Gray and White Matter Networks Predict Mindfulness and Mind Wandering Traits: A Data Fusion Machine Learning Approach
Abstract
1. Introduction
1.1. Background
1.2. Current Study
1.3. Aim and Hypothesis
2. Materials and Methods
2.1. Participants
2.2. Deliberate Mind Wandering (MW-D) and Spontaneous Mind Wandering (MW-S) Scales
2.3. Five Facet Mindfulness Questionnaire (FFMQ)
2.4. Behavioral Data Analysis
2.5. MRI Data Acquisition/Pre-Processing
2.6. Data Fusion and Network Decomposition Using Unsupervised Machine Learning
2.7. Mediation
3. Results
3.1. Behavioral Data
3.2. Data Fusion and Network Decomposition
3.3. Mediation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | anterior cingulate cortex |
BA | Brodmann area |
DMN | default mode network |
FC | functional connectivity |
FFMQ | five facet mindfulness questionnaire |
GM | gray matter |
ICA | independent component analysis |
MAAS | Mindful Attention Awareness Scale |
MRI | magnetic resonance imaging |
PCC | posterior cingulate cortex |
PFC | prefrontal cortex |
MW-D | deliberate mind wandering |
MW-S | spontaneous mind wandering |
PICA | parallel independent component analysis |
WM | white matter |
References
- Mooneyham, B.W.; Schooler, J.W. The costs and benefits of mind-wandering: A review. Rev. Can. Psychol. Expérimentale 2013, 67, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Smallwood, J.; Schooler, J.W. The science of mind wandering: Empirically navigating the stream of consciousness. Annu. Rev. Psychol. 2015, 66, 487–518. [Google Scholar] [CrossRef]
- Mason, M.F.; Norton, M.I.; Van Horn, J.D.; Wegner, D.M.; Grafton, S.T.; Macrae, C.N. Wandering minds: The default network and stimulus-independent thought. Science 2007, 315, 393–395. [Google Scholar] [CrossRef]
- Kane, M.J.; Brown, L.E.; Little, J.C.; Silvia, P.J.; Myin-Germeys, I.; Kwapil, T.R. For whom the mind wanders, and when: An experience-sampling study of working memory and executive control in daily life. Psychol. Sci. 2007, 18, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Killingsworth, M.A.; Gilbert, D.T. A wandering mind is an unhappy mind. Science 2010, 330, 932. [Google Scholar] [CrossRef]
- Ottaviani, C.; Couyoumdjian, A. Pros and cons of a wandering mind: A prospective study. Front. Psychol. 2013, 4, 524. [Google Scholar] [CrossRef]
- Seli, P.; Risko, E.F.; Smilek, D.; Schacter, D.L. Mind-wandering with and without intention. Trends Cogn. Sci. 2016, 20, 605–617. [Google Scholar] [CrossRef]
- Smallwood, J.; Schooler, J.W. The restless mind. Psychol. Bull. 2006, 132, 946. [Google Scholar] [CrossRef]
- Kane, M.J.; McVay, J.C. What mind wandering reveals about executive-control abilities and failures. Curr. Dir. Psychol. Sci. 2012, 21, 348–354. [Google Scholar] [CrossRef]
- McVay, J.C.; Kane, M.J. Does mind wandering reflect executive function or executive failure? Comment on Smallwood and Schooler (2006) and Watkins (2008). Psychol. Bull. 2010, 136, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Bishop, S.R.; Lau, M.; Shapiro, S.; Carlson, L.; Anderson, N.D.; Carmody, J.; Segal, Z.V.; Abbey, S.; Speca, M.; Velting, D.; et al. Mindfulness: A proposed operational definition. Clin. Psychol. Sci. Pract. 2004, 11, 230–241. [Google Scholar] [CrossRef]
- Messina, I.; Grecucci, A.; Viviani, R. Neurobiological models of emotion regulation: A meta-analysis of neuroimaging studies of acceptance as an emotion regulation strategy. Soc. Cogn. Affect. Neurosci. 2023, 16, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Monachesi, B.; Grecucci, A.; Ghomroud, P.A.; Messina, I. Comparing reappraisal and acceptance strategies to understand the neural architecture of emotion regulation: A meta-analytic approach. Front. Psychol. 2023, 14, 1187092. [Google Scholar] [CrossRef]
- Brefczynski-Lewis, J.A.; Lutz, A.; Schaefer, H.S.; Levinson, D.B.; Davidson, R.J. Neural correlates of attentional expertise in long-term meditation practitioners. Proc. Natl. Acad. Sci. USA 2007, 104, 11483–11488. [Google Scholar] [CrossRef]
- Chiesa, A.; Serretti, A.; Jakobsen, J.C. Mindfulness: Top-down or bottom-up emotion regulation strategy? Clin. Psychol. Rev. 2013, 33, 82–96. [Google Scholar] [CrossRef]
- Taylor, V.A.; Grant, J.; Daneault, V.; Scavone, G.; Breton, E.; Roffe-Vidal, S.; Courtemanche, J.; Lavarenne, A.S.; Beauregard, M. Impact of mindfulness on the neural responses to emotional pictures in experienced and beginner meditators. NeuroImage 2011, 57, 1524–1533. [Google Scholar] [CrossRef] [PubMed]
- Feruglio, S.; Matiz, A.; Pagnoni, G.; Fabbro, F.; Crescentini, C. The impact of mindfulness meditation on the wandering mind: A systematic review. Neurosci. Biobehav. Rev. 2021, 131, 313–330. [Google Scholar] [CrossRef]
- Mrazek, M.D.; Franklin, M.S.; Phillips, D.T.; Baird, B.; Schooler, J.W. Mindfulness training improves working memory capacity and GRE performance while reducing mind wandering. Psychol. Sci. 2013, 24, 776–781. [Google Scholar] [CrossRef]
- Posner, M.I.; Tang, Y.Y.; Lynch, G. Mechanisms of white matter change induced by meditation training. Front. Psychol. 2014, 5, 1220. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Lu, Q.; Geng, X.; Stein, E.A.; Yang, Y.; Posner, M.I. Short-term meditation induces white matter changes in the anterior cingulate. Proc. Natl. Acad. Sci. USA 2010, 107, 15649–15652. [Google Scholar] [CrossRef]
- Tang, Y.-Y.; Lu, Q.; Fan, M.; Yang, Y.; Posner, M.I. Mechanisms of white matter changes induced by meditation. Proc. Natl. Acad. Sci. USA 2012, 109, 10570–10574. [Google Scholar] [CrossRef]
- Tang, R.; Friston, K.J.; Tang, Y.Y. Brief mindfulness meditation induces gray matter changes in a brain hub. Neural Plast. 2020, 2020, 8830005. [Google Scholar] [CrossRef]
- Melis, M.; Schroyen, G.; Pollefeyt, J.; Raes, F.; Smeets, A.; Sunaert, S.; Deprez, S.; Van der Gucht, K. The impact of mindfulness-based interventions on brain functional connectivity: A systematic review. Mindfulness 2022, 13, 1857–1875. [Google Scholar] [CrossRef]
- Zhang, J.; Raya, J.; Morfini, F.; Urban, Z.; Pagliaccio, D.; Yendiki, A.; Auerbach, R.P.; Bauer, C.C.C.; Whitfield-Gabrieli, S. Reducing default mode network connectivity with mindfulness-based fMRI neurofeedback: A pilot study among adolescents with affective disorder history. Mol. Psychiatry 2023, 28, 2540–2548. [Google Scholar] [CrossRef]
- Tang, Y.-Y.; Hölzel, B.K.; Posner, M.I. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 2015, 16, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.C.R.; Spreng, R.N.; Ellamil, M.; Andrews-Hanna, J.R.; Christoff, K. The wandering brain: Meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. NeuroImage 2015, 111, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Brewer, J.A.; Worhunsky, P.D.; Gray, J.R.; Tang, Y.Y.; Weber, J.; Kober, H. Meditation experience is associated with differences in default mode network activity and connectivity. Proc. Natl. Acad. Sci. USA 2011, 108, 20254–20259. [Google Scholar] [CrossRef]
- Christoff, K.; Gordon, A.M.; Smallwood, J.; Smith, R.; Schooler, J.W. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl. Acad. Sci. USA 2009, 106, 8719–8724. [Google Scholar] [CrossRef]
- Christoff, K.; Irving, Z.C.; Fox, K.C.; Spreng, R.N.; Andrews-Hanna, J.R. Mind-wandering as spontaneous thought: A dynamic framework. Nat. Rev. Neurosci. 2016, 17, 718–731. [Google Scholar] [CrossRef]
- Hölzel, B.K.; Carmody, J.; Vangel, M.; Congleton, C.; Yerramsetti, S.M.; Gard, T.; Lazar, S.W. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 2011, 191, 36–43. [Google Scholar] [CrossRef]
- Murakami, H.; Nakao, T.; Matsunaga, M.; Kasuya, Y.; Shinoda, J.; Yamada, J.; Ohira, H. The structure of mindful brain. PLoS ONE 2012, 7, e46377. [Google Scholar] [CrossRef]
- Taren, A.A.; Creswell, J.D.; Gianaros, P.J. Dispositional mindfulness co-varies with smaller amygdala and caudate volumes in community adults. PLoS ONE 2013, 8, e64574. [Google Scholar] [CrossRef]
- Zhuang, K.; Bi, M.; Li, Y.; Xia, Y.; Guo, X.; Chen, Q.; Du, X.; Wang, K.; Wei, D.; Yin, H.; et al. A distinction between two instruments measuring dispositional mindfulness and the correlations between those measurements and the neuroanatomical structure. Sci. Rep. 2017, 7, 6252. [Google Scholar] [CrossRef] [PubMed]
- Baer, R.A.; Smith, G.T.; Hopkins, J.; Krietemeyer, J.; Toney, L. Using self-report assessment methods to explore facets of mindfulness. Assessment 2006, 13, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, T.D.; Kornelsen, J.; Smith, S.D. Trait mindfulness and functional connectivity in cognitive and attentional resting state networks. Front. Hum. Neurosci. 2019, 13, 112. [Google Scholar] [CrossRef]
- Creswell, J.D.; Way, B.M.; Eisenberger, N.I.; Lieberman, M.D. Neural correlates of dispositional mindfulness during affect labeling. Psychosom. Med. 2007, 69, 560–565. [Google Scholar] [CrossRef]
- Modinos, G.; Ormel, J.; Aleman, A. Individual differences in dispositional mindfulness and brain activity involved in reappraisal of emotion. Soc. Cogn. Affect. Neurosci. 2010, 5, 369–377. [Google Scholar] [CrossRef]
- Fong, R.C.; Scheirer, W.J.; Cox, D.D. Using human brain activity to guide machine learning. Sci. Rep. 2018, 8, 5397. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, V.D.; Sui, J. Multimodal fusion of brain imaging data: A key to finding the missing link(s) in complex mental illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 230–244. [Google Scholar] [CrossRef]
- Babayan, A.; Baczkowski, B.; Cozatl, R.; Dreyer, M.; Engen, H.; Erbey, M.; Falkiewicz, M.; Farrugia, N.; Gaebler, M.; Golchert, J.; et al. MPI-Leipzig Mind-Brain-Body. OpenNeuro [ds000221 2018, Version 00002]. Available online: https://openneuro.org/datasets/ds000221/versions/1.0.0 (accessed on 1 March 2023).
- Babayan, A.; Erbey, M.; Kumral, D.; Reinelt, J.D.; Reiter, A.M.F.; Röbbig, J.; Schaare, H.L.; Uhlig, M.; Anwander, A.; Bazin, P.L.; et al. A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults. Sci. Data 2019, 6, 180308. [Google Scholar] [CrossRef] [PubMed]
- Mendes, N.; Oligschläger, S.; Lauckner, M.E.; Golchert, J.; Huntenburg, J.M.; Falkiewicz, M.; Ellamil, M.; Krause, S.; Baczkowski, B.M.; Cozatl, R.; et al. A functional connectome phenotyping dataset including cognitive state and personality measures. Sci. Data 2019, 6, 180307. [Google Scholar] [CrossRef]
- Carriere, J.S.A.; Seli, P.; Smilek, D. Wandering in both mind and body: Individual differences in mind wandering and inattention predict fidgeting. Rev. Can. Psychol. Expérimentale 2013, 67, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Seli, P.; Carriere, J.S.; Smilek, D. Not all mind wandering is created equal: Dissociating deliberate from spontaneous mind wandering. Psychol. Res. 2014, 79, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Mrazek, M.D.; Phillips, D.T.; Franklin, M.S.; Broadway, J.M.; Schooler, J.W. Young and restless: Validation of the Mind-Wandering Questionnaire (MWQ) reveals disruptive impact of mind-wandering for youth. Front. Psychol. 2013, 4, 560. [Google Scholar] [CrossRef]
- Seli, P.; Risko, E.F.; Smilek, D. Assessing the associations among trait and state levels of deliberate and spontaneous mind wandering. Conscious. Cogn. Int. J. 2016, 41, 50–56. [Google Scholar] [CrossRef]
- JASP Team JASP (Version 0.17.2) [Computer Software]. Available online: https://jasp-stats.org (accessed on 2 April 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing 2023: Vienna, Austria, 2021; Available online: https://www.R-project.org (accessed on 2 April 2023).
- Penny, W.D.; Friston, K.J.; Ashburner, J.T.; Kiebel, S.J.; Nichols, T.E. (Eds.) Statistical Parametric Mapping: The Analysis of Functional Brain Images; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Gaser, C.; Dahnke, R.; Thompson, P.M.; Kurth, F.; Luders, E. CAT—A computational anatomy toolbox for the analysis of structural MRI data. BioRxiv 2022. [Google Scholar] [CrossRef]
- The MathWorks Inc. MATLAB Version: 2018b 2022; The MathWorks Inc.: Natick, MA, USA, 2022; Available online: https://www.mathworks.com (accessed on 2 April 2023).
- Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Calhoun, V. Parallel independent component analysis for multimodal analysis: Application to fMRI and EEG data. In Proceedings of the 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, VA, USA, 12–15 April 2007; IEEE: New York, NY, USA, 2007; pp. 1028–1031. [Google Scholar] [CrossRef]
- Himberg, J.; Hyvärinen, A. Icasso: Software for investigating the reliability of ICA estimates by clustering and visualization. In Proceedings of the IEEE XIII Workshop on Neural Networks for Signal Processing, Toulouse, France, 17–19 September 2003; pp. 259–268. [Google Scholar] [CrossRef]
- Himberg, J.; Hyvärinen, A.; Esposito, F. Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage 2004, 22, 1214–1222. [Google Scholar] [CrossRef]
- Wax, M.; Kailath, T. Detection of signals by information theoretic criteria. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 387–392. [Google Scholar] [CrossRef]
- Biesanz, J.C.; Falk, C.F.; Savalei, V. Assessing mediational models: Testing and interval estimation for indirect effects. Multivar. Behav. Res. 2010, 45, 661–701. [Google Scholar] [CrossRef]
- Sorella, S.; Crescentini, C.; Matiz, A.; Chang, M.; Grecucci, A. Resting-state BOLD temporal variability of the default mode network predicts spontaneous mind wandering, which is negatively associated with mindfulness skills. Front. Hum. Neurosci. 2025, 19, 1515902. [Google Scholar] [CrossRef]
- Grant, J.A.; Courtemanche, J.; Duerden, E.G.; Duncan, G.H.; Rainville, P. Cortical thickness and pain sensitivity in zen meditators. Emotion 2010, 10, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Hölzel, B.K.; Ott, U.; Gard, T.; Hempel, H.; Weygandt, M.; Morgen, K.; Vaitl, D. Investigation of mindfulness meditation practitioners with voxel-based morphometry. Soc. Cogn. Affect. Neurosci. 2008, 3, 55–61. [Google Scholar] [CrossRef]
- Lu, H.; Song, Y.; Xu, M.; Wang, X.; Li, X.; Liu, J. The brain structure correlates of individual differences in trait mindfulness: A voxel-based morphometry study. Neuroscience 2014, 272, 21–28. [Google Scholar] [CrossRef]
- Luders, E.; Toga, A.W.; Lepore, N.; Gaser, C. The underlying anatomical correlates of long-term meditation: Larger hippocampal and frontal volumes of gray matter. NeuroImage 2009, 45, 672–678. [Google Scholar] [CrossRef]
- Vestergaard-Poulsen, P.; van Beek, M.; Skewes, J.; Bjarkam, C.R.; Stubberup, M.; Bertelsen, J.; Roepstorff, A. Long-term meditation is associated with increased gray matter density in the brain stem. Neuroreport 2009, 20, 170–174. [Google Scholar] [CrossRef]
- Brown, K.W.; Ryan, R.M.; Mindful Attention Awareness Scale (MAAS) [Database Record]. APA PsycTests. 2003. Available online: https://psycnet.apa.org/doiLanding?doi=10.1037%2Ft04259-000 (accessed on 2 April 2023).
- Mas-Cuesta, L.; Baltruschat, S.; Cándido, A.; Verdejo-Lucas, C.; Catena-Verdejo, E.; Catena, A. Brain changes following mindfulness: Reduced caudate volume is associated with decreased positive urgency. Behav. Brain Res. 2024, 461, 114859. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Song, Y.; Li, X.; Zhen, Z.; Yang, Z.; Liu, J. The network property of the thalamus in the default mode network is correlated with trait mindfulness. Neuroscience 2014, 278, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Boccia, M.; Piccardi, L.; Guariglia, P. The meditative mind: A comprehensive meta-analysis of MRI studies. BioMed Res. Int. 2015, 2015, 419808. [Google Scholar] [CrossRef]
- Fahmy, R.; Wasfi, M.; Mamdouh, R.; Moussa, K.; Wahba, A.; Wittemann, M.; Hirjak, D.; Kubera, K.M.; Wolf, N.D.; Sambataro, F.; et al. Mindfulness-based interventions modulate structural network strength in patients with opioid dependence. Addict. Behav. 2018, 82, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Farb, N.A.; Segal, Z.V.; Anderson, A.K. Mindfulness meditation training alters cortical representations of interoceptive attention. Soc. Cogn. Affect. Neurosci. 2012, 8, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Baxter, L.R.; Schwartz, J.M.; Bergman, K.S.; Szuba, M.P.; Guze, B.H.; Mazziotta, J.C.; Alazraki, A.; Selin, C.E.; Ferng, H.-K.; Munford, P.; et al. Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessive-compulsive disorder. Arch. Gen. Psychiatry 1992, 49, 681–689. [Google Scholar] [CrossRef]
- McNab, F.; Klingberg, T. Prefrontal cortex and basal ganglia control access to working memory. Nat. Neurosci. 2008, 11, 103–107. [Google Scholar] [CrossRef]
- Packard, M.G.; Knowlton, B.J. Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 2002, 25, 563–593. [Google Scholar] [CrossRef]
- Ward, L.M. The thalamus: Gateway to the mind. Wiley Interdiscip. Rev. Cogn. Sci. 2013, 4, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Giambra, L.M. A laboratory method for investigating influences on switching attention to task-unrelated imagery and thought. Conscious. Cogn. Int. J. 1995, 4, 1–21. [Google Scholar] [CrossRef]
- Grecucci, A.; Pappaianni, E.; Siugzdaite, R.; Theuninck, A.; Job, R. Mindful emotion regulation: Psychological and neural mechanisms. BioMed Res. Int. 2015, 2015, 670724. [Google Scholar] [CrossRef]
- Smallwood, J.; Davies, J.B.; Heim, D.; Finnigan, F.; Sudberry, M.V.; O’Connor, R.; Obonsawin, M.C. Subjective experience and the attentional lapse: Task engagement and disengagement during sustained attention. Conscious. Cogn. 2004, 13, 657–690. [Google Scholar] [CrossRef] [PubMed]
- Smallwood, J.; O’Connor, R.C.; Sudbery, M.V.; Obonsawin, M. Mind-wandering and dysphoria. Cogn. Emot. 2007, 21, 816–842. [Google Scholar] [CrossRef]
- Yuan, S.; Wu, H.; Wu, Y.; Xu, H.; Yu, J.; Zhong, Y.; Zhang, N.; Li, J.; Xu, Q.; Wang, C. Neural effects of cognitive behavioral therapy in psychiatric disorders: A systematic review and activation likelihood estimation meta-analysis. Front. Psychol. 2022, 13, 853804. [Google Scholar] [CrossRef]
- Kucyi, A.; Kam, J.W.W.; Andrews-Hanna, J.R.; Christoff, K.; Whitfield-Gabrieli, S. Recent advances in the neuroscience of spontaneous and off-task thought: Implications for mental health. Nat. Ment. Health 2023, 1, 827–840. [Google Scholar] [CrossRef] [PubMed]
Female | Male | Gender | Age | |||||
---|---|---|---|---|---|---|---|---|
(n = 33) | (n = 43) | (df = 74) | (n = 76) | |||||
M | SD | M | SD | t | p | rho | p | |
Mindfulness | ||||||||
act_awareness | 16.15 | 2.600 | 17.16 | 2.94 | −1.56 | 0.12 | −0.22 | 0.05 |
describe | 30.12 | 5.441 | 27.86 | 5.97 | 1.70 | 0.09 | −0.05 | 0.69 |
nonjudge | 19.52 | 4.078 | 21.77 | 4.76 | −2.18 | 0.03 * | 0.05 | 0.68 |
nonreact | 18.42 | 3.446 | 19.23 | 3.60 | −0.99 | 0.33 | −0.06 | 0.59 |
observe | 22.94 | 3.142 | 21.58 | 3.52 | 1.75 | 0.09 | 0.04 | 0.71 |
Mind Wandering | ||||||||
MW-D | 3.42 | 1.146 | 3.54 | 0.98 | −0.45 | 0.653 | 0.05 | 0.69 |
MW-S | 3.30 | 1.045 | 3.07 | 0.99 | 1.00 | 0.322 | 0.09 | 0.42 |
Area | Brodmann Area | Volume (cc) | Max Value, MNI Left/Right (x, y, z) |
---|---|---|---|
Caudate | 32 | 3.8/2.8 | 7.9 (−9, 12, 10)/6.4 (10, 8, 15) |
Thalamus | 23, 30 | 1.5/1.5 | 6.9 (−10, −21, 16)/6.1 (13, −24, 15) |
Caudate | 24, 32 | 4.4/3.7 | 6.7 (−3, 10, 5)/6.0 (12, 4, 18) |
Thalamus | 30, 31 | 2.4/2.0 | 6.2 (−15, −28, 14)/5.6 (21, −35, 9) |
Parahippocampal Gyrus | 30 | 0.3/0.1 | 5.6 (−24, −38, 5)/4.8 (24, −39, 3) |
Hippocampus/Caudate | 30, 31 | 0.4/0.6 | 4.7 (−27, −38, 2)/4.4 (30, −36, 1) |
Precuneus | 7 | 0.0/0.4 | 0 (0, 0, 0)/4.3 (18, −60, 43) |
Area | Brodmann Area | Volume (cc) | Max Value, MNI Left/Right (x, y, z) |
---|---|---|---|
Cerebellar Tonsil | 37 | 0.5/3.3 | 4.9 (−37, −38, −38)/9.2 (49, −50, −40) |
Broca/Visual Motor | 7, 45, 46 | 1.5/1.0 | 6.2 (−37, 20, 21)/8.0 (31, −52, 39) |
Inferior Parietal Lobule | 7 | 0.0/0.7 | 0 (0, 0, 0)/6.2 (36, −53, 39) |
Precuneus | 7 | 0.8/0.1 | 6.1 (−28, −62, 36)/4.2 (25, −50, 44) |
Tuber | 19, 37 | 0.4/1.0 | 4.1 (−46, −74, −25)/5.9 (55, −47, −29) |
Fusiform Gyrus | 18, 19 | 0.0/0.4 | 0 (0, 0, 0)/5.3 (27, −87, −18) |
Inferior Semi-Lunar Lobule | 37 | 0.0/0.4 | 0 (0, 0, 0)/5.3 (53, −60, −35) |
Culmen | 37 | 0.0/0.4 | 0 (0, 0, 0)/5.0 (50, −44, −29) |
Declive | 19 | 0.1/0.6 | 3.8 (−46, −74, −22)/4.8 (31, −85, −18) |
Area | Brodmann Area | Volume (cc) | Max Value, MNI Left/Right (x, y, z) |
---|---|---|---|
Middle Frontal Gyrus | 9, 46 | 1.7/2.0 | 9.1 (−37, 17, 28)/8.6 (37, 18, 31) |
Superior Temporal Gyrus | 39 | 1.1/0.1 | 8.6 (−42, −51, 25)/3.6 (48, −55, 29) |
Supramarginal Gyrus | 39, 40 | 1.5/0.8 | 8.0 (−45, −51, 27)/5.0 (48, −52, 32) |
Supramarginal Gyrus | 7, 39 | 1.7/2.6 | 7.4 (−39, −48, 25)/7.8 (34, −40, 39) |
Inferior Parietal Lobule | 7, 39 | 0.9/1.2 | 7.8 (−45, −48, 25)/7.4 (37, −42, 42) |
Culmen | 20, 37 | 0.8/0.2 | 7.1 (−46, −39, −28)/4.4 (45, −41, −27) |
Cerebellar Tonsil | 20, 37 | 0.6/0.8 | 6.9 (−43, −40, −35)/6.4 (43, −40, −37) |
Precentral Gyrus | 9, 46 | 0.1/0.3 | 4.1 (−43, 19, 35)/6.3 (37, 21, 34) |
Area | Brodmann Area | Volume (cc) | Max Value, MNI Left/Right (x, y, z) |
---|---|---|---|
Middle Frontal Gyrus | 9, 46 | 1.9/1.5 | 9.5 (−37, 19, 32)/5.7 (40, 25, 25) |
Precentral Gyrus | 9 | 0.6/0.1 | 8.1 (−37, 16, 35)/4.0 (36, 19, 34) |
Visual Association/Insula | 9, 19, 46 | 1.2/2.6 | 5.7 (−27, −70, −2)/6.3 (37, 22, 25) |
Inferior Temporal Gyrus | 19 | 0.2/0.4 | 4.8 (−42, −67, 2)/6.3 (43, −67, 1) |
Superior Temporal Gyrus | 37, 44 | 0.7/1.3 | 4.5 (−56, −13, 1)/6.3 (50, −50, 16) |
Middle Occipital Gyrus | 19 | 0.2/0.4 | 4.6 (−37, −65, 3)/5.8 (40, −65, 3) |
Inferior Parietal Lobule | 7 | 0.1/0.3 | 4.0 (−30, −42, 55)/5.1 (36, −34, 42) |
Middle Temporal Gyrus | 37, 39 | 0.1/0.3 | 3.5 (−55, −53, 11)/4.6 (43, −61, 27) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.; Sorella, S.; Crescentini, C.; Grecucci, A. Gray and White Matter Networks Predict Mindfulness and Mind Wandering Traits: A Data Fusion Machine Learning Approach. Brain Sci. 2025, 15, 953. https://doi.org/10.3390/brainsci15090953
Chang M, Sorella S, Crescentini C, Grecucci A. Gray and White Matter Networks Predict Mindfulness and Mind Wandering Traits: A Data Fusion Machine Learning Approach. Brain Sciences. 2025; 15(9):953. https://doi.org/10.3390/brainsci15090953
Chicago/Turabian StyleChang, Minah, Sara Sorella, Cristiano Crescentini, and Alessandro Grecucci. 2025. "Gray and White Matter Networks Predict Mindfulness and Mind Wandering Traits: A Data Fusion Machine Learning Approach" Brain Sciences 15, no. 9: 953. https://doi.org/10.3390/brainsci15090953
APA StyleChang, M., Sorella, S., Crescentini, C., & Grecucci, A. (2025). Gray and White Matter Networks Predict Mindfulness and Mind Wandering Traits: A Data Fusion Machine Learning Approach. Brain Sciences, 15(9), 953. https://doi.org/10.3390/brainsci15090953