Reliability and Validity of the Japanese Version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Translation Procedure
2.3. Participants
2.4. Measurement Procedure
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Jeannerod, M. The representing brain: Neural correlates of motor intention and imagery. Behav. Brain Sci. 1994, 17, 187–202. [Google Scholar] [CrossRef]
- Pascual-Leone, A.; Nguyet, D.; Cohen, L.G.; Brasil-Neto, J.P.; Cammarota, A.; Hallett, M. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 1995, 74, 1037–1045. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.; Cole, K.J. Strength increases from the motor program: Comparison of training with maximal voluntary and imagined muscle contractions. J. Neurophysiol. 1992, 67, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Oostra, K.M.; Oomen, A.; Vanderstraeten, G.; Vingerhoets, G. Influence of motor imagery training on gait rehabilitation in sub-acute: A randomized controlled trial. J. Rehabil. Med. 2015, 47, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihara, M.; Hattori, N.; Hatakenaka, M.; Yagura, H.; Kawano, T.; Hino, T.; Miyai, I. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: A pilot study. Stroke 2013, 44, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Schuster, C.; Butler, J.; Andrews, B.; Kischka, U.; Ettlin, T. Comparison of embedded and added motor imagery training in patients after stroke: Results of a randomised controlled pilot trial. Trials 2012, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Arya, K.N.; Garg, R.K.; Singh, T. Task-oriented circuit class training program with motor imagery for gait rehabilitation in poststroke patients: A randomized controlled trial. Top. Stroke Rehabil. 2011, 18, 620–632. [Google Scholar] [CrossRef] [PubMed]
- Ietswaart, M.; Johnston, M.; Dijkerman, H.C.; Joice, S.; Scott, C.L.; MacWalter, R.S.; Hamilton, S.J. Mental practice with motor imagery in stroke recovery: Randomized controlled trial of efficacy. Brain 2011, 134, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
- Dickstein, R.; Deutsch, J.E.; Yoeli, Y.; Kafri, M.; Falash, F.; Dunsky, A.; Eshet, A.; Alexander, N. Effects of integrated motor imagery practice on gait of individuals with chronic stroke: A half-crossover randomized study. Arch. Phys. Med. Rehabil. 2013, 94, 2119–2125. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yin, D.; Zhu, Y.; Fan, M.; Zang, L.; Wu, Y.; Jia, J.; Bai, Y.; Zhu, B.; Hu, Y. Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: A longitudinal fMRI study. Neuroradiology 2013, 55, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.Y.; Kim, J.S.; Lee, G.C. Effects of motor imagery training on balance and gait abilities in post-stroke patients: A randomized controlled trial. Clin. Rehabil. 2013, 27, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Bovend'Eerdt, T.J.; Dawes, H.; Sackley, C.; Izadi, H.; Wade, D.T. An integrated motor imagery program to improve functional task performance in neurorehabilitation: A single-blind randomized controlled trial. Arch. Phys. Med. Rehabil. 2010, 91, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Hoyek, N.; Di Rienzo, F.; Collet, C.; Hoyek, F.; Guillot, A. The therapeutic role of motor imagery on the functional rehabilitation of a stage II shoulder impingement syndrome. Disabil. Rehabil. 2014, 36, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Lebon, F.; Guillot, A.; Collet, C. Increased muscle activation following motor imagery during the rehabilitation of the anterior cruciate ligament. Appl. Psychophysiol. Biofeedback 2012, 37, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Stenekes, M.W.; Geertzen, J.H.; Nicolai, J.P.; De Jong, B.M.; Mulder, T. Effects of motor imagery on hand function during immobilization after flexor tendon repair. Arch. Phys. Med. Rehabil. 2009, 90, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Guillot, A.; Lebon, F.; Vernay, M.; Girbon, J.P.; Doyon, J.; Collet, C. Effect of motor imagery in the rehabilitation of burn patients. J. Burn Care Res. 2009, 30, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Moseley, G.L. Graded motor imagery for pathologic pain: A randomized controlled trial. Neurology 2006, 67, 2129–2134. [Google Scholar] [CrossRef] [PubMed]
- Moseley, G.L. Graded motor imagery is effective for long-standing complex regional pain syndrome: A randomised controlled trial. Pain 2004, 108, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.H.; Thomas, P.R.; Maruff, P. Motor imagery training ameliorates motor clumsiness in children. J. Child Neurol. 2002, 17, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Hétu, S.; Grégoire, M.; Saimpont, A.; Coll, M.P.; Eugène, F.; Michon, P.E.; Jackson, P.L. The neural network of motor imagery: An ALE meta-analysis. Neurosci. Biobehav. Rev. 2013, 37, 930–949. [Google Scholar] [CrossRef] [PubMed]
- Guillot, A.; Collet, C.; Nguyen, V.A.; Malouin, F.; Richards, C.; Doyon, J. Brain activity during visual versus kinesthetic imagery: An fMRI study. Hum. Brain Mapp. 2009, 30, 2157–2172. [Google Scholar] [CrossRef] [PubMed]
- Kilintari, M.; Narayana, S.; Babajani-Feremi, A.; Rezaie, R.; Papanicolaou, A.C. Brain activation profiles during kinesthetic and visual imagery: An fMRI study. Brain Res. 2016, 1646, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Sakurada, T.; Hirai, M.; Watanabe, E. Optimization of a motor learning attention-directing strategy based on an individual's motor imagery ability. Exp. Brain Res. 2016, 234, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Sakurada, T.; Nakajima, T.; Morita, M.; Hirai, M.; Watanabe, E. Improved motor performance in patients with acute stroke using the optimal individual attentional strategy. Sci. Rep. 2017, 7, 40592. [Google Scholar] [CrossRef] [PubMed]
- Malouin, F.; Richards, C.L.; Jackson, P.L.; Lafleur, M.F.; Durand, A.; Doyon, J. The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: A reliability and construct validity study. J. Neurol. Phys. Ther. 2007, 31, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.; Kleynen, M.; van Heel, T.; Kruithof, N.; Wade, D.; Beurskens, A. The effects of mental practice in neurological rehabilitation; A systematic review and meta-analysis. Front. Hum. Neurosci. 2013, 7, 390. [Google Scholar] [CrossRef] [PubMed]
- Wondrusch, C.; Schuster-Amft, C. A standardized motor imagery introduction program (MIIP) for neuro-rehabilitation: Development and evaluation. Front Hum. Neurosci. 2013, 7, 477. [Google Scholar] [CrossRef] [PubMed]
- Malouin, F.; Jackson, P.L.; Richards, C.L. Towards the integration of mental practice in rehabilitation programs. A critical review. Front. Hum. Neurosci. 2013, 7, 576. [Google Scholar] [CrossRef] [PubMed]
- Schuster, C.; Lussi, A.; Wirth, B.; Ettlin, T. Two assessments to evaluate imagery ability: Translation, test-retest reliability and concurrent validity of the German KVIQ and Imaprax. BMC Med. Res. Methodol. 2012, 12, 127. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.R.; Martin, K.A. Measuring movement imagery abilities: A revision of the Movement Imagery Questionnaire. J. Ment. Imagery 1997, 21, 143–154. [Google Scholar]
- Hall, C.R.; Pongrac, J.; Buckloz, E. The measurement of imagery ability. Hum. Mov. Sci. 1985, 4, 107–118. [Google Scholar] [CrossRef]
- Loison, B.; Moussaddaq, A.S.; Cormier, J.; Richard, I.; Ferrapie, A.L.; Ramond, A.; Dinomais, M. Translation and validation of the French Movement Imagery Questionnaire—Revised Second Version (MIQ-RS). Ann. Phys. Rehabil. Med. 2013, 56, 157–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- Tabrizi, Y.M.; Zangiabadi, N.; Mazhari, S.; Zolala, F. The reliability and validity study of the Kinesthetic and Visual Imagery Questionnaire in individuals with multiple sclerosis. Braz. J. Phys. Ther. 2013, 17, 588–592. [Google Scholar] [CrossRef] [PubMed]
- Malouin, F.; Richards, C.L.; Durand, A.; Doyon, J. Clinical assessment of motor imagery after stroke. Neurorehabil. Neural Repair 2008, 22, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, B.; Harris, S.; Boyd, L.A. The Kinesthetic and Visual Imagery Questionnaire is a reliable tool for individuals with Parkinson disease. J. Neurol. Phys. Ther. 2010, 34, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Hasagawa, N.; Hoshino, K. On relationship between skill and movement imagery with athletes. J. Health Sports Sci. Juntendo 2002, 6, 166–173. [Google Scholar]
- Williams, S.E.; Cumming, J.; Ntoumanis, N.; Nordin-Bates, S.M.; Ramsey, R.; Hall, C. Further validation and development of the movement imagery questionnaire. J. Sport Exerc. Psychol. 2012, 34, 621–646. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, C.; D’Artibale, E.; Fiorilli, G.; Piazza, M.; Tsopani, D.; Giombini, A.; Calcagno, G.; di Cagno, A. Use of video observation and motor imagery on jumping performance in national rhythmic gymnastics athletes. Hum. Mov. Sci. 2014, 38, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Malouin, F.; Richards, C.L.; Durand, A. Normal aging and motor imagery vividness: Implications for mental practice training in rehabilitation. Arch. Phys. Med. Rehabil. 2010, 91, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Saimpont, A.; Malouin, F.; Tousignant, B.; Jackson, P.L. Assessing motor imagery ability in younger and older adults by combining measures of vividness, controllability and timing of motor imagery. Brain Res. 2015, 1597, 196–209. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean | SD | |
---|---|---|---|
KVIQ-20 | Visual (50) | 37.00 | 5.69 |
Kinesthetic (50) | 37.21 | 6.40 | |
Total (100) | 74.21 | 11.02 | |
KVIQ-10 | Visual (25) | 18.18 | 3.07 |
Kinesthetic (25) | 18.75 | 2.81 | |
Total (50) | 36.93 | 5.29 | |
MIQ-R | Visual (28) | 22.29 | 3.32 |
Kinesthetic (28) | 21.71 | 4.10 | |
Total (56) | 44.00 | 6.38 |
KVIQ-20 | KVIQ-10 | |||
---|---|---|---|---|
Visual | Kinesthetic | Visual | Kinesthetic | |
Cronbach α | 0.88 | 0.91 | 0.78 | 0.77 |
95% CI | 0.80–0.94 | 0.85–0.95 | 0.64–0.89 | 0.62–0.88 |
SEM | 1.08 | 1.21 | 0.58 | 0.53 |
MDC | 2.99 | 3.35 | 1.61 | 1.47 |
Variable | Correlation Coefficient | p-Value |
---|---|---|
(r) | ||
KVIQ-20 Visual—MIQ-R Visual | 0.64 | <0.01 |
KVIQ-20 Kinesthetic—MIQ-R Kinesthetic | 0.77 | <0.01 |
KVIQ-20 Total—MIQ-R Total | 0.86 | <0.01 |
KVIQ-10 Visual—MIQ-R Visual | 0.62 | <0.01 |
KVIQ-10 Kinesthetic—MIQ-R Kinesthetic | 0.78 | <0.01 |
KVIQ-10 Total—MIQ-R Total | 0.90 | <0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakano, H.; Kodama, T.; Ukai, K.; Kawahara, S.; Horikawa, S.; Murata, S. Reliability and Validity of the Japanese Version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ). Brain Sci. 2018, 8, 79. https://doi.org/10.3390/brainsci8050079
Nakano H, Kodama T, Ukai K, Kawahara S, Horikawa S, Murata S. Reliability and Validity of the Japanese Version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ). Brain Sciences. 2018; 8(5):79. https://doi.org/10.3390/brainsci8050079
Chicago/Turabian StyleNakano, Hideki, Takayuki Kodama, Kazumasa Ukai, Satoru Kawahara, Shiori Horikawa, and Shin Murata. 2018. "Reliability and Validity of the Japanese Version of the Kinesthetic and Visual Imagery Questionnaire (KVIQ)" Brain Sciences 8, no. 5: 79. https://doi.org/10.3390/brainsci8050079