Transcutaneous Vagus Nerve Stimulation During Motor Activity in Healthy Volunteers: A High-Density Diffuse Optical Tomography Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
- -
- Had open wounds affecting the scalp or ears.
- -
- Were pregnant.
- -
- Had a prior vagotomy.
- -
- Had non-removable piercings at stimulation sites (i.e., left tragus or earlobe)
- -
- Had implanted electronic medical devices such as pacemakers or cochlear implants.
- -
- Had a known history of symptomatic bradycardia, second- or third-degree atrioventricular block, or carotid artery stenosis exceeding 50%.
2.2. Experimental Design
- Right-hand finger tapping (no stimulation);
- Right-hand motor imagery (no stimulation);
- Right-hand finger tapping with sham taVNS (left earlobe);
- Left-hand finger tapping with sham taVNS (left earlobe);
- Right-hand finger tapping with active taVNS (left tragus);
- Left-hand finger tapping with active taVNS (left tragus).
2.3. Experimental Set-Up
2.4. HD-DOT Acquisition
2.5. TaVNS Delivery
2.6. HD-DOT Preprocessing
2.7. Participant Exclusion
2.8. Image Reconstruction and Parcellation
2.9. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. taVNS Parameters
3.3. Group-Average Maps
3.4. Statistical Analysis of taVNS on HD-DOT
3.5. Parcellation Analysis
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2021 Stroke Risk Factor Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024, 23, 973–1003. [CrossRef]
- Kwakkel, G.; Kollen, B.J.; van der Grond, J.; Prevo, A.J. Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke. Stroke 2003, 34, 2181–2186. [Google Scholar] [CrossRef]
- Lang, C.E.; Strube, M.J.; Bland, M.D.; Waddell, K.J.; Cherry-Allen, K.M.; Nudo, R.J.; Dromerick, A.W.; Birkenmeier, R.L. Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Ann. Neurol. 2016, 80, 342–354. [Google Scholar] [CrossRef]
- Daly, J.J.; McCabe, J.P.; Holcomb, J.; Monkiewicz, M.; Gansen, J.; Pundik, S. Long-Dose Intensive Therapy Is Necessary for Strong, Clinically Significant, Upper Limb Functional Gains and Retained Gains in Severe/Moderate Chronic Stroke. Neurorehabil. Neural Repair 2019, 33, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.; Engineer, N.D.; Cramer, S.C.; Wolf, S.L.; Ali, R.; O’Dell, M.W.; Pierce, D.; Prudente, C.N.; Redgrave, J.; Feng, W.; et al. Vagus Nerve Stimulation Paired With Rehabilitation for Upper Limb Motor Impairment and Function After Chronic Ischemic Stroke: Subgroup Analysis of the Randomized, Blinded, Pivotal, VNS-REHAB Device Trial. Neurorehabil. Neural Repair 2023, 37, 367–373. [Google Scholar] [CrossRef]
- Bowles, S.; Hickman, J.; Peng, X.; Williamson, W.R.; Huang, R.; Washington, K.; Donegan, D.; Welle, C.G. Vagus nerve stimulation drives selective circuit modulation through cholinergic reinforcement. Neuron 2022, 110, 2867–2885.e7. [Google Scholar] [CrossRef]
- Baig, S.S.; Dorney, S.; Aziz, M.; Bell, S.M.; Ali, A.N.; Su, L.; Redgrave, J.N.; Majid, A. Optimizing non-invasive vagus nerve stimulation for treatment in stroke. Neural Regen. Res. Dec. 2025, 20, 3388–3399. [Google Scholar] [CrossRef] [PubMed]
- Baig, S.S.; Kamarova, M.; Bell, S.M.; Ali, A.N.; Su, L.; Dimairo, M.; Dawson, J.; Redgrave, J.N.; Majid, A. tVNS in Stroke: A Narrative Review on the Current State and the Future. Stroke 2023, 54, 2676–2687. [Google Scholar] [CrossRef] [PubMed]
- Redgrave, J.N.; Moore, L.; Oyekunle, T.; Ebrahim, M.; Falidas, K.; Snowdon, N.; Ali, A.; Majid, A. Transcutaneous Auricular Vagus Nerve Stimulation with Concurrent Upper Limb Repetitive Task Practice for Poststroke Motor Recovery: A Pilot Study. J. Stroke Cerebrovasc. Dis. 2018, 27, 1998–2005. [Google Scholar] [CrossRef]
- Capone, F.; Miccinilli, S.; Pellegrino, G.; Zollo, L.; Simonetti, D.; Bressi, F.; Florio, L.; Ranieri, F.; Falato, E.; Di Santo, A.; et al. Transcutaneous Vagus Nerve Stimulation Combined with Robotic Rehabilitation Improves Upper Limb Function after Stroke. Neural Plast. 2017, 2017, 7876507. [Google Scholar] [CrossRef]
- Baig, S.S.; Mooney, C.; McKendrick, K.; Duffy, K.E.M.; Ali, A.N.; Redgrave, J.N.; Herbert, E.; Waterhouse, S.; Su, L.; Drummond, A.; et al. TRanscutaneous lImb reCovEry Post-Stroke (TRICEPS): Study protocol for a randomised, controlled, multiarm, multistage adaptive design trial. BMJ Open 2025, 15, e092520. [Google Scholar] [CrossRef] [PubMed]
- Burger, A.M.; D’Agostini, M.; Verkuil, B.; Van Diest, I. Moving beyond belief: A narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology 2020, 57, e13571. [Google Scholar] [CrossRef]
- Rajiah, R.; Takahashi, K.; Aziz, Q.; Ruffle, J.K. Brain effect of transcutaneous vagal nerve stimulation: A meta-analysis of neuroimaging evidence. Neurogastroenterol. Motil. 2024, 36, e14484. [Google Scholar] [CrossRef]
- Huo, C.; Xu, G.; Xie, H.; Chen, T.; Shao, G.; Wang, J.; Li, W.; Wang, D.; Li, Z. Functional near-infrared spectroscopy in non-invasive neuromodulation. Neural Regen. Res. 2024, 19, 1517–1522. [Google Scholar] [CrossRef]
- Vidal-Rosas, E.E.; von Luhmann, A.; Pinti, P.; Cooper, R.J. Wearable, high-density fNIRS and diffuse optical tomography technologies: A perspective. Neurophotonics 2023, 10, 023513. [Google Scholar] [CrossRef]
- Collins-Jones, L.H.; Gosse, L.K.; Blanco, B.; Bulgarelli, C.; Siddiqui, M.; Vidal-Rosas, E.E.; Duobaite, N.; Nixon-Hill, R.W.; Smith, G.; Skipper, J.; et al. Whole-head high-density diffuse optical tomography to map infant audio-visual responses to social and non-social stimuli. Imaging Neurosci. 2024, 2, imag-2-00244. [Google Scholar] [CrossRef]
- Butt, M.F.; Albusoda, A.; Farmer, A.D.; Aziz, Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J. Anat. 2020, 236, 588–611. [Google Scholar] [CrossRef]
- Frangos, E.; Ellrich, J.; Komisaruk, B.R. Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Brain Stimul. 2015, 8, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Appl. Opt. 2009, 48, D280–D298. [Google Scholar] [CrossRef]
- Tachtsidis, I.; Scholkmann, F. False positives and false negatives in functional near-infrared spectroscopy: Issues, challenges, and the way forward. Neurophotonics 2016, 3, 031405. [Google Scholar] [CrossRef] [PubMed]
- Butters, E.; Collins-jones, L.; Mesquita, R.; Acharya, D.; Mckiernan, E.; Laurell, A.A.S.; Low, A.; Srinivasan, S.; O’brien, J.; Su, L.; et al. Brain Network Analysis in Alzheimer’s Disease and Mild Cognitive Impairment Using High-Density Diffuse Optical Tomography. J. Cereb. Blood Flow Metab. 2025, 45, 134. [Google Scholar]
- Wyser, D.; Mattille, M.; Wolf, M.; Lambercy, O.; Scholkmann, F.; Gassert, R. Short-channel regression in functional near-infrared spectroscopy is more effective when considering heterogeneous scalp hemodynamics. Neurophotonics 2020, 7, 035011. [Google Scholar] [CrossRef]
- Fiske, A.; de Klerk, C.; Lui, K.Y.K.; Collins-Jones, L.; Hendry, A.; Greenhalgh, I.; Hall, A.; Scerif, G.; Dvergsdal, H.; Holmboe, K. The neural correlates of inhibitory control in 10-month-old infants: A functional near-infrared spectroscopy study. Neuroimage 2022, 257, 119241. [Google Scholar] [CrossRef]
- Maintz, J.B.; Viergever, M.A. A survey of medical image registration. Med. Image Anal. 1998, 2, 1–36. [Google Scholar] [CrossRef]
- Rolls, E.T.; Joliot, M.; Tzourio-Mazoyer, N. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas. NeuroImage 2015, 122, 1–5. [Google Scholar] [CrossRef]
- Uchitel, J.; Blanco, B.; Vidal-Rosas, E.; Collins-Jones, L.; Cooper, R.J. Reliability and similarity of resting state functional connectivity networks imaged using wearable, high-density diffuse optical tomography in the home setting. Neuroimage 2022, 263, 119663. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Turesky, T.K.; Turkeltaub, P.E.; Eden, G.F. An Activation Likelihood Estimation Meta-Analysis Study of Simple Motor Movements in Older and Young Adults. Front. Aging Neurosci. 2016, 8, 238. [Google Scholar] [CrossRef]
- Peng, X.; Baker-Vogel, B.; Sarhan, M.; Short, E.B.; Zhu, W.; Liu, H.; Kautz, S.; Badran, B.W. Left or right ear? A neuroimaging study using combined taVNS/fMRI to understand the interaction between ear stimulation target and lesion location in chronic stroke. Brain Stimul. 2023, 16, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, F.; Dai, Y.; Wang, Z.; Liang, F.; Wu, J.; Wang, M.; Wang, L. Transcutaneous auricular vagus nerve stimulation on upper limb motor function with stroke: A functional near-infrared spectroscopy pilot study. Front. Neurosci. 2023, 17, 1297887. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Xu, K.; Wang, Y.X.; Wang, M.H.; Li, S.S.; Lin, F.; Jiang, Z.L. Task-specific cortical mechanisms of taVNS-paired task-oriented training for post-stroke upper extremity dysfunction under cognitive load: An fNIRS study. Front. Hum. Neurosci. 2025, 19, 1652612. [Google Scholar] [CrossRef]
- Callaert, D.V.; Vercauteren, K.; Peeters, R.; Tam, F.; Graham, S.; Swinnen, S.P.; Sunaert, S.; Wenderoth, N. Hemispheric asymmetries of motor versus nonmotor processes during (visuo)motor control. Hum. Brain Mapp. 2011, 32, 1311–1329. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Acharya, D.; Butters, E.; Collins-Jones, L.; Mancini, F.; Bale, G. Subject-specific information enhances spatial accuracy of high-density diffuse optical tomography. Front. Neuroergon. 2024, 5, 1283290. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.Y.; Marduy, A.; de Melo, P.S.; Gianlorenco, A.C.; Kim, C.K.; Choi, H.; Song, J.J.; Fregni, F. Safety of transcutaneous auricular vagus nerve stimulation (taVNS): A systematic review and meta-analysis. Sci. Rep. 2022, 12, 22055. [Google Scholar] [CrossRef] [PubMed]











| Characteristic | Total Cohort | Cohort After Quality Exclusion | |||
|---|---|---|---|---|---|
| Sham Right Motor | Active Right Motor | Sham Left Motor | Active Left Motor | ||
| n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | n (%) or M (SD) | |
| n | 31 | 20 | 20 | 18 | 19 |
| Age (years) | 23.42 (2.9) | 23.1 (3.2) | 23.1 (3.2) | 23.2 (3.3) | 23.2 (3.2) |
| Sex | |||||
| Female | 20 (64.5%) | 14 (70.0%) | 14 (70.0%) | 12 (66.7%) | 13 (68.4%) |
| Male | 11 (35.5%) | 6 (30.0%) | 6 (30.0%) | 6 (33.3%) | 6 (31.6%) |
| Race/ethnicity | |||||
| White | 23 (74.2%) | 18 (90.0%) | 18 (90.0%) | 16 (88.9%) | 17 (89.5%) |
| South Asian | 5 (16.1%) | 1 (5.0%) | 1 (5.0%) | 1 (5.6%) | 1 (5.3%) |
| Black | 1 (3.2%) | 1 (5.0%) | 1 (5.0%) | 1 (5.6%) | 1 (5.3%) |
| Hispanic | 1 (3.2%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
| Southeast Asian | 1 (3.2%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
| Hair Colour | |||||
| Brown | 11 (35.5%) | 6 (30.0%) | 6 (30.0%) | 5 (27.8%) | 6 (31.6%) |
| Blonde | 10 (32.3%) | 10 (50.0%) | 10 (50.0%) | 9 (60.0%) | 9 (47.4%) |
| Black | 8 (25.8%) | 2 (10.0%) | 2 (10.0%) | 2 (11.1%) | 2 (10.5%) |
| Red | 2 (6.5%) | 2 (10.0%) | 2 (10.0%) | 2 (11.1%) | 2 (10.5%) |
| Handedness | |||||
| Right | 27 (87.1%) | 17 (85%) | 17 (85%) | 15 (83.3.6%) | 16 (84.2%) |
| Left | 3 (9.7%) | 2 (10.0%) | 2 (10.0%) | 2 (11.1%) | 2 (10.5%) |
| Ambidextrous | 1 (3.2%) | 1 (5.0%) | 1 (5.0%) | 1 (5.6%) | 1 (5.3%) |
| Condition | Perception Threshold (mA) | Pain Threshold (mA) | Final Threshold (mA) |
|---|---|---|---|
| Sham | 17.3 (3.5) | 21.7 (4.8) | 19.8 (4.1) |
| Active | 19.9 (3.8) | 22.3 (4.4) | 20.8 (3.7) |
| Parcels | N | Baseline | Task | ΔHbO (µM) | p | FDR p | Cohen’s d | |||
|---|---|---|---|---|---|---|---|---|---|---|
| M | SD | M | SD | |||||||
| Right + Active | Left Inferior frontal gyrus, opercular part | 26 | 0 | 0 | 0.033 | 0.066 | 0.033 | 0.017 | 0.071 | 0.50 |
| Left Paracentral Lobule | 29 | 0 | 0 | 0.008 | 0.019 | 0.008 | 0.028 | 0.073 | 0.43 | |
| Left Postcentral gyrus | 26 | 0 | 0 | 0.048 | 0.065 | 0.048 | 0.001 | 0.012 * | 0.74 | |
| Left Precentral gyrus | 28 | 0 | 0 | 0.050 | 0.078 | 0.050 | 0.002 | 0.013 * | 0.64 | |
| Left Supramarginal gyrus | 15 | 0 | 0 | 0.019 | 0.029 | 0.019 | 0.022 | 0.071 | 0.67 | |
| Right + Sham | Left Inferior frontal gyrus, opercular part | 26 | 0 | 0 | 0.042 | 0.078 | 0.042 | 0.010 | 0.033 * | 0.55 |
| Right Inferior frontal gyrus, opercular part | 26 | 0 | 0 | 0.025 | 0.058 | 0.025 | 0.033 | 0.072 | 0.44 | |
| Left Paracentral Lobule | 28 | 0 | 0 | 0.007 | 0.013 | 0.007 | 0.008 | 0.033 * | 0.54 | |
| Right Paracentral Lobule | 15 | 0 | 0 | 0.006 | 0.009 | 0.006 | 0.015 | 0.038 * | 0.72 | |
| Left Postcentral gyrus | 27 | 0 | 0 | 0.051 | 0.061 | 0.051 | <0.001 | 0.002 * | 0.84 | |
| Left Precentral gyrus | 27 | 0 | 0 | 0.055 | 0.084 | 0.055 | 0.002 | 0.013 * | 0.66 | |
| Left Supramarginal gyrus | 14 | 0 | 0 | 0.014 | 0.023 | 0.014 | 0.039 | 0.073 | 0.61 | |
| Task | Parcels | N | Baseline | Task | ΔHbO (µM) | p | FDR p | Cohen’s d | ||
|---|---|---|---|---|---|---|---|---|---|---|
| M | SD | M | SD | |||||||
| Left + Active | Left Inferior frontal gyrus, opercular part | 24 | 0 | 0 | 0.031 | 0.060 | 0.031 | 0.020 | 0.053 | 0.51 |
| Left Postcentral gyrus | 25 | 0 | 0 | 0.029 | 0.042 | 0.029 | 0.002 | 0.011 * | 0.69 | |
| Right Postcentral gyrus | 24 | 0 | 0 | 0.025 | 0.042 | 0.025 | 0.008 | 0.025 * | 0.60 | |
| Left Precentral gyrus | 25 | 0 | 0 | 0.036 | 0.053 | 0.036 | 0.002 | 0.011 * | 0.68 | |
| Right Precentral gyrus | 24 | 0 | 0 | 0.052 | 0.073 | 0.052 | 0.002 | 0.011 * | 0.70 | |
| Left + Sham | Left Inferior frontal gyrus, opercular part | 24 | 0 | 0 | 0.042 | 0.078 | 0.042 | 0.014 | 0.038 * | 0.54 |
| Left Paracentral Lobule | 26 | 0 | 0 | 0.004 | 0.009 | 0.004 | 0.034 | 0.063 | 0.44 | |
| Left Postcentral gyrus | 25 | 0 | 0 | 0.028 | 0.042 | 0.028 | 0.003 | 0.014 * | 0.65 | |
| Right Postcentral gyrus | 24 | 0 | 0 | 0.028 | 0.040 | 0.028 | 0.003 | 0.014 * | 0.69 | |
| Left Precentral gyrus | 25 | 0 | 0 | 0.036 | 0.057 | 0.036 | 0.004 | 0.014 * | 0.63 | |
| Right Precentral gyrus | 24 | 0 | 0 | 0.056 | 0.076 | 0.056 | 0.001 | 0.014 * | 0.74 | |
| Right Supramarginal gyrus | 18 | 0 | 0 | 0.010 | 0.017 | 0.010 | 0.023 | 0.049 * | 0.59 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Baig, S.S.; Illingworth, C.H.; McQueen, B.; Gibbons, A.; Ravenscroft, J.; Morton, C.; Brittain, G.; Butters, E.; Di Lonardo Burr, S.; Ali, A.N.; et al. Transcutaneous Vagus Nerve Stimulation During Motor Activity in Healthy Volunteers: A High-Density Diffuse Optical Tomography Study. Brain Sci. 2026, 16, 146. https://doi.org/10.3390/brainsci16020146
Baig SS, Illingworth CH, McQueen B, Gibbons A, Ravenscroft J, Morton C, Brittain G, Butters E, Di Lonardo Burr S, Ali AN, et al. Transcutaneous Vagus Nerve Stimulation During Motor Activity in Healthy Volunteers: A High-Density Diffuse Optical Tomography Study. Brain Sciences. 2026; 16(2):146. https://doi.org/10.3390/brainsci16020146
Chicago/Turabian StyleBaig, Sheharyar S., Caitlin H. Illingworth, Breanna McQueen, Amy Gibbons, Joanna Ravenscroft, Charlotte Morton, Gavin Brittain, Emilia Butters, Sabrina Di Lonardo Burr, Ali N. Ali, and et al. 2026. "Transcutaneous Vagus Nerve Stimulation During Motor Activity in Healthy Volunteers: A High-Density Diffuse Optical Tomography Study" Brain Sciences 16, no. 2: 146. https://doi.org/10.3390/brainsci16020146
APA StyleBaig, S. S., Illingworth, C. H., McQueen, B., Gibbons, A., Ravenscroft, J., Morton, C., Brittain, G., Butters, E., Di Lonardo Burr, S., Ali, A. N., Majid, A., & Su, L. (2026). Transcutaneous Vagus Nerve Stimulation During Motor Activity in Healthy Volunteers: A High-Density Diffuse Optical Tomography Study. Brain Sciences, 16(2), 146. https://doi.org/10.3390/brainsci16020146

