From Drug-Induced Developmental Neuroapoptosis to Pediatric Anesthetic Neurotoxicity—Where Are We Now?
Abstract
:1. Introduction
2. Methods
3. DIDNA
4. Clinical Investigations
5. Conclusions
Summary of Findings
- There is abundant evidence from animal research that suggests that pediatric sedation and anesthesia has the potential to be neurotoxic in the developing brain.
- Studies in humans are mostly retrospective, and have found that a single exposure to anesthesia is likely not a concern, but it cannot be ruled out that multiple exposures could increase the risk for poor neurodevelopmental outcome.
- Prospective human clinical research is needed; retrospective studies should focus on neurobehavioral and domain-specific outcome measures rather than diagnoses or global outcomes such as standardized test and academic achievement scores.
- New research in animals should focus on finding the safest protocols, drugs, and drug combinations.
- There is not enough evidence to prompt significant changes in clinical practice, but elective or non-urgent surgeries should be avoided.
- More research is needed – preclinical and clinical.
Conflicts of Interest
References
- Barde, Y.A. Trophic factors and neuronal survival. Neuron 1989, 2, 1525–1534. [Google Scholar] [CrossRef]
- Hamburger, V. Trophic interactions in neurogenesis: A personal historical account. Ann. Rev. Neurosci. 1980, 3, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Levi-Montalcini, R. The nerve growth factor 35 years later. Science 1987, 237, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Heck, N.; Golbs, A.; Riedemann, T.; Sun, J.J.; Lessmann, V.; Luhmann, H.J. Activity-dependent regulation of neuronal apoptosis in neonatal mouse cerebral cortex. Cerebr. Cortex 2008, 18, 1335–1349. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, M.P.J.; Nikoletopoulou, V.; Barde, Y.-A. Death of developing neurons: New insights and implications for connectivity. J. Cell Biol. 2013, 203, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, R.; Hewitt, K.; Lesiuk, H.; Mealing, G.; Morley, P.; Durkin, J.P. Evidence that brain-derived neurotrophic factor neuroprotection is linked to its ability to reverse the NMDA-induced inactivation of protein kinase C in cortical neurons. J. Neurochem. 1999, 72, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Meredith, R.M. Sensitive and critical periods during neurotypical and aberrant neurodevelopment: A framework for neurodevelopmental disorders. Neurosci. Biobehav. Rev. 2015, 50, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Ross, E.J.; Graham, D.L.; Money, K.M.; Stanwood, G.D. Developmental consequences of fetal exposure to drugs: What we know and what we still must learn. Neuropsychopharmacology 2015, 40, 61–87. [Google Scholar] [CrossRef] [PubMed]
- Stanwood, G.D.; Levitt, P. Drug exposure early in life: Functional repercussions of changing neuropharmacology during sensitive periods of brain development. Curr. Opin. Pharmacol. 2004, 4, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Chiriboga, C.A. Fetal alcohol and drug effects. Neurologist 2003, 9, 267–279. [Google Scholar] [CrossRef] [PubMed]
- Sood, B.; Delaney-Black, V.; Covington, C.; Nordstrom-Klee, B.; Ager, J.; Templin, T.; Janisse, J.; Martier, S.; Sokol, R.J. Prenatal alcohol exposure and childhood behavior at age 6 to 7 years: I. dose-response effect. Pediatrics 2001, 108, E34. [Google Scholar] [CrossRef] [PubMed]
- Verrotti, A.; Scaparrotta, A.; Cofini, M.; Chiarelli, F.; Tiboni, G.M. Developmental neurotoxicity and anticonvulsant drugs: A possible link. Reprod. Toxicol. 2014, 48, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Olney, J.W.; Tenkova, T.; Dikranian, K.; Qin, Y.Q.; Labruyere, J.; Ikonomidou, C. Ethanol-induced apoptotic neurodegeneration in the developing C57BL/6 mouse brain. Dev. Brain Res. 2002, 133, 115–126. [Google Scholar] [CrossRef]
- Ikonomidou, C.; Bittigau, P.; Ishimaru, M.J.; Wozniak, D.F.; Koch, C.; Genz, K.; Price, M.T.; Stefovska, V.; Horster, F.; Tenkova, T.; et al. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 2000, 287, 1056–1060. [Google Scholar] [CrossRef] [PubMed]
- Dikranian, K.; Ishimaru, M.J.; Tenkova, T.; Labruyere, J.; Qin, Y.Q.; Ikonomidou, C.; Olney, J.W. Apoptosis in the in vivo mammalian forebrain. Neurobiol. Dis. 2001, 8, 359–379. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, J.; Zakharov, A.; Ogievetsky, E.; Minlebaeva, A.; Kurbanov, R.; Gerasimova, E.; Sitdikova, G.; Khazipov, R. Inhibition of cortical activity and apoptosis caused by ethanol in neonatal rats in vivo. Cerebr. Cortex 2015. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.C.; Guévremont, D.; Williams, J.M.; Napper, R.M. Apoptotic cell death and temporal expression of apoptotic proteins Bcl-2 and Bax in the hippocampus following binge ethanol in the neonatal rat model. Alcohol. Clin. Exp. Res. 2015, 39, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Sung, B.; Ji, R.R.; Lim, G. Neuronal apoptosis associated with morphine tolerance: Evidence for an opioid-induced neurotoxic mechanism. J. Neurosci. 2002, 22, 7650–7661. [Google Scholar] [PubMed]
- Hu, S.; Sheng, W.S.; Lokensgard, J.R.; Peterson, P.K. Morphine induces apoptosis of human microglia and neurons. Neuropharmacology 2002, 42, 829–836. [Google Scholar] [CrossRef]
- Yuede, C.M.; Wozniak, D.F.; Creeley, C.E.; Taylor, G.T.; Olney, J.W.; Farber, N.B. Behavioral consequences of NMDA antagonist-induced neuroapoptosis in the infant mouse brain. PLoS ONE 2010, 5, e11374. [Google Scholar] [CrossRef] [PubMed]
- Bittigau, P.; Sifringer, M.; Genz, K.; Reith, E.; Pospischil, D.; Govindarajalu, S.; Dzietko, M.; Pesditschek, S.; Mai, I.; Dikranian, K.; et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc. Natl. Acad. Sci. USA 2002, 99, 15089–15094. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.; Tamer, Z.; Opoku, F.; Forcelli, P.A. Anticonvulsant drug-induced cell death in the developing white matter of the rodent brain. Epilepsia 2016, 57, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.D.; Uemura, E.; DeLuna, R.; Franks, P.; Bowman, R.E. Neurobehavioral effects of chronic halothane exposure during developmental and juvenile periods in the rat. Exp. Neurol. 1987, 98, 584–593. [Google Scholar] [CrossRef]
- Uemura, E.; Ireland, W.P.; Levin, E.D.; Bowman, R.E. Effects of halothane on the development of rat brain: A golgi study of dendritic growth. Exp. Neurol. 1985, 89, 503–519. [Google Scholar] [CrossRef]
- Ikonomidou, C.; Bosch, F.; Miksa, M.; Bittigau, P.; Vöckler, J.; Dikranian, K.; Tenkova, T.I.; Stefovska, V.; Turski, L.; Olney, J.W. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999, 283, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Young, C.; Jevtovic-Todorovic, V.; Qin, Y.Q.; Tenkova, T.; Wang, H.; Labruyere, J.; Olney, J.W. Potential of ketamine and midazolam, individually or in combination, to induce apoptotic neurodegeneration in the infant mouse brain. Br. J. Pharmacol. 2005, 146, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.A.; Young, C.; Olney, J.W. Isoflurane-induced neuroapoptosis in the developing brain of non-hypoglycemic mice. J. Neurosurg. Anesth. 2008, 20, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Jevtovic-Todorovic, V.; Hartman, R.E.; Izumi, Y.; Benshoff, N.D.; Dikranian, K.; Zorumski, C.F.; Olney, J.W.; Wozniak, D.F. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci. 2003, 23, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Gozal, D.; Mason, K.P. Pediatric Sedation: A Global Challenge. Int. J. Pediatr. 2010. [Google Scholar] [CrossRef] [PubMed]
- Olney, J.W. Focus on apoptosis to decipher how alcohol and many other drugs disrupt brain development. Front. Pediatr. 2014, 2, 81. [Google Scholar] [CrossRef] [PubMed]
- Creeley, C.E.; Olney, J.W. The young: Neuroapoptosis induced by anesthetics and what to do about it. Anesth. Analg. 2010, 110, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.L.; Smith, D.W. The fetal alcohol syndrome. Teratology 1975, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tsang, D.; Ng, S.C. Effect of antenatal exposure to opiates on the development of opiate receptors in rat brain. Brain Res. 1980, 188, 199–206. [Google Scholar] [CrossRef]
- Dobbing, J.; Sands, J. The brain growth spurt in various mammalian species. Early Hum. Dev. 1979, 3, 79–84. [Google Scholar] [CrossRef]
- Dikranian, K.; Qin, Y.Q.; Labruyere, J.; Nemmers, B.; Olney, J.W. Ethanol-induced neuroapoptosis in the developing rodent cerebellum and related brain stem structures. Dev. Brain Res. 2005, 155, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tenkova, T.; Young, C.; Dikranian, K.; Olney, J.W. Ethanol-induced apoptosis in the visual system during synaptogenesis. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2809–2817. [Google Scholar] [CrossRef]
- Young, C.; Klocke, B.J.; Tenkova, T.; Choi, J.; Labruyere, J.; Qin, Y.Q.; Holtzman, D.M.; Roth, K.A.; Olney, J.W. Ethanol-induced neuronal apoptosis in the in vivo developing mouse brain is BAX dependent. Cell Death Differ. 2003, 10, 1148–1155. [Google Scholar] [CrossRef] [PubMed]
- Young, C.; Roth, K.A.; Klocke, B.J.; West, T.; Holtzman, D.M.; Labruyere, J.; Qin, Y.Q.; Dikranian, K.; Olney, J.W. Role of caspase-3 in ethanol-induced developmental neurodegeneration. Neurobiol. Dis. 2005, 20, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Yon, J.H.; Daniel-Johnson, J.; Carter, L.B.; Jevtovic-Todorovic, V. Anesthesia induces suicide in the developing rat brain via the intrinsic and extrinsic apoptotic pathways. Neuroscience 2005, 135, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Yon, J.H.; Carter, L.B.; Reiter, R.J.; Jevtovic-Todorovic, V. Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Neurobiol. Dis. 2006, 21, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.X.; Yon, J.H.; Carter, L.B.; Jevtovic-Todorovic, V. General anesthesia activates BDNF-dependent neuroapoptosis in the developing rat brain. Apoptosis 2006, 11, 1603–1615. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.J.S.; Soriano, S.G. Anesthetic agents and the immature brain: Are these toxic or therapeutic? Anesthesiology 2004, 101, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Soriano, S.G.; Loepke, A.W. Let’s not throw the baby out with the bath water: Potential neurotoxicity of anesthetic drugs in infants and children. J. Neurosurg. Anesthesiol. 2005, 17, 207–209. [Google Scholar] [CrossRef] [PubMed]
- Soriano, S.G.; Anand, K.J. Anesthetics and brain toxicity. Curr. Opin. Anaesthesiol. 2005, 18, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Jevtovic-Todorovic, V.; Olney, J.W. PRO: Anesthesia-induced developmental neuroapoptosis: Status of the evidence. Anesth. Analg. 2008, 106, 1659–1663. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Kaufmann, J.A.; Sanchez-Ross, M.G.; Johnson, K.M. Mechanisms of N-methyl-d-aspartate-induced apoptosis in phencyclidine-treated cultured forebrain neurons. J. Pharmacol. Exp. Ther. 2000, 294, 287–295. [Google Scholar] [PubMed]
- Wang, C.; Fridley, J.; Johnson, K.M. The role of NMDA receptor upregulation in phencyclidine-induced cortical apoptosis in organotypic culture. Biochem. Pharmacol. 2005, 69, 1373–1383. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sadovova, N.; Fu, X.; Schmued, L.; Scallet, A.; Hanig, J.; Slikker, W. The role of the N-methyl-d-aspartate receptor in ketamine-induced apoptosis in rat forebrain culture. Neuroscience 2005, 132, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Slikker, W., Jr.; Zou, X.; Hotchkiss, C.E.; Divine, R.L.; Sadovova, N.; Twaddle, N.C.; Doerge, D.R.; Scallet, A.C.; Patterson, T.A.; Hanig, J.P.; et al. Ketamine-induced neuronal cell death in the perinatal rhesus monkey. Toxicol. Sci. 2007, 98, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Patterson, T.A.; Divine, R.L.; Sadovova, N.; Zhang, X.; Hanig, J.P.; Paule, M.G.; Slikker, W., Jr.; Wang, C. Prolonged exposure to ketamine increases neurodegeneration in the developing monkey brain. Int. J. Dev. Neurosci. 2009, 27, 727–731. [Google Scholar] [CrossRef] [PubMed]
- Anand, K.J.S. Anesthetic neurotoxicity in newborns. Should we change clinical practice? Anesthesiology 2007, 107, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Istaphanous, G.K.; Loepke, A.W. General Anesthetics and the developing brain. Curr. Opin. Anaesthesiol. 2009, 22, 368. [Google Scholar] [CrossRef] [PubMed]
- Vutskits, L. Anesthetic-related neurotoxicity and the developing brain: Shall we change practice? Paediatr. Drugs 2012, 14, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Mellon, R.D.; Simone, A.F.; Rappaport, B.A. Use of anesthetic agents in neonates and young children. Anesth. Analg. 2007, 104, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Loepke, A.W.; Soriano, S.G. An assessment of the effects of general anesthetics on developing brain structure and neurocognitive function. Anesth. Analg. 2008, 106, 1681–1707. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Slikker, W., Jr. Strategies and experimental models for evaluating anesthetics: Effects on the developing nervous system. Anesth. Analg. 2008, 106, 1643–1658. [Google Scholar] [CrossRef] [PubMed]
- McCann, M.E.; Soriano, S.G. General Anesthetics in pediatric anesthesia: Influences on the developing brain. Curr. Drug Targets 2012, 13, 944–951. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.S.; Li, G.; Dimaggio, C.; Byrne, M.; Rauh, V.; Brooks-Gunn, J.; Kakavouli, A.; Wood, A.; Coinvestigators of the Pediatric Anesthesia Neurodevelopment Assessment (PANDA) Research Network. Anesthesia and neurodevelopment in children: Time for an answer? Anesthesiology 2008, 109, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.S.; Li, G.; DiMaggio, C.J.; Byrne, M.W.; Ing, C.; Miller, T.L.; Bellinger, D.C.; Han, S.; McGowan, F.X. Feasibility and pilot study of the Pediatric Anesthesia NeuroDevelopment Assessment (PANDA) project. J. Neurosurg. Anesthesiol. 2012, 24, 382–388. [Google Scholar] [CrossRef] [PubMed]
- SmartTots. Available online: http://smarttots.org/ (accessed on 27 June 2016).
- Ramsay, J.G.; Roizen, M. SmartTots: A public-private partnership between the United States Food and Drug Administration (FDA) and the International Anesthesia Research Society (IARS). Paediatr. Anaesth. 2012, 22, 969–972. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Vutskits, L.; Hansen, T.G.; Engelhardt, T. Safe Anesthesia for Every Tot—The SAFETOTS initiative. Curr. Opin. Anaesthesiol. 2015, 28, 302–307. [Google Scholar] [CrossRef] [PubMed]
- DiMaggio, C.; Sun, L.S.; Kakavouli, A.; Byrne, M.W.; Li, G. A retrospective cohort study of the association of anesthesia and hernia repair surgery with behavioral and developmental disorders in young children. J. Neurosurg. Anesth. 2009, 21, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Sprung, J.; Flick, R.P.; Wilder, R.T.; Katusic, S.K.; Pike, T.L.; Dingli, M.; Gleich, S.J.; Schroeder, D.R.; Barbaresi, W.J.; Hanson, A.C.; et al. Anesthesia for cesarean delivery and learning disabilities in a population-based birth cohort. Anesthesiology 2009, 111, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Wilder, R.T.; Flick, R.P.; Sprung, J.; Katusic, S.K.; Barbaresi, W.J.; Mickelson, C.; Gleich, S.J.; Schroeder, D.R.; Weaver, A.L.; Warner, D.O. Early exposure to anesthesia and learning disabilities in a Population-Based Birth Cohort. Anesthesiology 2009, 110, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Hattori, R.; Desimaru, M.; Nagayama, I.; Inoue, K. Autistic and developmental disorders after general anaesthetic delivery. Lancet 1991, 337, 1357–1358. [Google Scholar] [CrossRef]
- Sylvester, G.C.; Khoury, M.J.; Lu, X.; Erickson, J.D. First-trimester anesthesia exposure and the risk of central nervous system defects: A population-based case-control study. Am. J. Public Health 1994, 84, 1757–1760. [Google Scholar] [CrossRef] [PubMed]
- Bartels, M.; Althoff, R.R.; Boomsma, D.I. Anesthesia and cognitive performance in children: No evidence for a causal relationship. Twin Res. Hum. Genet. 2009, 12, 246–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCann, M.E.; Bellinger, D.C.; Davidson, A.J.; Soriano, S.G. Clinical research approaches to studying pediatric anesthetic neurotoxicity. Neurotoxicology 2009, 30, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Hays, S.R.; Deshpande, J.K. Newly postulated neurodevelopmental risks of pediatric anesthesia: Theories that could rock our world. J. Urol. 2013, 189, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Hays, S.R.; Deshpande, J.K. Newly postulated neurodevelopmental risks of pediatric anesthesia. Curr. Neurol. Neurosci. Rep. 2011, 11, 205–210. [Google Scholar] [CrossRef] [PubMed]
- McCann, M.E.; Soriano, S.G. Is anesthesia bad for the newborn brain? Anesthesiol. Clin. 2009, 27, 269–284. [Google Scholar] [CrossRef] [PubMed]
- DiMaggio, C.; Sun, L.S.; Li, G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth. Analg. 2011, 113, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Flick, R.P.; Katusic, S.K.; Colligan, R.C.; Wilder, R.T.; Voigt, R.G.; Olson, M.D.; Sprung, J.; Weaver, A.L.; Schroeder, D.R.; Warner, D.O. Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 2011, 128, e1053–e1061. [Google Scholar] [CrossRef] [PubMed]
- Sprung, J.; Flick, R.P.; Katusic, S.K.; Colligan, R.C.; Barbaresi, W.J.; Bojanić, K.; Welch, T.L.; Olson, M.D.; Hanson, A.C.; Schroeder, D.R.; et al. Attention-Deficit/Hyperactivity Disorder After Early Exposure to Procedures Requiring General Anesthesia. Mayo Clin. Proc. 2012, 87, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.S.; Li, G.; Miller, T.L.; Salorio, C.; Byrne, M.W.; Bellinger, D.C.; Ing, C.; Park, R.; Radcliffe, J.; Hays, S.R.; et al. Association between a single general anesthesia exposure before age 36 months and neurocognitive outcomes in later childhood. JAMA 2016, 315, 2312–2320. [Google Scholar] [CrossRef] [PubMed]
- Rozé, J.C.; Denizot, S.; Carbajal, R.; Ancel, P.Y.; Kaminski, M.; Arnaud, C.; Truffert, P.; Marret, S.; Matis, J.; Thiriez, G.; et al. Prolonged sedation and/or analgesia and 5-year neurodevelopment outcome in very preterm infants: Results from the EPIPAGE cohort. Arch. Pediatr. Adolesc. Med. 2008, 162, 728–733. [Google Scholar] [CrossRef] [PubMed]
- Kalkman, C.J.; Peelen, L.; Moons, K.G.; Veenhuizen, M.; Bruens, M.; Sinnema, G.; de Jong, T.P. Behavior and development in children and age at the time of first anesthetic exposure. Anesthesiology 2009, 110, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.G.; Pedersen, J.K.; Henneberg, S.W.; Pedersen, D.A.; Murray, J.C.; Morton, N.S.; Christensen, K. Academic performance in adolescence after inguinal hernia repair in infancy: A nationwide cohort study. Anesthesiology 2011, 114, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Guerra, G.G.; Robertson, C.M.; Alton, G.Y.; Joffe, A.R.; Cave, D.A.; Dinu, I.A.; Creighton, D.E.; Ross, D.B.; Rebeyka, I.M.; Western Canadian Complex Pediatric Therapies Follow-up Group. Neurodevelopmental outcome following exposure to sedative and analgesic drugs for complex cardiac surgery in infancy. Paediatr. Anaesth. 2011, 21, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Ing, C.H.; DiMaggio, C.J.; Malacova, E.; Whitehouse, A.J.; Hegarty, M.K.; Feng, T.; Brady, J.E.; von Ungern-Sternberg, B.S.; Davidson, A.J.; Wall, M.M.; et al. Comparative analysis of outcome measures used in examining neurodevelopmental effects of early childhood anesthesia exposure. Anesthesiology 2014, 120, 1319–1332. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.R.; Liaw, Y.P.; Huang, J.Y.; Zhao, D.H.; Chang, H.C.; Ko, P.C.; Jan, S.R.; Nfor, O.N.; Chiang, Y.C.; Lin, L.Y. Exposure to general anesthesia in early life and the risk of attention deficit/hyperactivity disorder development: A nationwide, retrospective matched-cohort study. Paediatr. Anaesth. 2014, 24, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.R.; Huang, J.Y.; Chiang, Y.C.; Nfor, O.N.; Ko, P.C.; Jan, S.R.; Lung, C.C.; Chang, H.C.; Lin, L.Y.; Liaw, Y.P. Risk of autistic disorder after exposure to general anaesthesia and surgery: A nationwide, retrospective matched cohort study. Eur. J. Anaesthesiol. 2015, 32, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Creagh, O.; Torres, H.; Rivera, K.; Morales-Franqui, M.; Altieri-Acevedo, G.; Warner, D. Previous exposure to Anesthesia and Autism Spectrum Disorder (ASD): A puerto rican population-based sibling cohort study. Bol. Asoc. Med. P. R. 2015, 107, 29–37. [Google Scholar] [PubMed]
- Gleich, S.J.; Flick, R.; Hu, D.; Zaccariello, M.J.; Colligan, R.C.; Katusic, S.K.; Schroeder, D.R.; Hanson, A.; Buenvenida, S.; Wilder, R.T.; et al. Neurodevelopment of children exposed to anesthesia: Design of the Mayo Anesthesia Safety in Kids (MASK) study. Contemp. Clin. Trials. 2015, 41, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Flick, R.P.; Gleich, S.J.; Scanlon, M.M.; Zaccariello, M.J.; Colligan, R.C.; Katusic, S.K.; Schroeder, D.R.; Hanson, A.C.; Buenvenida, S.L.; et al. Construction and characterization of a population-based cohort to study the association of anesthesia exposure with neurodevelopmental outcomes. PLoS ONE 2016, 11, e0155288. [Google Scholar] [CrossRef] [PubMed]
- DiMaggio, C.; Sun, L.S.; Ing, C.; Li, G. Pediatric anesthesia and neurodevelopmental impairments: A Bayesian meta-analysis. J. Neurosurg. Anesth. 2012, 24, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Ing, C.; DiMaggio, C.; Whitehouse, A.; Hegarty, M.K.; Brady, J.; von Ungern-Sternberg, B.S.; Davidson, A.; Wood, A.J.; Li, G.; Sun, L.S. Long-term differences in language and cognitive function after childhood exposure to anesthesia. Pediatrics 2012, 130, e476–e485. [Google Scholar] [CrossRef] [PubMed]
- Ing, C.; Wall, M.M.; DiMaggio, C.J.; Whitehouse, A.J.; Hegarty, M.K.; Sun, M.; von Ungern-Sternberg, B.S.; Li, G.; Sun, L.S. Latent class analysis of neurodevelopmental deficit after exposure to anesthesia in early childhood. J. Neurosurg. Anesthesiol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.J.; Becke, K.; de Graaff, J.; Giribaldi, G.; Habre, W.; Hansen, T.; Hunt, R.W.; Ing, C.; Loepke, A.; McCann, M.E.; et al. Anesthesia and the developing brain: A way forward for clinical research. Paediatr. Anaesth. 2015, 25, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Flick, R.P.; Nemergut, M.E.; Christensen, K.; Hansen, T.G. Anesthetic related neurotoxicity in the young and outcome measures: The devil is in the details. Anesthesiology 2014, 120, 1303–1305. [Google Scholar] [CrossRef] [PubMed]
- Beers, S.R.; Rofey, D.L.; McIntyre, K.A. Neurodevelopmental assessment after anesthesia in childhood: Review of the literature and recommendations. Anesth. Analg. 2014, 119, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.K.; Gaynor, J.W.; Koh, S.J.; Ittenbach, R.F.; Gerdes, M.; Bernbaum, J.C.; Zackai, E.H.; Clancy, R.R.; Rehman, M.A.; Pennington, J.W.; et al. Increasing cumulative exposure to volatile anesthetic agents is associated with poorer neurodevelopmental outcomes in children with hypoplastic left heart syndrome. J. Thorac. Cardiovasc. Surg. 2016. [Google Scholar] [CrossRef] [PubMed]
- Andropoulos, D.B.; Ahmad, H.B.; Haq, T.; Brady, K.; Stayer, S.A.; Meador, M.R.; Hunter, J.V.; Rivera, C.; Voigt, R.G.; Turcich, M.; et al. The association between brain injury, perioperative anesthetic exposure, and 12-month neurodevelopmental outcomes after neonatal cardiac surgery: A retrospective cohort study. Paediatr. Anaesth. 2014, 24, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Weiss, M.; Hansen, T.G.; Engelhardt, T. Ensuring safe anaesthesia for neonates, infants and young children: What really matters. Arch. Dis. Child. 2016, 101, 650–652. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, Z.; Miao, C.-H. Current clinical evidence on the effect of general anesthesia on neurodevelopment in children: An updated systematic review with meta-regression. PLoS ONE 2014, 9, e85760. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Du, L.; Du, Z.; Jiang, H.; Han, D.; Li, Q. Association between childhood exposure to single general anesthesia and neurodevelopment: A systematic review and meta-analysis of cohort study. J. Anesth. 2015, 29, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.E.; Kahana, M. The uncomfortable reality…We simply do not know if general anesthesia negatively impacts the neurocognitive development of our small children. Int. J. Pediatr. Otorhinolaryngol. 2015, 79, 1379–1381. [Google Scholar] [CrossRef] [PubMed]
- Nemergut, M.E.; Aganga, D.; Flick, R.P. Anesthetic neurotoxicity: What to tell the parents? Paediatr. Anaesth. 2014, 24, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Davis, N.; Lee, M.; Ing, C. Engaging stakeholders in research related to anesthesia and neurodevelopment in children. J. Neurosurg. Anesthesiol. 2014, 26, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.Y.; Hache, M.; Loepke, A.W. Clinical research into anesthetic neurotoxicity: Does anesthesia cause neurological abnormalities in humans? J. Neurosurg. Anesthesiol. 2014, 26, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Mintz, C.D.; Wagner, M.; Loepke, A.W. Preclinical research into the effects of anesthetics on the developing brain: Promises and pitfalls. J. Neurosurg. Anesthesiol. 2012, 24, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Gleich, S.; Nemergut, M.; Flick, R. Anesthetic-related neurotoxicity in young children: An update. Curr. Opin. Anaesthesiol. 2013, 26, 340–347. [Google Scholar] [CrossRef] [PubMed]
First Author | Date | Age at Exposure | Study Groups | Drugs | Study Design and Population | Outcome Measure and Endpoint | Conclusions |
---|---|---|---|---|---|---|---|
Roze [77] | 2008 | <33 weeks | Exposed (n = 115); non-exposed (n = 1457) | Daily exposure to sedatives and/or opioids | Prospective, population-based study, France | Presence of disability at age 5 | Prolonged sedation/analgesia (>7 days) not associated with poor outcome |
Kalkman [78] | 2009 | <2 years | <24 months (n = 178); >24 months (n = 65) | Isoflurane, halothane, enflurane, fentanyl, sufentanil | Retrospective cohort study, Netherlands | Child Behavior Checklist | No ability to confirm an effect, study underpowered |
Wilder [65] | 2009 | <4 years | No exposure (n = 4,764); Single (n = 449); Multiple (n = 144) | Isoflurane, halothane, enflurane, sodium thiopental, etomidate, ketamine, nitrous oxide, diazepam | Population-based, retrospective birth cohort study; USA | Reading, language, and math LDs before age 19 | Significant increased risk of LD with multiple, but not single exposure |
Bartels [68] | 2009 | <3 years | Exposure before age 3 vs. exposure age 3–12; n = 1143 twin pairs | Information not available to researchers | Monozygotic concordant-discordant twin study, Netherlands Twin Registry | Educational achievement and cognitive problems at age 12 | No difference between exposed and unexposed twin |
Sprung [64] | 2009 | Perinatal | Cesarian (n = 497) vs. vaginal delivery (n = 4823) | Isoflurane, halothane, enflurane, sodium thiopental, etomidate, ketamine, nitrous oxide, methoxyflurane | Population-based birth cohort: USA | Incidence of learning disability (LD) before age 19 | No association between anesthetic exposure during birth and risk of LD |
DiMaggio [63] | 2009 | ≤3 years | Hernia repair (n = 383) vs. Age-matched controls (n = 5050) | Not provided | Retrospective cohort study of hernia patients; NY State Medicaid Program enrollees, USA | Risk of behavioral/develop-mental disorder diagnosis at or before age 4 | Children who had hernia repair >2x as likely to be diagnosed |
Hansen [79] | 2011 | <1 year | Hernia repair (n = 2689) vs. Age-matched controls (14,575) | Not provided | Retrospective birth cohort study, Denmark | Academic achievement test at 15 or 16 years | No evidence of any effects of a single exposure |
Guerra [80] | 2011 | ≤6 weeks | Cardiac surgery (n = 95) dose-response | Inhalationals, opioids, benzodiazepines, ketamine, chloral hydrate | Prospective post-operative follow-up | Mental, motor, and vocabulary assessment at 18–24 months | No association between dose/durationof sedation/analgesia and neurodevelopmental outcome |
DiMaggio [73] | 2011 | <3 years | Surgery before age 3 (1–3 exposures) (n = 304) vs. unexposed controls (n = 10,146) | Information not available to researchers | Retrospective sibling birth cohort design; NY State Medicaid Program enrollees, USA | Incidence of developmental and behavioral disorder at or before age 6 | Anesthesia-exposed group risk of diagnosis 60% higher; no causal connection can be made |
Flick [74] | 2011 | <2 years | General anesthesia exposure once (n = 286), more than once (n = 64) vs. unexposed controls (n = 700) | Combination of halothane and nitrous oxide (most common) | Retrospective matched cohort study, USA | LD diagnosis, achievement, cognitive tests before age 19 | Multiple exposures to anesthesia increases risk for a LD, but no intervention required |
Sprung [75] | 2012 | <2 years | No exposure (n = 10,146); single exposure (n = 210); two exposures (n = 71); three or more (n = 23) | Combination of halothane and nitrous oxide (most common) | Retrospective birth cohort design, USA | Attention-deficit/hyperactivty (ADHD) diagnosis before age 19 | No increased risk with single exposure, but increased risk for ADHD diagnosis with repeated exposure |
Ing [81] | 2014 | <3 years | Disability class: none (n = 1135); language and cognitive (n = 96); behavioral deficits (n = 151); severe deficits (n = 62) | Information not available | Retrospective birth cohort study, Western Australian Pregnancy Cohort (Raine) Study | Language, cognition, motor skills and behavior at age 10 | Deficits in language and abstract reasoning associated with anesthesia exposure. Phenotype of interest may be specific language/cognitive delays |
Ko [82] | 2014 | <3 years | Exposed (n = 3293) vs. unexposed (n = 16,465) | Sevoflurane | Population-based retrospective matched birth cohort design, National Health Insurance Database of Taiwan | Risk of ADHD before age 10 | No increased risk of ADHD diagnosis for single or multiple exposure |
Ko [83] | 2015 | <2 years | Exposed (n = 5197) vs. unexposed (n = 20,788) | Sevoflurane | Population-based, retrospective matched birth cohort design, National Health Insurance Database of Taiwan | Risk of autism disorder diagnosis before age 10 | No increased risk of AD; no relationship between total number of exposures and AD risk |
Creagh [84] | 2015 | <3 years | ASD diagnosed (n = 262) vs. non-ASD (n = 253) | In utero exposure—specific agents not known | Population-based sibling cohort study, Puerto Rico | Risk of autism spectrum disorder (ASD) diagnosis | Early exposure to anesthesia not linked to an ASD diagnosis |
Gleich [85] | 2015 | <3 years | No exposure (n = 250); single (n = 150 ); multiple (n = 100); Hypothetical sample sizes | Data to be collected | Population-based, retrospective propensity-matched study, USA | Neuropsychological test battery (also used in primates), ages 8–12 or 15–19 | Analyses not completed; goal is to determine whether a neurobehavioral phenotype exists |
Hu [86] | 2016 | <3 years | No exposure (n = 465); single exposure (n = 466); multiple exposure (n = 126) | Data to be collected | Population-based, retrospective birth cohort | LD or ADHD diagnosis, group achievement test at age 5 or 6 | Only slight differences between study groups, not expected to affect future data analysis comparing risk |
Sun [76] | 2016 | <3 years | Sibling pairs (n = 105); single exposure vs. unexposed | Inhaled anesthetic agents | Sibling matched cohort study, at 4 U.S. University-based hospitals | Global cognitive function (IQ) at age 10 | No risk for healthy children with single exposure |
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Creeley, C.E. From Drug-Induced Developmental Neuroapoptosis to Pediatric Anesthetic Neurotoxicity—Where Are We Now? Brain Sci. 2016, 6, 32. https://doi.org/10.3390/brainsci6030032
Creeley CE. From Drug-Induced Developmental Neuroapoptosis to Pediatric Anesthetic Neurotoxicity—Where Are We Now? Brain Sciences. 2016; 6(3):32. https://doi.org/10.3390/brainsci6030032
Chicago/Turabian StyleCreeley, Catherine E. 2016. "From Drug-Induced Developmental Neuroapoptosis to Pediatric Anesthetic Neurotoxicity—Where Are We Now?" Brain Sciences 6, no. 3: 32. https://doi.org/10.3390/brainsci6030032