi-body pain (4); post-stroke facial pain (4); bDBS patients: post-stroke hemi body (3), post-stroke face and leg (1) | cPVG | dVAS | 2–3 weeks; some up to 4 years | MCS: 1/6 success rate. DBS:3/4 had at least 40% reduction in VAS scores during stimulation, 2/2 internalised with success. | MCS is not effective relieving post-stroke neuropathic pain. DBS is the preferred option. |
Katayama et al (2001 a.) [55] | case-series | 45 | phantom limb (trauma- ert leg), brachial plexus avulsion (rt arm). | thalamus | VAS | unspecified- results reported to be ‘long term’ | All 19 patients were given fSCS and if failed were split into either DBS or MCS. For DBS 60% (6/10) gave pain relief, and for MCS 1/5 (20%) required pain relief. 4 patients were given both DBS and MCS- one patient reported better pain control by MCS than DBS. 2 patients reported the opposite. | DBS preferable to MCS, especially lower limb. |
Katayama et al (2001 b.) [56] | case-series | 45 | post-stroke pain | thalamus | VAS | unspecified- results reported to be ‘long term’ | Success rates (defined as >60% reduction in VAS scores) of 7% for SCS (3/45), 25% for DBS (3/12), 48% for MCS (15/31) | Success rate increases as stimulation moves higher. MCS more successful than DBS. |
Son, Kim et al. (2014) [105] | open label | 9* | Central post-stroke pain (4), gSCI (4), amputation stump pain in arm (1) | ventralis caudalis (Vc) thalamus DBS | hNRS, medication use. | 39 months mean, (8–72) | 6/8 (75%) responded to MCS. 2/8 had successful DBS (one patient with amputation stump pain and the other with SCI pain caused by cervical syrinx). NRS score decreased significantly (p < 0.05) MCS: 37.9 ± 16.5 and DBS 37.5%. | Considering the initial success rate and the less invasive nature of epidural MCS compared with DBS, MCS would be a more reasonable initial means of treatment for chronic intractable neuropathic pain. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farrell, S.M.; Green, A.; Aziz, T. The Current State of Deep Brain Stimulation for Chronic Pain and Its Context in Other Forms of Neuromodulation. Brain Sci. 2018, 8, 158. https://doi.org/10.3390/brainsci8080158
Farrell SM, Green A, Aziz T. The Current State of Deep Brain Stimulation for Chronic Pain and Its Context in Other Forms of Neuromodulation. Brain Sciences. 2018; 8(8):158. https://doi.org/10.3390/brainsci8080158
Chicago/Turabian StyleFarrell, Sarah Marie, Alexander Green, and Tipu Aziz. 2018. "The Current State of Deep Brain Stimulation for Chronic Pain and Its Context in Other Forms of Neuromodulation" Brain Sciences 8, no. 8: 158. https://doi.org/10.3390/brainsci8080158
APA StyleFarrell, S. M., Green, A., & Aziz, T. (2018). The Current State of Deep Brain Stimulation for Chronic Pain and Its Context in Other Forms of Neuromodulation. Brain Sciences, 8(8), 158. https://doi.org/10.3390/brainsci8080158