Cellular Abnormalities Induced by High Glucose in Mixed Glial Cultures Are Maintained, Although Glucose Returns to Normal Levels
Abstract
1. Introduction
2. Materials and Methods
2.1. Mixed Glial Cell (MGC) Culture
2.2. Glucose Conditions
2.3. Cell Proliferation Assay
2.4. Apoptosis Assay
2.5. ROS Production
2.6. Lipid Peroxidation Assay
2.7. Mitochondrial Activity
2.8. Citokine Quantification
2.9. AGEs Quantification
2.10. Statistical Analysis
3. Results
3.1. MGC Characterization
3.2. HG Produces an Irreversible Decrease in Cell Proliferation in MGC
3.3. HG Produces an Irreversible Increase in the Production of ROS but Not in Lipid Peroxidation
3.4. HG Produces an Irreversible Decrease in Mitochondrial Activity in MGC
3.5. HG Produces an Irreversible Increase in TNF-α Levels
3.6. HG and HG-NG Favors the AGE Formation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD AGEs | Alzheimer’s disease Advanced Glycation End Products |
ANOVA | Analysis of variance |
CBA | Cytometric Bead Array |
CNS | Central Nervous System |
DCFH-DA ELISA eNOS | 2′,7′-dichlorofluorescin diacetate Enzyme-Linked immunosorbent assay Endothelial nitric oxide synthase |
FBS GFAP | Fetal bovine serum Glial fibrillary acidic protein |
GLUTs | Glucose transporters |
HG | High Glucose |
HG-NG Iba1 MCP-1 MDA | Metabolic memory group Ionized calcium binding adaptor molecule 1 Monocyte chemotactic protein-1 Malondialdehyde |
MGC | Mixed Glial cells |
MTT NADPH oxidase NF-κB | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazol Nicotinamide adenine dinucleotide phosphate oxidase Nuclear factor κB |
NG OD | Normal glucose Optical density |
PD RIPA ROS | Parkinson’s disease Radioimmunoprecipitation Reactive oxygen species |
SOD | Superoxide dismutase |
SRB | Sulforhodamine B |
TCA | Trichloroacetic acid |
TNF-α | Tumor necrosis factor-α |
References
- Ceriello, A.; Prattichizzo, F. Variability of risk factors and diabetes complications. Cardiovasc. Diabetol. 2021, 20, 101–112. [Google Scholar] [CrossRef]
- Moheet, A.; Mangia, S.; Seaquist, E.R. Impact of diabetes on cognitive function and brain structure. Ann. N. Y. Acad. Sci. 2015, 1353, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.A.; Karthikeyan, M.; Lackey, M.; Villavicencio, D.; Potashkin, J.A. Diabetes: A tipping point in neurodegenerative diseases. Trends Mol. Med. 2023, 29, 1029–1044. [Google Scholar] [CrossRef]
- Dove, A.; Shang, Y.; Xu, W.; Grande, G.; Laukka, E.J.; Fratiglioni, L.; Marseglia, A. The impact of diabetes on cognitive impairment and its progression to dementia. Alzheimers Dement. 2021, 11, 1769–1778. [Google Scholar] [CrossRef]
- Sheetz, M.J.; King, G.L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA 2002, 20, 2579–2588. [Google Scholar] [CrossRef] [PubMed]
- Garland, E.F.; Hartnell, I.J.; Boche, D. Microglia and Astrocyte Function and Communication: What Do We Know in Humans? Front. Neurosci. 2022, 16, 824888–824909. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Roy Choudhury, G.; Winters, A.; Prah, J.; Lin, W.; Liu, R.; Yang, S.H. Hyperglycemia Alters Astrocyte Metabolism and Inhibits Astrocyte Proliferation. Aging Dis. 2018, 9, 674–684. [Google Scholar] [CrossRef]
- Wang, J.; Li, G.; Wang, Z.; Zhang, X.; Yao, L.; Wang, F.; Liu, S.; Yin, J.; Ling, E.A.; Wang, L.; et al. High glucose-induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes. Neuroscience 2012, 202, 58–68. [Google Scholar] [CrossRef]
- Hsieh, C.F.; Liu, C.K.; Lee, C.T.; Yu, L.E.; Wang, J.Y. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci. Rep. 2019, 9, 840. [Google Scholar] [CrossRef]
- Chen, C.; Wu, S.; Hong, Z.; Chen, X.; Shan, X.; Fischbach, S.; Xiao, X. Chronic hyperglycemia regulates microglia polarization through ERK5. Aging 2019, 11, 697–706. [Google Scholar] [CrossRef]
- Huang, Y.C.; Hsu, S.M.; Shie, F.S.; Shiao, Y.J.; Chao, L.J.; Chen, H.W.; Yao, H.H.; Chien, M.A.; Lin, C.C.; Tsay, H.J. Reduced mitochondria membrane potential and lysosomal acidification are associated with decreased oligomeric Aβ degradation induced by hyperglycemia: A study of mixed glia cultures. PLoS ONE 2022, 17, e0260966. [Google Scholar] [CrossRef]
- Engerman, R.L.; Kern, T.S. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 1987, 36, 808–812. [Google Scholar] [CrossRef]
- Yang, T.; Qi, F.; Guo, F.; Shao, M.; Song, Y.; Ren, G.; Linlin, Z.; Qin, G.; Zhao, Y. An update on chronic complications of diabetes mellitus: From molecular mechanisms to therapeutic strategies with a focus on metabolic memory. Mol. Med. 2024, 30, 71. [Google Scholar] [CrossRef]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Ihnat, M.A.; Thorpe, J.E.; Kamat, C.D.; Szabó, C.; Green, D.E.; Warnke, L.A.; Lacza, Z.; Cselenyák, A.; Ross, K.; Shakir, S.; et al. Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia 2007, 50, 1523–1531. [Google Scholar] [CrossRef]
- Chaudhuri, J.; Bains, Y.; Guha, S.; Kahn, A.; Hall, D.; Bose, N.; Gugliucci, A.; Kapahi, P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018, 28, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Tamashiro, T.T.; Dalgard, C.L.; Byrnes, K.R. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue. J. Vis. Exp. 2012, 66, e3814. [Google Scholar] [PubMed]
- Chen, S.H.; Oyarzabal, E.A.; Hong, J.S. Preparation of rodent primary cultures for neuron-glia, mixed glia, enriched microglia, and reconstituted cultures with microglia. Methods Mol. Biol. 2013, 1041, 231–240. [Google Scholar]
- Abdyeva, A.; Kurtova, E.; Savinkova, I.; Galkov, M.; Gorbacheva, L. Long-Term Exposure of Cultured Astrocytes to High Glucose Impact on Their LPS-Induced Activation. Int. J. Mol. Sci. 2024, 25, 1122. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Q.; Jiang, H.; Wang, J.; Zhao, Y.; Xu, Y.; Zhu, M. SET8 is involved in the regulation of hyperglycemic memory in human umbilical endothelial cells. Acta Biochim. Biophys. Sin. 2018, 50, 635–642. [Google Scholar] [CrossRef]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, X.; Li, X.; Zeng, C.; Peng, Y. Electroacupuncture Serum Alleviates Ogd/R-Induced Astrocyte Damage by Regulating the AQP4 Via m6A Methylation of lncRNA MALAT1. Neurochem. Res. 2025, 50, 139. [Google Scholar] [CrossRef]
- Macias-Perez, M.E.; Hernandez-Rodríguez, M.; Cabrera-Perez, L.C.; Fragoso-Vazquez, M.J.; Correa-Basurto, J.; Padilla-Martinez, I.I.; Mendez-Luna, D.; Mera-Jiménez, E.; Flores-Sandoval, C.; Tamay-Cach, F.; et al. Aromatic regions governs the recognition of NADPH oxidase inhibitors as diapocynin and its analogues. Arch. Pharm. 2017, 350, e1700041-51. [Google Scholar] [CrossRef]
- Sun, Q.; Gong, L.; Qi, R.; Qing, W.; Zou, M.; Ke, Q. Oxidative stress-induced KLF4 activates inflammatory response through IL17RA and its downstream targets in retinal pigment epithelial cells. Free Radic. Biol. Med. 2020, 147, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb. Protoc. 2018, 2018, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Biessels, G.J.; Deary, I.J.; Ryan, C.M. Cognition and diabetes: A lifespan perspective. Lancet Neurol. 2008, 7, 184–190. [Google Scholar] [CrossRef]
- Hughes, T.M.; Ryan, C.M.; Aizenstein, H.J.; Nunley, K.; Gianaros, P.J.; Miller, R.; Costacou, T.; Strotmeyer, E.S.; Orchard, T.J.; Rosano, C. Frontal gray matter atrophy in middle aged adults with type 1 diabetes is independent of cardiovascular risk factors and diabetes complications. J. Diabetes Complicat. 2013, 27, 558–564. [Google Scholar] [CrossRef]
- Frøkjær, J.B.; Brock, C.; Søfteland, E.; Dimcevski, G.; Gregersen, H.; Simrén, M.M.; Drewes, A. Macrostructural brain changes in patients with longstanding type 1 diabetes mellitus—A cortical thickness analysis study. Exp. Clin. Endocrinol. Diabetes 2013, 121, 354–360. [Google Scholar] [CrossRef]
- Musen, G.; Lyoo, I.K.; Sparks, C.R.; Weinger, K.; Hwang, J.; Ryan, C.M.; Jimerson, D.C.; Hennen, J.; Renshaw, P.F.; Jacobson, A.M. Effects of type 1 diabetes on gray matter density as measured by voxel-based morphometry. Diabetes 2006, 55, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Szablewski, L. Associations Between Diabetes Mellitus and Neurodegenerative Diseases. Int. J. Mol. Sci. 2025, 26, 542. [Google Scholar] [CrossRef]
- Nguyen, Y.T.K.; Ha, H.T.T.; Nguyen, T.H.; Nguyen, L.N. The role of SLC transporters for brain health and disease. Cell Mol. Life Sci. 2021, 79, 20. [Google Scholar] [CrossRef]
- Baptista, F.I.; Aveleira, C.A.; Castilho, Á.F.; Ambrósio, A.F. Elevated Glucose and Interleukin-1β Differentially Affect Retinal Microglial Cell Proliferation. Mediat. Inflamm. 2017, 2017, 4316316. [Google Scholar] [CrossRef]
- Dong, H.; Sun, Y.; Nie, L.; Cui, A.; Zhao, P.; Leung, W.K.; Wang, Q. Metabolic memory: Mechanisms and diseases. Signal Transduct. Target. Ther. 2024, 9, 38. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Q.; Zhao, D.; Lian, F.; Li, X.; Qi, W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front. Endocrinol. 2023, 14, 1112363. [Google Scholar] [CrossRef] [PubMed]
- Ghazali, R.; Mehta, K.J.; Bligh, S.A.; Tewfik, I.; Clemens, D.; Patel, V.B. High omega arachidonic acid/docosahexaenoic acid ratio induces mitochondrial dysfunction and altered lipid metabolism in human hepatoma cells. World J. Hepatol. 2020, 12, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; dello Russo, P.; Amstad, P.; Cerutti, P. High glucose induces antioxidant enzymes in human endothelial cells in culture. Evidence linking hyperglycemia and oxidative stress. Diabetes 1996, 45, 471–477. [Google Scholar]
- Kowluru, R.A. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes 2003, 52, 818–823. [Google Scholar] [CrossRef]
- Quan, Y.; Jiang, C.T.; Xue, B.; Zhu, S.G.; Wang, X. High glucose stimulates TNFα and MCP-1 expression in rat microglia via ROS and NF-κB pathways. Acta Pharmacol. Sin. 2011, 32, 188–193. [Google Scholar] [CrossRef]
- Yao, Y.; Song, Q.; Hu, C.; Da, X.; Yu, Y.; He, Z.; Xu, C.; Chen, Q.; Wang, Q.K. Endothelial cell metabolic memory causes cardiovascular dysfunction in diabetes. Cardiovasc. Res. 2022, 118, 196–211. [Google Scholar] [CrossRef]
- Rothaug, M.; Becker-Pauly, C.; Rose-John, S. The role of interleukin-6 signaling in nervous tissue. Biochim. Biophys. Acta 2016, 1863, 1218–1227. [Google Scholar] [CrossRef]
- Singh, R.; Barden, A.; Mori, T.; Beilin, L. Advanced glycation end-products: A review. Diabetologia 2001, 44, 129–146. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, G. Do advanced glycation end products contribute to the development of long-term diabetic complications? Nutr. Metab. Cardiovasc. Dis. 2018, 18, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Ren, L.; Wei, Q.; Shao, H.; Chen, L.; Liu, N. Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Cardiovasc. Diabetol. 2017, 16, 52. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera Solis, B.I.; Guerrero-Padilla, F.; Mera Jiménez, E.; Vega López, J.M.; Perea-Flores, M.d.J.; Rodríguez-Cortés, O.; Macías Pérez, M.E.; Hernández-Rodríguez, M. Cellular Abnormalities Induced by High Glucose in Mixed Glial Cultures Are Maintained, Although Glucose Returns to Normal Levels. Brain Sci. 2025, 15, 952. https://doi.org/10.3390/brainsci15090952
Herrera Solis BI, Guerrero-Padilla F, Mera Jiménez E, Vega López JM, Perea-Flores MdJ, Rodríguez-Cortés O, Macías Pérez ME, Hernández-Rodríguez M. Cellular Abnormalities Induced by High Glucose in Mixed Glial Cultures Are Maintained, Although Glucose Returns to Normal Levels. Brain Sciences. 2025; 15(9):952. https://doi.org/10.3390/brainsci15090952
Chicago/Turabian StyleHerrera Solis, Brandon Isai, Frida Guerrero-Padilla, Elvia Mera Jiménez, Juan Manuel Vega López, María de Jesús Perea-Flores, Octavio Rodríguez-Cortés, Martha Edith Macías Pérez, and Maricarmen Hernández-Rodríguez. 2025. "Cellular Abnormalities Induced by High Glucose in Mixed Glial Cultures Are Maintained, Although Glucose Returns to Normal Levels" Brain Sciences 15, no. 9: 952. https://doi.org/10.3390/brainsci15090952
APA StyleHerrera Solis, B. I., Guerrero-Padilla, F., Mera Jiménez, E., Vega López, J. M., Perea-Flores, M. d. J., Rodríguez-Cortés, O., Macías Pérez, M. E., & Hernández-Rodríguez, M. (2025). Cellular Abnormalities Induced by High Glucose in Mixed Glial Cultures Are Maintained, Although Glucose Returns to Normal Levels. Brain Sciences, 15(9), 952. https://doi.org/10.3390/brainsci15090952