Probing Neural Compensation in Rehabilitation of Acute Ischemic Stroke with Lesion Network Similarity Using Resting State Functional MRI
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Imaging Parameters
2.3. Imaging Data Analysis
3. Results
3.1. Participants and Non-Imaging Data
3.2. Lesion Network Mapping
3.3. Identification of Compensatory Regions
3.4. Lesion Connectivity with Traditional Motor Regions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walter, K. What Is Acute Ischemic Stroke? JAMA 2022, 327, 885. [Google Scholar] [CrossRef]
- Patil, S.; Rossi, R.; Jabrah, D.; Doyle, K. Detection, Diagnosis and Treatment of Acute Ischemic Stroke: Current and Future Perspectives. Front. Med. Technol. 2022, 4, 748949. [Google Scholar] [CrossRef] [PubMed]
- Feske, S.K. Ischemic Stroke. Am. J. Med. 2021, 134, 1457–1464. [Google Scholar] [CrossRef] [PubMed]
- Langhorne, P.; Coupar, F.; Pollock, A. Motor recovery after stroke: A systematic review. Lancet Neurol. 2009, 8, 741–754. [Google Scholar] [CrossRef] [PubMed]
- A Legg, L.; Lewis, S.R.; Schofield-Robinson, O.J.; Drummond, A.; Langhorne, P. Occupational therapy for adults with problems in activities of daily living after stroke. Cochrane Database Syst. Rev. 2017, 7, CD003585. [Google Scholar] [CrossRef]
- de Sousa, D.G.; AHarvey, L.; Dorsch, S.; Glinsky, J.V. Interventions involving repetitive practice improve strength after stroke: A systematic review. J. Physiother. 2018, 64, 210–221. [Google Scholar] [CrossRef]
- Nascimento, L.R.; Michaelsen, S.M.; Ada, L.; Polese, J.C.; Teixeira-Salmela, L.F. Cyclical electrical stimulation increases strength and improves activity after stroke: A systematic review. J. Physiother. 2014, 60, 22–30. [Google Scholar] [CrossRef]
- Stinear, C.M.; ELang, C.; Zeiler, S.; Byblow, W.D. Advances and challenges in stroke rehabilitation. Lancet Neurol. 2020, 19, 348–360. [Google Scholar] [CrossRef]
- Zhang, J.J.; Vidaña, D.I.S.; Chan, J.N.-M.; Hui, E.S.K.; Lau, K.K.; Wang, X.; Lau, B.W.M.; Fong, K.N.K. Biomarkers for prognostic functional recovery poststroke: A narrative review. Front. Cell Dev. Biol. 2023, 10, 1062807. [Google Scholar] [CrossRef]
- Dimyan, M.A.; Cohen, L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011, 7, 76–85. [Google Scholar] [CrossRef]
- Zemke, A.C.; Heagerty, P.J.; Lee, C.; Cramer, S.C. Motor Cortex Organization After Stroke Is Related to Side of Stroke and Level of Recovery. Stroke 2002, 34, e23–e28. [Google Scholar] [CrossRef]
- Murase, N.; Duque, J.; Mazzocchio, R.; Cohen, L.G. Influence of interhemispheric interactions on motor function in chronic stroke. Ann. Neurol. 2004, 55, 400–409. [Google Scholar] [CrossRef]
- Ward, N.S.; Brown, M.M.; Thompson, A.J.; Frackowiak, R.S.J. Neural correlates of motor recovery after stroke: A longitudinal fMRI study. Brain 2003, 126 Pt 11, 2476–2496. [Google Scholar] [CrossRef] [PubMed]
- Stinear, C.M.; Byblow, W.D.; Ackerley, S.J.; Smith, M.; Borges, V.M.; Barber, P.A. PREP2: A biomarker-based algorithm for predicting upper limb function after stroke. Ann. Clin. Transl. Neurol. 2017, 4, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Glasser, M.F.; Smith, S.M.; Marcus, D.S.; Andersson, J.L.R.; Auerbach, E.J.; Behrens, T.E.J.; Coalson, T.S.; Harms, M.P.; Jenkinson, M.; Moeller, S.; et al. The Human Connectome Project’s neuroimaging approach. Nat. Neurosci. 2016, 19, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
- Jbabdi, S.; Sotiropoulos, S.N.; Haber, S.N.; Van Essen, D.C.; Behrens, T.E. Measuring macroscopic brain connections in vivo. Nat. Neurosci. 2015, 18, 1546–1555. [Google Scholar] [CrossRef]
- Katz, S.; Downs, T.D.; Cash, H.R.; Grotz, R.C. Progress in Development of the Index of ADL. Gerontologist 1970, 10, 20–30. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrilca 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Power, J.D.; Mitra, A.; Laumann, T.O.; Snyder, A.Z.; Schlaggar, B.L.; Petersen, S.E. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 2014, 84, 320–341. [Google Scholar] [CrossRef]
- Chen, G.; Saad, Z.S.; Britton, J.C.; Pine, D.S.; Cox, R.W. Linear mixed-effects modeling approach to FMRI group analysis. NeuroImage 2013, 73, 176–190. [Google Scholar] [CrossRef]
- Cox, R.W.; Chen, G.; Glen, D.R.; Reynolds, R.C.; Taylor, P.A. FMRI Clustering in AFNI: False-Positive Rates Redux. Brain Connect. 2017, 7, 152–171. [Google Scholar] [CrossRef] [PubMed]
- Grefkes, C.; Fink, G.R. Reorganization of cerebral networks after stroke: New insights from neuroimaging with connectivity approaches. Brain 2011, 134 Pt 5, 1264–1276. [Google Scholar] [CrossRef] [PubMed]
- Dum, R.; Strick, P. Motor areas in the frontal lobe of the primate. Physiol. Behav. 2002, 77, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Nachev, P.; Kennard, C.; Husain, M. Functional role of the supplementary and pre-supplementary motor areas. Nat. Rev. Neurosci. 2008, 9, 856–869. [Google Scholar] [CrossRef]
- Germann, J.; Petrides, M. Area 8A within the Posterior Middle Frontal Gyrus Underlies Cognitive Selection between Competing Visual Targets. Eneuro 2020, 7, ENEURO.0102-20.2020. [Google Scholar] [CrossRef]
- Seghier, M.L. The Angular Gyrus: Multiple Functions and Multiple Subdivisions. Neuroscientist 2013, 19, 43–61. [Google Scholar] [CrossRef]
- Cavanna, A.E.; Trimble, M.R. The precuneus: A review of its functional anatomy and behavioural correlates. Brain 2006, 129 Pt 3, 564–583. [Google Scholar] [CrossRef]
- Hwang, K.; Bruss, J.; Tranel, D.; Boes, A.D. Network Localization of Executive Function Deficits in Patients with Focal Thalamic Lesions. J. Cogn. Neurosci. 2020, 32, 2303–2319. [Google Scholar] [CrossRef]
- Castro-Alamancos, M.A.; Garcia-Segura, L.M.; Borrell, J. Transfer of Function to a Specific Area of the Cortex After Induced Recovery from Brain Damage. Eur. J. Neurosci. 1992, 4, 853–863. [Google Scholar] [CrossRef]
- Grefkes, C.; Ward, N.S. Cortical reorganization after stroke: How much and how functional? Neuroscientist 2013, 20, 56–70. [Google Scholar] [CrossRef]
- Muhle-Karbe, P.S.; Jiang, J.; Egner, T. Causal Evidence for Learning-Dependent Frontal Lobe Contributions to Cognitive Control. J. Neurosci. 2018, 38, 962–973. [Google Scholar] [CrossRef]
- Timmis, M.A.; Pardhan, S. Patients with central visual field loss adopt a cautious gait strategy during tasks that present a high risk of falling. Investig. Opthalmol. Vis. Sci. 2012, 53, 4120–4129. [Google Scholar] [CrossRef]
- Xu, J.; Schoenfeld, M.A.; Rossini, P.M.; Tatlisumak, T.; Nürnberger, A.; Antal, A.; He, H.; Gao, Y.; Sabel, B.A. Adaptive and Maladaptive Brain Functional Network Reorganization After Stroke in Hemianopia Patients: An Electroencephalogram-Tracking Study. Brain Connect. 2022, 12, 725–739. [Google Scholar] [CrossRef]
- Bridge, H.; Thomas, O.; Jbabdi, S.; Cowey, A. Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain 2008, 131 Pt 6, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Buch, E.R.; Shanechi, A.M.; Fourkas, A.D.; Weber, C.; Birbaumer, N.; Cohen, L.G. Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain 2012, 135 Pt 2, 596–614. [Google Scholar] [CrossRef] [PubMed]
- Park, C.-H.; Chang, W.H.; Ohn, S.H.; Kim, S.T.; Bang, O.Y.; Pascual-Leone, A.; Kim, Y.-H. Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 2011, 42, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- van Paasschen, J.; Clare, L.; Yuen, K.S.L.; Woods, R.T.; Evans, S.J.; Parkinson, C.H.; Rugg, M.D.; Linden, D.E.J. Cognitive rehabilitation changes memory-related brain activity in people with Alzheimer disease. Neurorehabilit. Neural Repair 2013, 27, 448–459. [Google Scholar] [CrossRef]
- Lum, P.S.; Mulroy, S.; Amdur, R.L.; Requejo, P.; Prilutsky, B.I.; Dromerick, A.W. Gains in upper extremity function after stroke via recovery or compensation: Potential differential effects on amount of real-world limb use. Top. Stroke Rehabil. 2009, 16, 237–253. [Google Scholar] [CrossRef]
- Bach-Y-Rita, P. Theoretical and practical considerations in the restoration of function after stroke. Top. Stroke Rehabil. 2001, 8, 1–15. [Google Scholar] [CrossRef]
- Nakayma, H.; Jørgensen, H.S.; Raaschou, H.O.; Olsen, T.S. Compensation in recovery of upper extremity function after stroke: The Copenhagen Stroke Study. Arch. Phys. Med. Rehabil. 1994, 75, 852–857. [Google Scholar] [CrossRef]
- Xu, H.; Qin, W.; Chen, H.; Jiang, L.; Li, K.; Yu, C.; Wenderoth, N. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke. PLoS ONE 2014, 9, e84729. [Google Scholar] [CrossRef]
- Golestani, A.M.; Tymchuk, S.; Demchuk, A.; Goodyear, B.G. Longitudinal evaluation of resting-state fmri after acute stroke with hemiparesis. Neurorehabilit. Neural Repair 2013, 27, 153–163. [Google Scholar] [CrossRef]
Controls (n = 15local + 36remote) | Patients (n = 17) | Statistical p-Value * | |
---|---|---|---|
Age (Y.O. Mean ± SD) | 61.0 ± 14.3 | 63.2 ± 9.1 | pcontrol vs. patient = 0.46 |
Gender (Male | Female) | 32M | 19F | 13M | 4F | pcontrol vs. patient = 0.38 |
Max Head Motion (mm, Mean ± SD) | 0.59 ± 0.39 | 0.79 ± 0.64 | pcontrol vs. patient = 0.23 |
Days From Symptom Onset (Meani ± SDi, i = 1, 2, 3) | NA | 2.0 ± 0.9, 104.6 ± 11.7, 210.3 ± 14.2 | pDays1 vs. Days2 vs. Days3 < 0.001 |
ADL Scores (Meani ± SDi, i = 1, 2, 3) | NA | 32.2 ± 6.3, 75.3 ± 18.2, 88.4 ± 16.8 | pADL1 vs. ADL2 vs. ADL3 < 0.001 |
Region (Brodman Area) | X (mm) | Y (mm) | Z (mm) | Volume (mm3) | LN Similarity | Effect Size (η2) | ||
---|---|---|---|---|---|---|---|---|
1st | 2nd | 3rd | ||||||
Right Culmen Lingual Gyrus (BA19) | −10.1 | 54.6 | −0.6 | 594 | 0.76 | 0.48 | 0.41 | 0.13 |
Right Angular Gyrus (BA39) | −45.6 | 65.6 | 29.6 | 540 | 0.73 | 0.49 | 0.37 | 0.17 |
Right Paracentral Gyrus (BA5) | −10.6 | 37.8 | 50.2 | 513 | 0.88 | 0.70 | 0.62 | 0.10 |
Left Middle Frontal Gyrus1 (BA9) | 49.7 | −23.5 | 37.9 | 405 | 0.69 | 0.47 | 0.33 | 0.20 |
Left Middle Frontal Gyrus2 (BA8) | 27.0 | −26.3 | 43.3 | 405 | 0.68 | 0.49 | 0.39 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Tao, Q.; Zhang, B.; Lv, Y.; Li, Z.; Luo, Y. Probing Neural Compensation in Rehabilitation of Acute Ischemic Stroke with Lesion Network Similarity Using Resting State Functional MRI. Brain Sci. 2025, 15, 964. https://doi.org/10.3390/brainsci15090964
Han S, Tao Q, Zhang B, Lv Y, Li Z, Luo Y. Probing Neural Compensation in Rehabilitation of Acute Ischemic Stroke with Lesion Network Similarity Using Resting State Functional MRI. Brain Sciences. 2025; 15(9):964. https://doi.org/10.3390/brainsci15090964
Chicago/Turabian StyleHan, Shanhua, Quan Tao, Boyu Zhang, Yifan Lv, Zhihao Li, and Yu Luo. 2025. "Probing Neural Compensation in Rehabilitation of Acute Ischemic Stroke with Lesion Network Similarity Using Resting State Functional MRI" Brain Sciences 15, no. 9: 964. https://doi.org/10.3390/brainsci15090964
APA StyleHan, S., Tao, Q., Zhang, B., Lv, Y., Li, Z., & Luo, Y. (2025). Probing Neural Compensation in Rehabilitation of Acute Ischemic Stroke with Lesion Network Similarity Using Resting State Functional MRI. Brain Sciences, 15(9), 964. https://doi.org/10.3390/brainsci15090964