Compensatory Plasticity in the Deaf Brain: Effects on Perception of Music
Abstract
:1. Introduction
2. Compensatory Plasticity: The Neuro-Developmental Perspective
2.1. Auditory System Response Changes Following Deprivation
2.2. Non-Auditory System Changes Following Auditory Deprivation
2.3. Multimodal Integration Areas
2.4. Limitations of Neuro-Developmental Perspective
3. Behavioral Compensation: The Cognitive Perspective
3.1. Enhanced Visual Attention to the Periphery
3.2. Enhanced Visual Attention to Facial Features
3.3. Enhanced Attention to Vibrotactile Stimuli
4. Compensation Summary
5. Non-Auditory Elements of Music and the Deaf Experience
5.1. Visual Elements
5.2. Vibrotactile Elements
5.3. Assistive Technologies
6. Music in the Deaf Community
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Loke, W.H.; Song, S. Central and peripheral visual processing in hearing and non-hearing individuals. Bull. Psychon. Soc. 1991, 29, 437–440. [Google Scholar]
- Neville, H.J.; Lawson, D. Attention to central and peripheral visual space in a movement detection task: An event-related potential and behavioral study. II. Congenitally deaf adults. Brain Res. 1987, 45, 268–283. [Google Scholar]
- Neville, H.J.; Lawson, D. Attention to central and peripheral visual space in a movement detection task. III. Separate effects of auditory deprivation and acquisition of a visual language. Brain Res. 1987, 405, 284–294. [Google Scholar]
- Stevens, C.; Neville, H. Neuroplasticity as a double-edged sword: Deaf enhancements and dyslexic deficits in motion processing. J. Cogn. Neurosci. 2006, 18, 701–714. [Google Scholar]
- Pavani, F.; Bottari, D. Visual abilities in individuals with profound deafness a critical review. In The Neural Bases of Multisensory Processes; Murray, M.M., Wallace, M.T., Eds.; CRC Press: Boca Raton, FL, USA, 2012; Chapter 22. [Google Scholar]
- Goldman, R.F. Varèse: Ionisation; Density 21.5; Intégrales; Octandre; Hyperprism; Poème Electronique. Instrumentalists, cond. Robert Craft. Columbia MS 6146 (stereo) (in Reviews of Records). Music. Q. 1961, 47, 133–134. [Google Scholar]
- Clifton, T. Music as Heard: A Study in Applied Phenomenology; Yale University Press: New Haven, CN, USA; London, UK, 1983. [Google Scholar]
- Moore, J.K.; Niparko, J.K.; Miller, M.R.; Linthicum, F.H. Effect of profound hearing loss on a central auditory nucleus. Am. J. Otol. 1994, 15, 588–595. [Google Scholar]
- Saada, A.A.; Niparko, J.K.; Ryugo, D.K. Morphological changes in the cochlear nucleus of congenitally deaf white cats. Brain Res. 1996, 736, 315–328. [Google Scholar]
- Heid, S.; Hartmann, R.; Klinke, R. A model for prelingual deafness, the congenitally deaf white cat–population statistics and degenerative changes. Hear. Res. 1998, 115, 101–112. [Google Scholar]
- Emmorey, K.; Allen, J.S.; Bruss, J.; Schenker, N.; Damasio, H. A morphometric analysis of auditory brain regions in congenitally deaf adults. Proc. Natl. Acad. Sci. USA 2003, 100, 10049–10054. [Google Scholar]
- Li, J.; Li, W.; Xian, J.; Li, Y.; Liu, Z.; Liu, S.; Wang, X.; Wang, Z.; He, H. Cortical thickness analysis and optimized voxel-based morphometry in children and adolescents with prelingually profound sensorineural hearing loss. Brain Res. 2012, 1430, 35–42. [Google Scholar]
- Bavelier, D.; Neville, H.J. Cross-modal plasticity: Where and how? Nat. Rev. Neurosci. 2002, 3, 443–452. [Google Scholar]
- Nishimura, H.; Hashikawa, K.; Doi, K.; Iwaki, T.; Watanabe, Y.; Kusuoka, H.; Nishimura, T.; Kubo, T. Sign language “heard” in the auditory cortex. Nature 1999, 397, 116. [Google Scholar] [CrossRef]
- Sadato, N.; Okada, T.; Honda, M.; Matsuki, K.-I.; Yoshida, M.; Kashikura, K.-I.; Takei, W.; Sato, T.; Kochiyama, T.; Yonekura, Y. Cross-modal integration and plastic changes revealed by lip movement, random-dot motion and sign languages in the hearing and deaf. Cereb. Cortex 2005, 15, 1113–1122. [Google Scholar]
- Fine, I.; Finney, E.M.; Boynton, G.M.; Dobkins, K.R. Comparing the effects of auditory deprivation and sign language within the auditory and visual cortex. J. Cogn. Neurosci. 2005, 17, 1621–1637. [Google Scholar]
- Finney, E.M.; Fine, I.; Dobkins, K.R. Visual stimuli activate auditory cortex in the deaf. Nat. Neurosci. 2001, 4, 1171–1173. [Google Scholar]
- Sung, Y.W.; Ogawa, S. Cross-modal connectivity of the secondary auditory cortex with higher visual area in the congenitally deaf—A case study. J. Biomed. Sci. Eng. 2013, 6, 314–318. [Google Scholar]
- Auer, E.T.; Bernstein, L.E.; Sungkarat, W.; Singh, M. Vibrotactile activation of the auditory cortices in deaf versus hearing adults. Neuroreport 2007, 18, 645–648. [Google Scholar]
- Levänen, S.; Jousmäki, V.; Hari, R. Vibration-induced auditory-cortex activation in a congenitally deaf adult. Curr. Biol. 1998, 8, 869–872. [Google Scholar]
- Barone, P.; Lacassagne, L.; Kral, A. Reorganization of the connectivity of cortical field DZ in congenitally deaf cat. PLoS One 2013, 8, e60093. [Google Scholar]
- Lambertz, N.; Gizewski, E.R.; de Greiff, A.; Forsting, M. Cross-modal plasticity in deaf subjects dependent on the extent of hearing loss. Cogn. Brain Res. 2005, 25, 884–890. [Google Scholar]
- Karns, C.M.; Dow, M.W.; Neville, H.J. Altered cross-modal processing in the primary auditory cortex of congenitally deaf adults: A visual-somatosensory fMRI study with a double-flash illusion. J. Neurosci. 2012, 32, 9626–9638. [Google Scholar]
- Hickok, G.; Poeppel, D.; Clark, K.; Buxton, R.B.; Rowley, H.A.; Roberts, T.P.L. Sensory Mapping in a Congenitally Deaf Subject: MEG and fMRI Studies of Cross-Modal Non-Plasticity. Hum. Brain Mapp. 1997, 5, 437–444. [Google Scholar]
- Lomber, S.G.; Meredith, M.A.; Kral, A. Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nat. Neurosci. 2010, 13, 1421–1427. [Google Scholar]
- Bross, M. Residual sensory capacities of the deaf: A signal detection analysis of a visual discrimination task. Percept. Mot. Skills 1979, 48, 187–194. [Google Scholar]
- Finney, E.M.; Dobkins, K.R. Visual contrast sensitivity in deaf versus hearing populations: Exploring the perceptual consequences of auditory deprivation and experience with a visual language. Cogn. Brain Res. 2001, 11, 171–183. [Google Scholar]
- Armstrong, B.; Neville, H.J.; Hillyard, S.A.; Mitchell, T.V. Auditory deprivation affects processing of motion, but not color. Cogn. Brain Res. 2002, 14, 422–434. [Google Scholar]
- Bottari, D.; Caclin, A.; Giard, M.H.; Pavani, F. Changes in early cortical visual processing predict enhanced reactivity in deaf individuals. PLoS One 2011, 6, e25607. [Google Scholar]
- Kok, M.A.; Chabot, N.; Lomber, S.G. Cross-modal reorganization of cortical afferents to dorsal auditory cortex following early-and late-onset deafness. J. Comp. Neurol. 2014, 522, 654–675. [Google Scholar]
- Bavelier, D.; Tomann, A.; Hutton, C.; Mitchell, T.; Corina, D.; Liu, G.; Neville, H. Visual attention to the periphery is enhanced in congenitally deaf individuals. J. Neurosci. 2000, 20, RC93:1–RC93:6. [Google Scholar]
- Bavelier, D.; Brozinsky, C.; Tomann, A.; Mitchell, T.; Neville, H.; Liu, G. Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing. J. Neurosci. 2001, 21, 8931–8942. [Google Scholar]
- Elbert, T.; Pantev, C.; Wienbruch, C.; Rockstroh, B.; Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science 1995, 270, 305–307. [Google Scholar]
- Shimojo, S.; Shams, L. Sensory modalities are not separate modalities: Plasticity and interactions. Curr. Opin. Neurobiol. 2001, 11, 505–509. [Google Scholar]
- Foxe, J.J.; Wylie, G.R.; Martinex, A.; Schroeder, C.E.; Javitt, D.C.; Guilfoyle, D.; Ritter, W.; Murray, M.M. Auditory-somatosensory multisensory processing in auditory association cortex: An fMRI study. J. Neurophysiol. 2002, 88, 540–543. [Google Scholar]
- Reale, R.A.; Calvert, G.A.; Thesen, T.; Jenison, R.L.; Kawasaki, H.; Oya, H.; Howard, M.A.; Brugge, J.F. Auditory-visual processing represented in the human superior temporal gyrus. Neuroscience 2007, 145, 162–184. [Google Scholar]
- Petitto, L.A.; Zatorre, R.J.; Gauna, K.; Nikelski, E.J.; Dostie, D.; Evans, A.C. Speech-like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language. Proc. Natl. Acad. Sci. USA 2000, 97, 13961–13966. [Google Scholar]
- Sadato, N.; Yamada, H.; Okada, T.; Yoshida, M.; Hasegawa, T.; Matsuki, K.I.; Itoh, H. Age-dependent plasticity in the superior temporal sulcus in deaf humans: A functional MRI study. BMC Neurosci. 2004, 5, 56. [Google Scholar] [CrossRef][Green Version]
- Sadato, N.; Okada, T.; Honda, M.; Yonekura, Y. Critical period for cross-modal plasticity in blind humans: A functional MRI study. NeuroImage 2002, 16, 389–400. [Google Scholar]
- Bettger, J.G.; Emmorey, K.; Mccullough, S.H.; Bellugi, U.; Mccullough, S.H. Enhanced Facial Discrimination: Effects of Experience With American Sign Language. J. Deaf Stud. Deaf Educ. 1997, 2, 223–233. [Google Scholar]
- Asplund, C.C.; Todd, J.J.; Snyder, A.P.; Marois, R. A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nat. Neurosci. 2010, 13, 507–512. [Google Scholar]
- Bavelier, D.; Dye, M.W.G.; Hauser, P.C. Do deaf individuals see better? Trends Cogn. Sci. 2006, 10, 512–518. [Google Scholar]
- Stivalet, P.; Moreno, Y.; Richard, J.; Barraud, P.-A.; Raphel, C. Differences in visual search tasks between congenitally deaf and normally hearing adults. Cogn. Brain Res. 1998, 6, 227–232. [Google Scholar]
- Proksch, J.; Bavelier, D. Changes in the Spatial Distribution of Visual Attention after Early Deafness. J. Cogn. Neurosci. 2006, 14, 687–701. [Google Scholar]
- Chen, Q.; Zhang, M.; Zhou, X. Effects of spatial distribution of attention during inhibition of return (IOR) on flanker interference in hearing and congenitally deaf people. Brain Res. 2006, 1109, 117–127. [Google Scholar]
- Parasnis, I.; Samar, V.J. Parafoveal attention in congenitally deaf and hearing young adults. Brain Cogn. 1985, 4, 313–327. [Google Scholar]
- Bosworth, R.G.; Dobkins, K.R. Left-hemisphere dominance for motion processing in deaf signers. Psychol. Sci. 1999, 10, 256–262. [Google Scholar]
- Bosworth, R.G.; Dobkins, K.R. The effects of spatial attention on motion processing in deaf signers, hearing signers, and hearing nonsigners. Brain Cogn. 2002, 49, 152–169. [Google Scholar]
- Bernstein, L.E.; Auer, E.T.; Tucker, P.E. Enhanced Speechreading in Deaf Adults. Can Short-Term Training/Practice Close the Gap for Hearing Adults? J. Speech Lang. Hear. Res. 2001, 44, 5–18. [Google Scholar]
- Strelnikov, K.; Rouger, J.; Lagleyre, S.; Fraysse, B.; Deguine, O.; Barone, P. Improvement in speech-reading ability by auditory training: Evidence from gender differences in normally hearing, deaf and cochlear implanted subjects. Neuropsychologia 2009, 47, 972–979. [Google Scholar]
- McCullough, S.; Emmorey, K. Face processing by deaf ASL signers: Evidence for expertise in distinguished local features. J. Deaf Stud. Deaf Educ. 1997, 2, 212–222. [Google Scholar]
- Stokoe, W. Sign Language Structure; Linstok Press: Silver Spring, MD, USA, 1978. [Google Scholar]
- Cranney, J.; Ashton, R. Tactile spatial ability: Lateralized performance of deaf and hearing age groups. J. Exp. Child Psychol. 1982, 34, 123–134. [Google Scholar]
- Levänen, S.; Hamdorf, D. Feeling vibrations: Enhanced tactile sensitivity in congenitally deaf humans. Neurosci. Lett. 2001, 301, 75–77. [Google Scholar]
- Juslin, P.N. Five facets of musical expression: A psychologist’s perspective on music performance. Psychol. Music 2003, 31, 273–302. [Google Scholar]
- Thompson, W.F.; Graham, P.; Russo, F.A. Seeing music performance: Visual influences on perception and experience. Semiotica 2005, 2005, 203–227. [Google Scholar]
- Thompson, M.R.; Luck, G. Exploring the relationships between pianists’ body movements, their expressive intentions, and structural elements of the music. Music. Sci. 2012, 16, 19–40. [Google Scholar]
- Thompson, W.F.; Russo, F.A.; Livingstone, S.R. Facial expressions of singers influence perceived pitch relations. Psychon. Bull. Rev. 2010, 17, 317–322. [Google Scholar]
- Thompson, W.F.; Russo, F.A. Facing the music. Psychol. Sci. 2007, 18, 756–757. [Google Scholar]
- Morse, P.M.C. Vibration and Sound. In American Institute of Physics for the Acoustical Society of America, 2nd ed.; McGraw-Hill: New York, NY, USA, 1948. [Google Scholar]
- Russell, I.J.; Sellick, P.M. Tuning properties of cochlear hair cells. Nature 1977, 267, 858–860. [Google Scholar]
- Schreiner, C.E.; Mendelson, J.R. Functional topography of cat primary auditory cortex: Distribution of integrated excitation. J. Neurophysiol. 1990, 64, 1442–1459. [Google Scholar]
- Bolanowski, S.J.; Gescheider, G.A.; Verrillo, R.T. Hairy skin: Psychophysical channels and their physiological substrates. Somatosens. Mot. Res. 1994, 11, 279–290. [Google Scholar]
- Ilie, G.; Thompson, W.F. A comparison of acoustic cues in music and speech for three dimensions of affect. Music Percept. 2006, 23, 319–329. [Google Scholar]
- Hevner, K. The affective value of pitch and tempo in music. Am. J. Psychol. 1937, 49, 621–630. [Google Scholar]
- Russo, F.A.; Ammirante, P.; Good, A.; Nespoli, G. Feeling the music: Emotional responses to music presented to the skin. Front. Psychol. 2014. submitted. [Google Scholar]
- Verrillo, R.T. Vibration sensation in humans. Music Percept. 1992, 9, 281–302. [Google Scholar]
- Branje, C.J.; Maksimowski, M.; Karam, M.; Fels, D.I.; Russo, F.A. Vibrotactile display of music on the human back. In Proceedings of the 2010 ACHI’10 3rd International Conferences on Advances in Computer-Human Interactions, Saint Maarten, Netherlands Antilles, 10–15 February 2010; pp. 154–159.
- Russo, F.A.; Ammirante, P.; Fels, D.I. Vibrotactile discrimination of musical timbre. J. Exp. Psychol. Hum. Percept. Perform. 2012, 38, 822–826. [Google Scholar]
- Ammirante, P.; Russo, F.A.; Good, A.; Fels, D.I. Feeling Voices. PLoS One 2013, 8, e53585. [Google Scholar]
- Pouris, M.; Fels, D.I. Creating an entertaining and informative music visualization. Lect. Notes Comput. Sci. 2012, 7382, 451–458. [Google Scholar]
- Nanayakkara, S.; Taylor, E.; Wyse, L.; Ong, S.H. An enhanced musical experience for the deaf. In Proceedings of the 27th International Conference on Human Factors in Computing Systems—CHI’09, New York, NY, USA, 2009; ACM Press: New York, NY, USA; pp. 337–346.
- Baijal, A.; Kim, J.; Branje, C.; Russo, F.A.; Fels, D.I. Composing vibrotactile music: A multi-sensory experience with the Emoti-chair. In Proceedings of the 2012 IEEE Haptics Symposium (HAPTICS), Vancouver, BC, 4–7 March 2012; pp. 509–515.
- Karam, M.; Russo, F.; Branje, C.; Price, E.; Fels, D.I. Towards a model human cochlea: Sensory substitution for crossmodal audio-tactile displays. In Proceedings of the Graphics interface, Windsor, ON, Canada, 28–30 May 2008.
- Karam, M.; Nespoli, G.; Russo, F.; Fels, D.I. Modelling Perceptual Elements of Music in a Vibrotactile Display for Deaf Users: A Field Study. In Proceedings of the 2009 ACHI’09 2nd International Conferences on Advances in Computer-Human Interactions, Cancun, Mexico, 1–7 February 2009; pp. 249–254.
- Darrow, A.A. The Role of Music in Deaf Culture: Implications for Music Educators. J. Res. Music Educ. 1993, 41, 93–110. [Google Scholar]
- Cleall, C. Notes on a Young Deaf Musician. Psychol. Music 1983, 11, 101–102. [Google Scholar]
- Timm, L.; Vuust, P.; Brattico, E.; Agrawal, D.; Debener, S.; Büchner, A.; Dengler, R.; Wittfoth, M. Residual neural processing of musical sound features in adult cochlear implant users. Front Hum Neurosci. 2014, 8, 181. [Google Scholar] [CrossRef]
- Vongpaisal, T.; Trehub, S.E.; Schellenberg, E.G. Song recognition by children and adolescents with cochlear implants. J. Speech Lang. Hear. Res. 2006, 49, 1091–1103. [Google Scholar]
- Vongpaisal, T.; Trehub, S.E.; Schellenberg, E.G. Identification of TV tunes by children with cochlear implants. Music Percept. 2009, 27, 17–24. [Google Scholar]
- Cooper, W.B.; Tobey, E.; Loizou, P.C. Music perception by Cochlear Implant and Normal Hearing Listeners as measured by the Montreal Battery for Evaluation of Amusia. Ear Hear. 2008, 29, 618–626. [Google Scholar]
- Hopyan, T.; Peretz, I.; Chan, L.P.; Papsin, B.C.; Gordon, K.A. Children using cochlear implants capitalize on acoustical hearing for music perception. Front. Psychol. 2012, 3. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Good, A.; Reed, M.J.; Russo, F.A. Compensatory Plasticity in the Deaf Brain: Effects on Perception of Music. Brain Sci. 2014, 4, 560-574. https://doi.org/10.3390/brainsci4040560
Good A, Reed MJ, Russo FA. Compensatory Plasticity in the Deaf Brain: Effects on Perception of Music. Brain Sciences. 2014; 4(4):560-574. https://doi.org/10.3390/brainsci4040560
Chicago/Turabian StyleGood, Arla, Maureen J. Reed, and Frank A. Russo. 2014. "Compensatory Plasticity in the Deaf Brain: Effects on Perception of Music" Brain Sciences 4, no. 4: 560-574. https://doi.org/10.3390/brainsci4040560