Autism Spectrum Disorder: What Do We Know and Where Do We Go?
Abstract
1. Introduction
2. Behavioral Features
2.1. Core Diagnostic Domains and Contemporary Refinements
2.2. Developmental Timing and Early Behavioral Markers
2.3. The Autistic Presentation Across the Lifespan
2.4. Sex, Gender, and Camouflaging
2.5. Co-Occurring Conditions and Behavior
2.6. Sensory Processing and Motor Behavior
2.7. Language, Communication, and Pragmatics
2.8. Behavior in Context: The Double-Empathy Framework
2.9. Behavioral Heterogeneity and Data-Driven Subtyping
2.10. Measurement Considerations
2.11. What Is Clear vs. Unclear
3. Psychological Features
3.1. Cognitive Profiles and Variability
3.2. Theory of Mind and Social Cognition
3.3. Executive Functioning
3.4. Emotional Processing and Regulation
3.5. Attention and Perceptual Processing
3.6. Cognitive Styles and Strengths
3.7. Psychological Development Across the Lifespan
3.8. What Is Clear vs. Unclear
4. Genetic Features
4.1. Heritability and Genetic Architecture
4.2. Common Variants and Polygenic Risk
4.3. Rare Variants, CNVs, and De Novo Mutations
4.4. Sex Differences and Protective Mechanisms
4.5. Gene–Environment Interactions
4.6. Convergent Biological Pathways
4.7. What Is Clear vs. Unclear
5. Metabolic Features
5.1. Energy Metabolism and Mitochondrial Dysfunction
5.2. Oxidative Stress and Redox Imbalance
5.3. Amino Acid Metabolism and Neurotransmitter Precursors
5.4. Folate and Methylation Cycle Abnormalities
5.5. Lipid Metabolism and Membrane Integrity
5.6. Dysautonomia in ASD
5.7. What Is Clear vs. Unclear
6. Immunological Features
6.1. Neuroinflammation and Microglial Activation
6.2. Peripheral Immune Abnormalities
6.3. Maternal Immune Activation (MIA)
6.4. Gastrointestinal–Immune Interactions
6.5. Cytokine and Chemokine Profiles as Biomarkers
6.6. What Is Clear vs. Unclear
7. Speech and Language Features
7.1. Core Communication Challenges
7.2. Structural and Functional Neural Correlates
7.3. Early Predictors and Developmental Trajectories
7.4. Pragmatics and Discourse
7.5. Augmentative and Alternative Communication (AAC)
7.6. Interventions and Therapeutic Approaches
7.7. Clear vs. Unclear
8. Genetic Findings
8.1. Overview
8.2. Rare Variants and De Novo Mutations
8.3. Common Polygenic Risk
8.4. Epigenetics and Gene Regulation
8.5. Genetic Heterogeneity and Clinical Variability
8.6. Translational Implications
8.7. Clear vs. Unclear
9. Metabolic Findings
9.1. Overview
9.2. Mitochondrial Dysfunction and Bioenergetics
9.3. Oxidative Stress and Redox Balance
9.4. One-Carbon Metabolism and Folate Pathways
9.5. Tryptophan–Kynurenine and Neuroimmune Crosstalk
9.6. Lipidomics and Membrane Composition
9.7. Carnitine and Acyl-Carnitine Signatures
9.8. Microbiome–Metabolome Axis
9.9. Metabolomics for Stratification and Biomarkers
9.10. Therapeutic Implications
- L-carnitine: possible improvements in fatigue/behavior for low baseline carnitine or abnormal acyl-carnitines [142].
9.11. What Is Clear vs. Uncertain
10. Immunological Findings
10.1. Overview
10.2. Peripheral Immune Alterations
10.3. Neuroimmune Interactions and Microglia
10.4. Maternal Immune Priming
10.5. Autoimmunity and Brain-Directed Antibodies
10.6. Gut–Immune Axis
10.7. Neuroinflammation Biomarkers
10.8. Immunomodulatory Interventions
- IVIG: some open-label studies suggest gains in socialization/communication; RCTs underpowered and heterogeneous [162].
- Targeted biologics (anti-IL-6, anti-IL-17): under preclinical testing; no human RCTs yet [154].
- Microbiota-directed interventions: reported to reduce both GI and behavioral symptoms, but placebo-controlled reproducibility is limited [159].
10.9. What Is Clear vs. Uncertain
11. Neurological and Brain Connectivity Findings
11.1. Structural White Matter Alterations (DTI/Structural MRI)
11.2. Functional Connectivity (Resting/Task fMRI, MEG/EEG)
11.3. Network Topology (Graph Theory)
11.3.1. Small-Worldness
11.3.2. Global Efficiency
11.3.3. Hubness
11.3.4. Integration vs. Segregation
11.4. Sensory and Salience Network Contributions
11.5. Task-Dependent Reconfiguration and Idiosyncrasy
11.6. Underconnectivity Perspective
11.7. What Is Clear vs. Uncertain
12. Developmental and Maturational Factors
12.1. Early Brain Growth and Critical Periods
12.2. Hemisphericity and Developmental Asymmetries
12.3. In Utero Influences
12.4. Postpartum Effects
12.5. Cognitive and Behavioral Development
12.6. Puberty and Hormonal Influences
12.7. Lifespan Development and Aging
12.8. Developmental Plasticity and Intervention Windows
12.9. What Is Clear vs. Uncertain
13. Discussion
14. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAC | Augmentative and alternative communication |
ADHD | Attention-deficit/hyperactivity disorder |
ADI-R | Autism Diagnostic Interview-Revised |
ADOS | Autism Diagnostic Observation Schedule |
AFQ | Automated fiber quantification |
ASD | Autism spectrum disorder |
CNV | Copy number variants |
CSF | Cerebrospinal fluid |
DTI | Diffusion tensor imaging |
EEG | Electroencephalogram |
EWASs | Epigenome-wide association studies |
fMRI | Functional magnetic resonance imaging |
GI | Gastrointestinal |
GSH | Glutathione |
GWASs | Genome-wide association studies |
ID | Intellectual disability |
IDO | Indoleamine 2,3 dioxygenase |
IVIG | Intravenous immunoglobulin |
MAR | Maternal antibody-related |
MCP-1 | Monocyte chemoattractant protein-1 |
MEG | Magnetoencephalography |
MIA | Maternal immune activation |
MRI | Magnetic resonance imaging |
NDBI | Naturalistic behavioral intervention |
NK | Natural killer cells |
PECS | Picture exchange communication system |
PRSs | Polygenic risk scores |
ROS | Reactive oxygen species |
RRB | Restrained repetitive behaviors |
SAH | S-adenosylhomocysteine |
SAM | S-adenosylmethionine |
ToM | Theory of Mind |
Treg | Regulatory T cells |
TNF | Tumor necrosis factor-α |
VUSs | Variants of uncertain significance |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; APA: Arlington, TX, USA, 2022. [Google Scholar]
- Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.H.; Jones, R.M.; Pickles, A.; State, M.W.; et al. Autism spectrum disorder. Nat. Rev. Dis. Primers 2020, 6, 5. [Google Scholar] [CrossRef]
- Mao, H.; Cheng, L.; Zhang, Y.; Zhang, F. Gender Differences in Autism Spectrum Disorder: A Systematic Review of Diagnosis, Intervention, and Outcomes. Gend. Sustain. Glob. South 2024, 1, 92–136. [Google Scholar] [CrossRef]
- Fletcher-Watson, S.; Happé, F. Autism: A new introduction to psychological theory and current debate. Autism 2019. [Google Scholar] [CrossRef]
- Uljarević, M.; Hedley, D.; Alvares, G.A.; Varcin, K.; Cai, R.Y.; Whitehouse, A.J.O. Subdomains of restricted and repetitive behaviors within autism: Exploratory structural equation modeling using the Diagnostic Interview for Social and Communication Disorders. Autism Res. 2022, 15, 861–869. [Google Scholar] [CrossRef]
- Brierley, N.J.; McDonnell, C.G.; Parks, K.M.A.; Schulz, S.E.; Dalal, T.C.; Kelley, E.; Anagnostou, E.; Nicolson, R.; Georgiades, S.; Crosbie, J.; et al. Factor Structure of Repetitive Behaviors Across Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder. J. Autism Dev. Disord. 2021, 51, 1875–1887. [Google Scholar] [CrossRef]
- Schuck, R.K.; Flores, R.E.; Fung, L.K. Brief Report: Sex/Gender Differences in Symptomology and Camouflaging in Adults with Autism Spectrum Disorder. J. Autism Dev. Disord. 2019, 46, 2597–2604. [Google Scholar] [CrossRef] [PubMed]
- Eigsti, I.M.; Irvine, C.A. Verbal mediation of theory of mind in verbal adolescents with autism spectrum disorder. Lang. Acquis. 2021, 28, 195–213. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Green, D.; Chandler, S.; Charman, T.; Simonoff, E.; Baird, G. Brief report: DSM-5 sensory behaviours in children with and without an autism spectrum disorder. J. Autism Dev. Disord. 2016, 46, 3597–3606. [Google Scholar] [CrossRef]
- Gotham, K.; Pickles, A.; Lord, C. Trajectories of autism severity in children using standardized ADOS scores. Pediatrics 2012, 130, e1278-84. [Google Scholar] [CrossRef]
- Demetriou, E.A.; Lampit, A.; Quintana, D.S.; Naismith, S.L.; Song, Y.J.C.; Pye, J.E.; Hickie, I.B.; Guastella, A.J. Autism Spectrum Disorders: A Meta-Analysis of Executive Function. Mol. Psychiatry 2018, 23, 1198–1204. [Google Scholar] [CrossRef] [PubMed]
- Hull, L.; Mandy, W.; Lai, M.C.; Baron-Cohen, S. Autistic Adults’ Experiences of Camouflaging and Its Perceived Impact on Mental Health. Autism Adulthood 2021, 3, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Khudiakova, V.; Russell, E.; Sowden-Carvalho, S.; Surtees, A.D.R. A systematic review and meta-analysis of mental health outcomes associated with camouflaging in autistic people. Res. Autism Spectr. Disord. 2024, 118, 102492. [Google Scholar] [CrossRef]
- Ross, A.; Grove, R.; McAloon, J. The relationship between camouflaging and mental health in autistic children and adolescents. Autism Res 2023, 16, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Pellicano, E.; Fatima, S.U.; Hall, A.G.; Heyworth, M.; Lawson, W.; Lilley, R.; Mahony, J.; Stears, M. A capabilities approach to understanding and supporting autistic adulthood. Nat. Rev. Psychol. 2022, 1, 624–639. [Google Scholar] [CrossRef]
- Raymaker, D.M.; Teo, A.R.; Steckler, N.A.; Lentz, B.; Scharer, M.; Delos Santos, A.; Kapp, S.K.; Hunter, M.; Joyce, A.; Nicolaidis, C. "Having All of Your Internal Resources Exhausted Beyond Measure and Being Left with No Clean-Up Crew": Defining Autistic Burnout. Autism Adulthood 2022, 2, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Christensen, D.; Coombes, S.A.; Wang, Z. Cognitive and brain morphological deviations in middle-to-old aged autistic adults: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2024, 163, 1057–1082. [Google Scholar] [CrossRef] [PubMed]
- Mandy, W.; Chilvers, R.; Chowdhury, U.; Salter, G.; Seigal, A.; Skuse, D. Sex differences in autism spectrum disorder: Evidence from a large sample of children and adolescents. J. Autism Dev. Disord. 2012, 42, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.; Yang, C.J.; Jin, Y.; Wang, Y. Prevalence of attention-deficit/hyperactivity disorder in individuals with autism spectrum disorder: A meta-analysis. Res. Autism Spectr. Disord. 2021, 83, 1017–1059. [Google Scholar] [CrossRef]
- Hollocks, M.J.; Lerh, J.W.; Magiati, I.; Meiser-Stedman, R.; Brugha, T.S. Anxiety and depression in adults with autism spectrum disorder: A systematic review and meta-analysis. Psychol. Med. 2019, 49, 559–572. [Google Scholar] [CrossRef]
- Chen, H.; Cheung, P.Y.; Novotny, S.; Vohra, R.; Mazurek, M.; Petroski, G.F.; Croen, L.A.; Zerbo, O.; Hansen, R.L.; Pinto, D. Sleep problems in children with autism spectrum disorder: A multicenter survey. BMC Psychiatry 2021, 21, 406. [Google Scholar] [CrossRef]
- Bal, V.H.; Kim, S.H.; Fok, M.; Lord, C. Autism spectrum disorder symptoms from ages 2 to 19 years: Implications for diagnosing adolescents and young adults. Autism Res. 2019, 12, 89–99. [Google Scholar] [CrossRef]
- Rosen, T.E.; Mazefsky, C.A.; Vasa, R.A.; Lerner, M.D. Co-occurring psychiatric conditions in autism spectrum disorder. Int. Rev. Psychiatry 2018, 30, 40–61. [Google Scholar] [CrossRef] [PubMed]
- Buie, T.; Campbell, D.B.; Fuchs, G.J.; Furuta, G.T.; Levy, J.; Vandewater, J.; Whitaker, A.H.; Atkins, D.; Bauman, M.L.; Beaudet, A.L. Evaluation, diagnosis, and treatment of gastrointestinal disorders in individuals with ASDs: A consensus report. Pediatrics 2010, 125 (Suppl. 1), S1–S18. [Google Scholar] [CrossRef] [PubMed]
- Feldman, J.I.; Garla, V.; Dunham, K.; Markfeld, J.E.; Bowman, S.M.; Golden, A.J.; Daly, C.; Kaiser, S.; Mailapur, N.; Raj, S. Longitudinal Relations Between Early Sensory Responsiveness and Later Communication in Infants with Autistic and Non-autistic Siblings. J. Autism Dev. Disord. 2024, 54, 594–606. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.N. Motor Impairment Increases in Children With Autism Spectrum Disorder as a Function of Social Communication, Cognitive and Functional Impairment, Repetitive Behavior Severity, and Comorbid Diagnoses: A SPARK Study Report. Autism Res. 2021, 14, 202–219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Volden, J.; Phillips, L. Measuring pragmatic language in speakers with autism spectrum disorders: Comparing the children’s communication checklist--2 and the test of pragmatic language. Am. J. Speech Lang. Pathol. 2010, 19, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Brignell, A.; Chenausky, K.V.; Song, H.; Zhu, J.; Suo, C.; Morgan, A.T. Communication interventions for autism spectrum disorder in minimally verbal children. Cochrane Database Syst. Rev. 2018, 11, CD012324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crompton, C.J.; Ropar, D.; Evans-Williams, C.V.; Flynn, E.G.; Fletcher-Watson, S. Autistic peer-to-peer information transfer is highly effective. Autism 2020, 24, 1704–1712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keating, C.T. Redefining deficits in autistic emotion recognition. Nat. Rev. Psychol. 2023, 2, 589. [Google Scholar] [CrossRef]
- Lombardo, M.V. Prototyping as subtyping strategy for studying heterogeneity in autism. Autism Res. 2021, 14, 2224–2227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zander, E.; Sturm, H.; Bölte, S. The added value of the combined use of the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule: Diagnostic validity in a clinical Swedish sample of toddlers and young preschoolers. Autism 2015, 19, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Wilson, R.B. Digital phenotyping could help detect autism. Nat. Med. 2023, 29, 2412–2413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Courchesne, E.; Pierce, K.; Schumann, C.M.; Redcay, E.; Buckwalter, J.A.; Kennedy, D.P.; Morgan, J. Mapping early brain development in autism. Neuron 2007, 56, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Livingston, L.A.; Carr, B.; Shah, P. Recent Advances and New Directions in Measuring Theory of Mind in Autistic Adults. J. Autism Dev. Disord. 2019, 49, 1738–1744. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Milton, D.E.M. On the ontological status of autism: The ‘double empathy problem’. Disabil. Soc. 2012, 27, 883–887. [Google Scholar] [CrossRef]
- Crompton, C.J.; Foster, S.J.; Wilks, C.E.H.; Dodd, M.; Efthimiou, T.N.; Ropar, D.; Sasson, N.J.; Lages, M.; Fletcher-Watson, S. Information transfer within and between autistic and non-autistic people. Nat. Hum. Behav. 2025, 9, 1488–1500. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spain, D.; Sin, J.; Linder, K.B.; McMahon, J.; Happé, F. Social anxiety in autism spectrum disorder: A systematic review. Res. Autism Spectr. Disord. 2018, 52, 51–68. [Google Scholar] [CrossRef]
- Lai, M.C.; Lombardo, M.V.; Baron-Cohen, S. Autism. Lancet 2014, 383, 896–910. [Google Scholar] [CrossRef] [PubMed]
- Vogan, V.M.; Morgan, B.R.; Lee, W.; Powell, T.L.; Smith, M.L.; Taylor, M.J. The neural correlates of visuo-spatial working memory in children with autism spectrum disorder: Effects of cognitive load. J. Neurodev. Disord. 2014, 6, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faja, S.; Clarkson, T.; Gilbert, R.; Vaidyanathan, A.; Greco, G.; Rueda, M.R.; Combita, L.M.; Driscoll, K. A preliminary randomized, controlled trial of executive function training for children with autism spectrum disorder. Autism 2022, 26, 346–360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leung, F.Y.N.; Stojanovik, V.; Micai, M.; Jiang, C.; Liu, F. Emotion recognition in autism spectrum disorder across age groups: A cross-sectional investigation of various visual and auditory communicative domains. Autism Res. 2023, 16, 783–801. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, D.; McKenzie, K.; McCarty, K.; Pollet, T.V.; Murray, G. An exploration of the impact of contextual information on the emotion recognition ability of autistic adults. Int. J. Psychol. 2022, 57, 433–442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Azmitia, E.C.; Saccomano, Z.T.; Alzoobaee, M.F.; Boldrini, M.; Whitaker-Azmitia, P.M. Persistent Angiogenesis in the Autism Brain: An Immunocytochemical Study of Postmortem Cortex, Brainstem and Cerebellum. J. Autism Dev. Disord. 2016, 46, 1307–1318. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kinnaird, E.; Stewart, C.; Tchanturia, K. Investigating alexithymia in autism: A systematic review and meta-analysis. Eur. Psychiatry 2019, 55, 80–89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chita-Tegmark, M. Social attention in ASD: A review and meta-analysis of eye-tracking studies. Res. Dev. Disabil. 2016, 48, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Nayar, K.; Shic, F.; Winston, M.; Losh, M. A constellation of eye-tracking measures reveals social attention differences in ASD and the broad autism phenotype. Mol. Autism 2022, 13, 18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mottron, L.; Dawson, M.; Soulières, I.; Hubert, B.; Burack, J. Enhanced perceptual functioning in autism: An update, and eight principles of autistic perception. J. Autism Dev. Disord. 2006, 36, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.; O’Brien, A.M.; Bungert, L.; Sinha, P. Prediction in Autism Spectrum Disorder: A Systematic Review of Empirical Evidence. Autism Res. 2021, 14, 604–630. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murray, D.; Lesser, M.; Lawson, W. Attention, monotropism and the diagnostic criteria for autism. Autism 2005, 9, 139–156. [Google Scholar] [CrossRef]
- Ungar, P.S.; Scott, R.S.; Grine, F.E.; Teaford, M.F. Molar microwear textures and the diets of Australopithecus anamensis and Australopithecus afarensis. Philos. Trans. R Soc. Lond. B Biol. Sci. 2010, 365, 3345–3354. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hull, L.; Mandy, W.; Lai, M.C.; Baron-Cohen, S.; Allison, C.; Smith, P.; Petrides, K.V. Development and Validation of the Camouflaging Autistic Traits Questionnaire (CAT-Q). J. Autism Dev. Disord. 2019, 49, 819–833. [Google Scholar] [CrossRef]
- Hand, B.N.; Angell, A.M.; Harris, L.; Carpenter, L.A. Prevalence of physical and mental health conditions in Medicare-enrolled, autistic older adults. Autism 2020, 24, 755–764. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Hultman, C.; Larsson, H.; Reichenberg, A. The Heritability of Autism Spectrum Disorder. JAMA 2017, 318, 1182–1184. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ozonoff, S.; Young, G.S.; Carter, A.; Messinger, D.; Yirmiya, N.; Zwaigenbaum, L.; Bryson, S.; Carver, L.J.; Constantino, J.N.; Dobkins, K.; et al. Recurrence risk for autism spectrum disorders: A Baby Siblings Research Consortium study. Pediatrics 2011, 128, e488–e495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; Andreassen, O.A.; Anney, R.; et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 2019, 51, 431–444. [Google Scholar] [CrossRef]
- Warrier, V.; Zhang, X.; Reed, P.; Havdahl, A.; Moore, T.M.; Cliquet, F.; Leblond, C.S.; Rolland, T.; Rosengren, A.; Rowitch, D.H.; et al. Genetic correlates of phenotypic heterogeneity in autism. Nat. Genet. 2022, 54, 1293–1304. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schaffer, L.S.; Breunig, S.; Lawrence, J.M.; Foote, I.F.; Grotzinger, A.D. Characterizing genetic pathways unique to autism spectrum disorder at multiple levels of biological analysis. Mol. Autism 2024, 15, 46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weiner, D.J.; Ling, E.; Erdin, S.; Tai, D.J.C.; Yadav, R.; Grove, J.; Fu, J.M.; Nadig, A.; Carey, C.E.; Baya, N.; et al. Statistical and functional convergence of common and rare genetic influences on autism at chromosome 16p. Nat. Genet. 2022, 54, 1630–1639. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell 2019, 179, 1469–1482.e11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yap, C.X.; Alvares, G.A.; Henders, A.K.; Lin, T.; Wallace, L.; Farrelly, A.; McLaren, T.; Berry, J.; Vinkhuyzen, A.A.E.; Trzaskowski, M.; et al. Analysis of common genetic variation and rare CNVs in the Australian Autism Biobank. Mol. Autism 2021, 12, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Satterstrom, F.K.; Kosmicki, J.A.; Wang, J.; Breen, M.S.; De Rubeis, S.; An, J.Y.; Peng, M.; Collins, R.; Grove, J.; Klei, L.; et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020, 180, 568–584.e23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreno-De-Luca, D.; Martin, C.L. All for one and one for all: Heterogeneity of genetic etiologies in neurodevelopmental psychiatric disorders. Curr. Opin. Genet. Dev. 2021, 68, 71–78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanders, S.J.; He, X.; Willsey, A.J.; Ercan-Sencicek, A.G.; Samocha, K.E.; Cicek, A.E.; Murtha, M.T.; Bal, V.H.; Bishop, S.L.; Dong, S.; et al. Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci. Neuron 2015, 87, 1215–1233. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Napolitano, A.; Schiavi, S.; La Rosa, P.; Rossi-Espagnet, M.C.; Petrillo, S.; Bottino, F.; Tagliente, E.; Longo, D.; Lupi, E.; Casula, L.; et al. Sex Differences in Autism Spectrum Disorder: Diagnostic, Neurobiological, and Behavioral Features. Front. Psychiatry 2022, 13, 889636. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jacquemont, S.; Coe, B.P.; Hersch, M.; Duyzend, M.H.; Krumm, N.; Bergmann, S.; Beckmann, J.S.; Rosenfeld, J.A.; Eichler, E.E. A higher mutational burden in females supports a "female protective model" in neurodevelopmental disorders. Am. J. Hum. Genet. 2014, 94, 415–425. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grosvenor, L.P.; Croen, L.A.; Lynch, F.L.; Marafino, B.J.; Maye, M.; Penfold, R.B.; Simon, G.E.; Ames, J.L. Autism Diagnosis Among US Children and Adults, 2011-2022. JAMA Netw. Open 2024, 7, e2442218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chawner, S.J.R.A.; Owen, M.J.; Holmans, P.; Raymond, F.L.; Skuse, D.; Hall, J.; van den Bree, M.B.M. Genotype-phenotype associations in children with copy number variants associated with high neuropsychiatric risk in the UK (IMAGINE-ID): A case-control cohort study. Lancet Psychiatry 2019, 6, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Brynge, M.; Sjöqvist, H.; Gardner, R.M.; Lee, B.K.; Dalman, C.; Karlsson, H. Maternal infection during pregnancy and likelihood of autism and intellectual disability in children in Sweden: A negative control and sibling comparison cohort study. Lancet Psychiatry 2022, 9, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Strathearn, L.; Liu, B.; O’Brien, M.; Kopelman, T.G.; Zhu, J.; Snetselaar, L.G.; Bao, W. Prevalence and Treatment Patterns of Autism Spectrum Disorder in the United States, 2016. JAMA Pediatr. 2019, 173, 153–159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iossifov, I.; Ronemus, M.; Levy, D.; Wang, Z.; Hakker, I.; Rosenbaum, J.; Yamrom, B.; Lee, Y.H.; Narzisi, G.; Leotta, A.; et al. De novo gene disruptions in children on the autistic spectrum. Neuron 2012, 74, 285–299. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zahra, A.; Wang, Y.; Wang, Q.; Wu, J. Shared Etiology in Autism Spectrum Disorder and Epilepsy with Functional Disability. Behav. Neurol. 2022, 2022, 5893519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frye, R.E.; Lionnard, L.; Singh, I.; Karim, M.A.; Chajra, H.; Frechet, M.; Kissa, K.; Racine, V.; Ammanamanchi, A.; McCarty, P.J. Mitochondrial morphology is associated with respiratory chain uncoupling in autism spectrum disorder. Transl. Psychiatry 2021, 11, 527. [Google Scholar] [CrossRef]
- Giulivi, C.; Zhang, Y.F.; Omanska-Klusek, A.; Ross-Inta, C.; Wong, S.; Hertz-Picciotto, I.; Tassone, F.; Pessah, I.N. Mitochondrial dysfunction in autism. JAMA 2010, 304, 2389–2396. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry 2012, 17, 290–314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Chauhan, V. Oxidative stress in autism. Pathophysiology 2021, 28, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Shi, X.J.; Liu, H.; Mao, X.; Gui, L.N.; Wang, H.; Cheng, Y. Oxidative stress marker aberrations in children with autism spectrum disorder: A systematic review and meta-analysis of 87 studies (N = 9109). Transl. Psychiatry 2021, 11, 15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Długosz, A.; Wróblewski, M.; Błaszak, B.; Szulc, J. The role of nutrition, oxidative stress, and trace elements in the pathophysiology of autism spectrum disorders. Int. J. Mol. Sci. 2025, 26, 808. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Donley, E.L.R.; Ney, D.M.; Amaral, D.G.; Burrier, R.E.; Natowicz, M.R. Metabolomic biomarkers in autism: Identification of complex dysregulations of cellular bioenergetics. Front. Psychiatry 2023, 14, 1249578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bryn, V.; Verkerk, R.; Skjeldal, O.H.; Saugstad, O.D.; Ormstad, H. Kynurenine Pathway in Autism Spectrum Disorders in Children. Neuropsychobiology 2017, 76, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Han, Y.; Dy, A.B.C.; Hagerman, R.J. The Gut Microbiota and Autism Spectrum Disorders. Front. Cell Neurosci. 2017, 11, 120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramaekers, V.T.; Blau, N.; Sequeira, J.M.; Nassogne, M.C.; Quadros, E.V. Folate receptor autoimmunity and cerebral folate deficiency in low-functioning autism with neurological deficits. Neuropediatrics 2007, 38, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.; Bennuri, S.C.; Wynne, R.; Melnyk, S.; James, S.J.; Frye, R.E. Mitochondrial and redox abnormalities in autism lymphoblastoid cells: A sibling control study. FASEB J. 2017, 31, 904–909. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tisato, V.; Silva, J.A.; Longo, G.; Gallo, I.; Singh, A.V.; Milani, D.; Gemmati, D. Genetics and Epigenetics of One-Carbon Metabolism Pathway in Autism Spectrum Disorder: A Sex-Specific Brain Epigenome? Genes 2021, 12, 782. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- El-Ansary, A.; Chirumbolo, S.; Bhat, R.S.; Dadar, M.; Ibrahim, E.M.; Bjørklund, G. The Role of Lipidomics in Autism Spectrum Disorder. Mol. Diagn. Ther. 2020, 24, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.X.; Henders, A.K.; Alvares, G.A.; Giles, C.; Huynh, K.; Nguyen, A.; Wallace, L.; McLaren, T.; Yang, Y.; Hernandez, L.M.; et al. Interactions between the lipidome and genetic and environmental factors in autism. Nat. Med. 2023, 29, 936–949. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Owens, A.P.; Mathias, C.J.; Iodice, V. Autonomic Dysfunction in Autism Spectrum Disorder. Front. Integr. Neurosci. 2021, 15, 787037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matta, S.M.; Hill-Yardin, E.L.; Crack, P.J. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav. Immun. 2019, 79, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Cantando, I.; Centofanti, C.; D’Alessandro, G.; Limatola, C.; Bezzi, P. Metabolic dynamics in astrocytes and microglia during post-natal development and their implications for autism spectrum disorders. Front. Cell Neurosci. 2024, 18, 1354259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robinson-Agramonte, M.L.A.; Noris García, E.; Fraga Guerra, J.; Vega Hurtado, Y.; Antonucci, N.; Semprún-Hernández, N.; Schultz, S.; Siniscalco, D. Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int. J. Mol. Sci. 2022, 23, 3033. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hughes, H.K.; Mills Ko, E.; Rose, D.; Ashwood, P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front. Cell Neurosci. 2018, 12, 405. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Estes, M.L.; McAllister, A.K. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat. Rev. Neurosci. 2015, 16, 469–486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramirez-Celis, A.; Becker, M.; Nuño, M.; Schauer, J.; Aghaeepour, N.; Van de Water, J. Risk assessment analysis for maternal autoantibody-related autism (MAR-ASD): A subtype of autism. Mol. Psychiatry 2021, 26, 1551–1560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brynge, M.; Gardner, R.; Sjöqvist, H.; Karlsson, H.; Dalman, C. Maternal levels of acute phase proteins in early pregnancy and risk of autism spectrum disorders in offspring. Transl. Psychiatry 2022, 12, 148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science 2016, 351, 933–939. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rudolph, M.D.; Graham, A.M.; Feczko, E.; Miranda-Dominguez, O.; Rasmussen, J.M.; Nardos, R.; Entringer, S.; Wadhwa, P.D.; Buss, C.; Fair, D.A. Maternal IL-6 during pregnancy can be estimated from newborn brain connectivity and predicts future working memory in offspring. Nat. Neurosci. 2018, 21, 765–772. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Puricelli, C.; Rolla, R.; Gigliotti, L.; Boggio, E.; Beltrami, E.; Dianzani, U.; Keller, R. The Gut-Brain-Immune Axis in Autism Spectrum Disorders: A State-of-Art Report. Front. Psychiatry 2022, 12, 755171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, Z.; Liu, S.; Liu, F.; Dai, N.; Liang, R.; Lv, S.; Bao, L. Gut microbiota and autism spectrum disorders: A bidirectional Mendelian randomization study. Front. Cell Infect. Microbiol. 2023, 13, 1267721. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, Y.M.Y.; Yau, S.Y.; Chan, M.M.Y.; Wong, C.K.; Chan, A.S. Altered Cytokine and BDNF Levels in Individuals with Autism Spectrum Disorders. Brain Sci. 2022, 12, 460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Goines, P.E.; Croen, L.A.; Braunschweig, D.; Yoshida, C.K.; Grether, J.; Hansen, R.; Kharrazi, M.; Ashwood, P.; Van de Water, J. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: A case-control study. Mol. Autism 2011, 2, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shriberg, L.D.; Paul, R.; McSweeny, J.L.; Klin, A.M.; Cohen, D.J.; Volkmar, F.R. Speech and prosody characteristics of adolescents and adults with high-functioning autism and Asperger syndrome. J. Speech Lang. Hear. Res. 2001, 44, 1097–1115. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Pascual, E.; Oakley, T. Functional echolalia in autism speech: Verbal formulae and repeated prior utterances as communicative and cognitive strategies. Front. Psychol. 2023, 14, 1010615. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dolata, J.K.; Suarez, S.; Calamé, B.; Fombonne, E. Pragmatic Language Markers of Autism Diagnosis and Severity. Res. Autism Spectr. Disord. 2022, 94, 101970. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, M.; Wang, Y.; Tachibana, M.; Rahman, S.; Kagitani-Shimono, K. Atypical structural connectivity of language networks in autism spectrum disorder: A meta-analysis of diffusion tensor imaging studies. Autism Res. 2022, 15, 1585–1602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jouravlev, O.; Kell, A.J.E.; Mineroff, Z.; Haskins, A.J.; Ayyash, D.; Kanwisher, N.; Fedorenko, E. Reduced Language Lateralization in Autism and the Broader Autism Phenotype as Assessed with Robust Individual-Subjects Analyses. Autism Res. 2020, 13, 1746–1761. [Google Scholar] [CrossRef] [PubMed]
- Pickles, A.; Anderson, D.K.; Lord, C. Heterogeneity and plasticity in the development of language: A 17-year follow-up of children referred early for possible autism. J. Child. Psychol. Psychiatry 2014, 55, 1354–1362. [Google Scholar] [CrossRef] [PubMed]
- Yurkovic-Harding, J.; Lisandrelli, G.; Shaffer, R.C.; Dominick, K.C.; Pedapati, E.V.; Erickson, C.A.; Yu, C.; Kennedy, D.P. Children with ASD establish joint attention during free-flowing toy play without face looks. Curr. Biol. 2022, 32, 2739–2746.e4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiao, Y.; Zhang, N.; Huang, K.; Zhang, S.; Xin, J.; Huang, Q.; Yi, A. Neuroanatomical basis of language ability in an autism subgroup with moderate language deficits. Eur. Child Adolesc. Psychiatry 2025, 34, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Eigsti, I.M.; Larson, C.; Naigles, L. Associations between pragmatic language and Theory of Mind in individuals with a history of autism and those who have lost the autism diagnosis. Phil. Trans. R. Soc. B 2025, 380. [Google Scholar] [CrossRef]
- Volden, J.; Phillips, L. Figurative and nonliteral language in autism spectrum disorder. J. Autism Dev. Disord. 2021, 51, 897–909. [Google Scholar] [CrossRef]
- Landau, E.; Nayar, K.; Martin, G.E.; Stevens, C.; Xing, J.; Guilfoyle, J.; Lau, J.C.Y. Context effects: Discourse structure influences narrative ability in autism and first-degree relatives. Front. Psychiatry 2025, 16, 1588429. [Google Scholar] [CrossRef]
- Pak, N.S.; Bailey, K.M.; Ledford, J.R.; Kaiser, A.P. Comparing Interventions With Speech-Generating Devices and Other Augmentative and Alternative Communication Modes: A Meta-Analysis. Am. J. Speech Lang. Pathol. 2023, 32, 786–802. [Google Scholar] [CrossRef] [PubMed]
- Logan, K.; Iacono, T.; Trembath, D. A systematic search and appraisal of intervention characteristics used to develop varied communication functions in children with autism who use aided AAC. Res. Autism Spectr. Disord. 2022, 90, 101896. [Google Scholar] [CrossRef]
- Chung, K.M.; Chung, E.; Lee, H. Behavioral Interventions for Autism Spectrum Disorder: A Brief Review and Guidelines With a Specific Focus on Applied Behavior Analysis. J. Korean Acad. Child. Adolesc. Psychiatry 2024, 35, 29–38. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, W.M.; Smith, T.B.; Butler, M.; Taylor, T.M.; Clayton, D. Effects of Parent-Implemented Interventions on Outcomes of Children with Autism: A Meta-Analysis. J. Autism Dev. Disord. 2023, 53, 4147–4163. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vorstman, J.; Sebat, J.; Bourque, V.R.; Jacquemont, S. Integrative genetic analysis: Cornerstone of precision psychiatry. Mol. Psychiatry 2025, 30, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Vorstman, J.A.S.; Parr, J.R.; Moreno-De-Luca, D.; Anney, R.J.L.; Nurnberger, J.I., Jr.; Hallmayer, J.F. Autism genetics: Opportunities and challenges for clinical translation. Nat. Rev. Genet. 2017, 18, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Salim, F.K.S.; Khaleel, J.A.A.; Alkrdoshi, J.M.; Saadallah, M.S.H. Cytogenetic Study of Autism: A Systematic Review. Razi Med. J. 2025, 1, 212–221. [Google Scholar] [CrossRef]
- Litman, A.; Sauerwald, N.; Green Snyder, L.; Foss-Feig, J.; Park, C.Y.; Hao, Y.; Dinstein, I.; Theesfeld, C.L.; Troyanskaya, O.G. Decomposition of phenotypic heterogeneity in autism reveals underlying genetic programs. Nat. Genet. 2025, 57, 1611–1619. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maillard, A.M.; Romascano, D.; Villalón-Reina, J.E.; Moreau, C.A.; Almeida Osório, J.M.; Richetin, S.; Junod, V.; Yu, P.; Misic, B.; Thompson, P.M.; et al. Pervasive alterations of intra-axonal volume and network organization in young children with a 16p11.2 deletion. Transl. Psychiatry 2024, 14, 95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mirahmadi, M.; Kahani, S.M.; Sharifi-Zarchi, A.; Firouzabadi, S.G.; Behjati, F.; Garshasbi, M. Genetic Heterogeneity of Autism Spectrum Disorder: Identification of Five Novel Mutations (RIMS2, FOXG1, AUTS2, ZCCHC17, and SPTBN5) in Iranian Families via Whole-Exome and Whole-Genome Sequencing. Biochem. Genet. 2025. [Google Scholar] [CrossRef] [PubMed]
- Mullins, N.; Forstner, A.J.; O’Connell, K.S.; Coombes, B.; Coleman, J.R.I.; Qiao, Z.; Als, T.D.; Bigdeli, T.B.; Børglum, A.D.; Carey, C.E.; et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 2021, 53, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Poschmann, J.; Cruz-Herrera Del Rosario, R.; Parikshak, N.N.; Hajan, H.S.; Kumar, V.; Ramasamy, R.; Belgard, T.G.; Elanggovan, B.; Wong, C.C.Y.; et al. Histone Acetylome-wide Association Study of Autism Spectrum Disorder. Cell 2016, 167, 1385–1397.e11. [Google Scholar] [CrossRef] [PubMed]
- LaSalle, J.M. Epigenomic signatures reveal mechanistic clues and predictive markers for autism spectrum disorder. Mol. Psychiatry 2023, 28, 1890–1901. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, L.A.; LaSalle, J.M. Future Prospects for Epigenetics in Autism Spectrum Disorder. Mol. Diagn. Ther. 2022, 26, 569–579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stessman, H.A.; Xiong, B.; Coe, B.P.; Wang, T.; Hoekzema, K.; Fenckova, M.; Kvarnung, M.; Gerdts, J.; Trinh, S.; Cosemans, N.; et al. Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases. Nat. Genet. 2017, 49, 515–526. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Srivastava, S.; Love-Nichols, J.A.; Dies, K.A.; Ledbetter, D.H.; Martin, C.L.; Chung, W.K.; Firth, H.V.; Frazier, T.; Hansen, R.L.; Prock, L.; et al. Meta-analysis and multidisciplinary consensus statement: Exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. 2019, 21, 2413–2421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miller, D.T.; Lee, K.; Gordon, A.S.; Amendola, L.M.; Adelman, K.; Bale, S.J.; Chung, W.K.; Gollob, M.H.; Harrison, S.M.; Herman, G.E.; et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 1391–1398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Repiská, G.; Konečný, M.; Krasňanská, G.; Celušáková, H.; Belica, I.; Rašková, B.; Kopčíková, M.; Keményová, P.; Ostatníková, D.; Lakatošová, S. Rare Variant Burden and Behavioral Phenotypes in Children with Autism in Slovakia. Genes 2025, 16, 893. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lord, C.; Charman, T.; Havdahl, A.; Carbone, P.; Anagnostou, E.; Boyd, B.; Carr, T.; De Vries, P.J.; Dissanayake, C.; Divan, G.; et al. The Lancet Commission on the future of care and clinical research in autism. Lancet 2021, 399, 271–334. [Google Scholar] [CrossRef] [PubMed]
- Al-Beltagi, M.; Saeed, N.K.; Bediwy, A.S.; Elbeltagi, R. Metabolomic changes in children with autism. World J. Clin. Pediatr. 2024, 13, 92737. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Needham, B.D.; Adame, M.D.; Serena, G.; Rose, D.R.; Preston, G.M.; Conrad, M.C.; Campbell, A.S.; Donabedian, D.H.; Fasano, A.; Ashwood, P.; et al. Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder. Biol. Psychiatry 2021, 89, 451–462. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frye, R.E.; Rincon, N.; McCarty, P.J.; Brister, D.; Scheck, A.C.; Rossignol, D.A. Biomarkers of mitochondrial dysfunction in autism spectrum disorder: A systematic review and meta-analysis. Neurobiol. Dis. 2024, 197, 106520. [Google Scholar] [CrossRef] [PubMed]
- Ismael, H.M.; Ismail, P.A. Investigating Oxidative Stress and Impaired DNA Repair Capacity as Diagnostic Biomarkers in Autism Spectrum Disorder. J. Mol. Neurosci. 2025, 75, 93. [Google Scholar] [CrossRef] [PubMed]
- Usui, N.; Kobayashi, H.; Shimada, S. Neuroinflammation and Oxidative Stress in the Pathogenesis of Autism Spectrum Disorder. Int. J. Mol. Sci. 2023, 24, 5487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bobrowski-Khoury, N.; Ramaekers, V.T.; Sequeira, J.M.; Quadros, E.V. Folate Receptor Alpha Autoantibodies in Autism Spectrum Disorders: Diagnosis, Treatment and Prevention. J. Pers. Med. 2021, 11, 710. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frye, R.E.; Slattery, J.; Delhey, L.; Furgerson, B.; Strickland, T.; Tippett, M.; Sailey, A.; Wynne, R.; Rose, S.; Melnyk, S.; et al. Folinic acid improves verbal communication in children with autism and language impairment: A randomized double-blind placebo-controlled trial. Mol. Psychiatry 2018, 23, 247–256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Almulla, A.F.; Thipakorn, Y.; Tunvirachaisakul, C.; Maes, M. The tryptophan catabolite or kynurenine pathway in autism spectrum disorder; a systematic review and meta-analysis. Autism Res. 2023, 16, 2302–2315. [Google Scholar] [CrossRef] [PubMed]
- Carpita, B.; Nardi, B.; Palego, L.; Cremone, I.M.; Massimetti, G.; Carmassi, C.; Betti, L.; Giannaccini, G.; Dell’Osso, L. Kynurenine pathway and autism spectrum phenotypes: An investigation among adults with autism spectrum disorder and their first-degree relatives. CNS Spectr. 2023, 28, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Yui, K.; Imataka, G.; Yoshihara, S. Lipid-Based Molecules on Signaling Pathways in Autism Spectrum Disorder. Int. J. Mol. Sci. 2022, 23, 9803. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kępka, A.; Ochocińska, A.; Chojnowska, S.; Borzym-Kluczyk, M.; Skorupa, E.; Knaś, M.; Waszkiewicz, N. Potential Role of L-Carnitine in Autism Spectrum Disorder. J. Clin. Med. 2021, 10, 1202. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yap, C.X.; Henders, A.K.; Alvares, G.A.; Wood, D.L.A.; Krause, L.; Tyson, G.W.; Restuadi, R.; Wallace, L.; McLaren, T.; Hansell, N.K.; et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell 2021, 184, 5916–5931.e17. [Google Scholar] [CrossRef] [PubMed]
- Plaza-Díaz, J.; Gómez-Fernández, A.; Chueca, N.; Torre-Aguilar, M.J.; Gil, Á.; Perez-Navero, J.L.; Flores-Rojas, K.; Martín-Borreguero, P.; Solis-Urra, P.; Ruiz-Ojeda, F.J.; et al. Autism Spectrum Disorder (ASD) with and without Mental Regression is Associated with Changes in the Fecal Microbiota. Nutrients 2019, 11, 337. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gargus, J.J. Genetic Dissection of Energy Deficiency in Autism Spectrum Disorder. Genes 2025, 16, 923. [Google Scholar] [CrossRef]
- Chen, Y.; Du, X.; Zhang, X.; Li, F.; Yuan, S.; Wang, W.; Zhu, Z.; Wang, M.; Gu, C. Research trends of inflammation in autism spectrum disorders: A bibliometric analysis. Front. Immunol. 2025, 16, 1534660. [Google Scholar] [CrossRef] [PubMed]
- Hughes, H.K.; Moreno, R.J.; Ashwood, P. Innate immune dysfunction and neuroinflammation in autism spectrum disorder (ASD). Brain Behav. Immun. 2023, 108, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.B.; Willis, D.E.; Rodriguez, E.L.; Schwarz, J.M. Maternal immune activation as an epidemiological risk factor for neurodevelopmental disorders: Considerations of timing, severity, individual differences, and sex in human and rodent studies. Front. Neurosci. 2023, 17, 1135559. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, H.; Zhang, H.; Liu, S.; Luo, W.; Jiang, Y.; Gao, J. Association of Peripheral Blood Levels of Cytokines With Autism Spectrum Disorder: A Meta-Analysis. Front. Psychiatry 2021, 12, 670200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heuer, L.S.; Croen, L.A.; Jones, K.L.; Yoshida, C.K.; Hansen, R.L.; Yolken, R.; Zerbo, O.; DeLorenze, G.; Kharrazi, M.; Ashwood, P.; et al. An Exploratory Examination of Neonatal Cytokines and Chemokines as Predictors of Autism Risk: The Early Markers for Autism Study. Biol. Psychiatry 2019, 86, 255–264. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saresella, M.; Marventano, I.; Piancone, F.; Bolognesi, E.; Hernis, A.; Zanzottera, M.; La Rosa, F.; Agliardi, C.; Giraldo, S.; Chiappedi, M.; et al. Alterations of natural killer cells activatory molecules phenotype and function in mothers of ASD children: A pilot study. Front. Immunol. 2023, 14, 1190925. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hu, C.; Li, H.; Li, J.; Luo, X.; Hao, Y. Microglia: Synaptic modulator in autism spectrum disorder. Front. Psychiatry 2022, 13, 958661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Velmeshev, D.; Schirmer, L.; Jung, D.; Haeussler, M.; Perez, Y.; Mayer, S.; Bhaduri, A.; Goyal, N.; Rowitch, D.H.; Kriegstein, A.R. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 2019, 364, 685–689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fujitani, M.; Miyajima, H.; Otani, Y.; Liu, X. Maternal and Adult Interleukin-17A Exposure and Autism Spectrum Disorder. Front. Psychiatry 2022, 13, 836181. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freedman, A.N.; Clark, J.; Eaves, L.A.; Roell, K.; Oran, A.; Koval, L.; Rager, J.; Santos, H.P., Jr.; Kuban, K.; Joseph, R.M.; et al. A multi-omic approach identifies an autism spectrum disorder (ASD) regulatory complex of functional epimutations in placentas from children born preterm. Autism Res. 2023, 16, 918–934. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramirez-Celis, A.; Croen, L.A.; Yoshida, C.K.; Alexeeff, S.E.; Schauer, J.; Yolken, R.H.; Ashwood, P.; Van de Water, J. Maternal autoantibody profiles as biomarkers for ASD and ASD with co-occurring intellectual disability. Mol. Psychiatry 2022, 27, 3760–3767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bagnall-Moreau, C.; Spielman, B.; Brimberg, L. Maternal brain reactive antibodies profile in autism spectrum disorder: An update. Transl. Psychiatry 2023, 13, 37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rose, D.R.; Yang, H.; Serena, G.; Sturgeon, C.; Ma, B.; Careaga, M.; Hughes, H.K.; Angkustsiri, K.; Rose, M.; Hertz-Picciotto, I.; et al. Differential immune responses and microbiota profiles in children with autism spectrum disorders and co-morbid gastrointestinal symptoms. Brain Behav. Immun. 2018, 70, 354–368. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morton, J.T.; Jin, D.M.; Mills, R.H.; Shao, Y.; Rahman, G.; McDonald, D.; Zhu, Q.; Balaban, M.; Jiang, Y.; Cantrell, K.; et al. Multi-level analysis of the gut-brain axis shows autism spectrum disorder-associated molecular and microbial profiles. Nat. Neurosci. 2023, 26, 1208–1217. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xiong, Y.; Chen, J.; Li, Y. Microglia and astrocytes underlie neuroinflammation and synaptic susceptibility in autism spectrum disorder. Front. Neurosci. 2023, 17, 1125428. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Than, U.T.T.; Nguyen, L.T.; Nguyen, P.H.; Nguyen, X.H.; Trinh, D.P.; Hoang, D.H.; Nguyen, P.A.T.; Dang, V.D. Inflammatory mediators drive neuroinflammation in autism spectrum disorder and cerebral palsy. Sci. Rep. 2023, 13, 22587. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jyonouchi, H. Autism spectrum disorder and a possible role of anti-inflammatory treatments: Experience in the pediatric allergy/immunology clinic. Front. Psychiatry 2024, 15, 1333717. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, R.; Ren, Z.; Li, Y. The effect of sulforaphane on autism spectrum disorder: Systematic review and meta-analysis. EXCLI J. 2025, 24, 542–557. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arteaga-Henríquez, G.; Gisbert, L.; Ramos-Quiroga, J.A. Immunoregulatory and/or Anti-inflammatory Agents for the Management of Core and Associated Symptoms in Individuals with Autism Spectrum Disorder: A Narrative Review of Randomized, Placebo-Controlled Trials. CNS Drugs 2023, 37, 215–229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, L.; Ding, S.; Qin, W.; Zhang, Y.; Qin, B.; Huang, K.; Zheng, H.; Cai, J. Alterations in the white matter fiber tracts of preschool-aged children with autism spectrum disorder: An automated fiber quantification study. Quant. Imaging Med. Surg. 2024, 14, 9347–9360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Just, M.A.; Keller, T.A.; Malave, V.L.; Kana, R.K.; Varma, S. Autism as a neural systems disorder: A theory of frontal-posterior underconnectivity. Neurosci. Biobehav. Rev. 2012, 36, 1292–1313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shen, M.D.; Kim, S.H.; McKinstry, R.C.; Gu, H.; Hazlett, H.C.; Nordahl, C.W.; Emerson, R.W.; Shaw, D.; Elison, J.T.; Swanson, M.R.; et al. Infant Brain Imaging Study Network. Increased Extra-axial Cerebrospinal Fluid in High-Risk Infants Who Later Develop Autism. Biol. Psychiatry 2017, 82, 186–193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schumann, C.M.; Nordahl, C.W. Bridging the gap between MRI and postmortem research in autism. Brain Res. 2011, 1380, 175–186. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Courchesne, E.; Mouton, P.R.; Calhoun, M.E.; Semendeferi, K.; Ahrens-Barbeau, C.; Hallet, M.J.; Barnes, C.C.; Pierce, K. Neuron number and size in prefrontal cortex of children with autism. JAMA 2011, 306, 2001–2010. [Google Scholar] [CrossRef] [PubMed]
- Floris, D.L.; Barber, A.D.; Nebel, M.B.; Martinelli, M.; Lai, M.C.; Crocetti, D.; Baron-Cohen, S.; Suckling, J.; Pekar, J.J.; Mostofsky, S.H. Atypical lateralization of motor circuit functional connectivity in children with autism is associated with motor deficits. Mol. Autism 2016, 7, 35. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eyler, L.T.; Pierce, K.; Courchesne, E. A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain 2012, 135 Pt 3, 949–960. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Emerson, R.W.; Adams, C.; Nishino, T.; Hazlett, H.C.; Wolff, J.J.; Zwaigenbaum, L.; Constantino, J.N.; Shen, M.D.; Swanson, M.R.; Elison, J.T.; et al. Functional neuroimaging of high-risk 6-month-old infants predicts a diagnosis of autism at 24 months of age. Sci. Transl. Med. 2017, 9, eaag2882. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ellul, P.; Maruani, A.; Vantalon, V.; Humeau, E.; Amestoy, A.; Anchordoqui, A.; Atzori, P.; Baleyte, J.M.; Benmansour, S.; Bonnot, O.; et al. Maternal immune activation during pregnancy is associated with more difficulties in socio-adaptive behaviors in autism spectrum disorder. Sci. Rep. 2023, 13, 17687. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, S.; Wang, X.; Lee, B.K.; Gardner, R.M. Associations between maternal metabolic conditions and neurodevelopmental conditions in offspring: The mediating effects of obstetric and neonatal complications. BMC Med. 2023, 21. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Modabbernia, A.; Velthorst, E.; Reichenberg, A. Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Mol. Autism 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, P.; Zhou, C.; Ruan, Z.; Zhang, Z.; Fang, X. Association between caregiver-child interaction and autistic-like behaviors at around three years of age. J. Affect Disord. 2024, 355, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Grzadzinski, R.; Nowell, S.W.; Crais, E.R.; Baranek, G.T.; Turner-Brown, L.; Watson, L.R. Parent responsiveness mediates the association between hyporeactivity at age 1 year and communication at age 2 years in children at elevated likelihood of ASD. Autism Res. 2021, 14, 2027–2037. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yan, Z. Epigenetic Mechanisms of Autism Spectrum Disorders. In Handbook of the Biology and Pathology of Mental Disorders; Springer Nature: Cham, Switzerland, 2025; pp. 2095–2108. [Google Scholar] [CrossRef]
- Kim, Y.R.; Song, D.Y.; Bong, G.; Han, J.H.; Yoo, H.J. Loss of Acquired Skills: Regression in Young Children With Autism Spectrum Disorders. J. Korean Acad. Child. Adolesc. Psychiatry 2023, 34, 51–56. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhat, A.N.; Boulton, A.J.; Tulsky, D.S. A further study of relations between motor impairment and social communication, cognitive, language, functional impairments, and repetitive behavior severity in children with ASD using the SPARK study dataset. Autism Res. 2022, 15, 1156–1178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sadozai, A.K.; Sun, C.; Demetriou, E.A.; Lampit, A.; Munro, M.; Perry, N.; Boulton, K.A.; Guastella, A.J. Executive function in children with neurodevelopmental conditions: A systematic review and meta-analysis. Nat. Hum. Behav. 2024, 8, 2357–2366. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Devenish, B.D.; Mantilla, A.; Bowe, S.J.; Grundy, E.A.C.; Rinehart, N.J. Can common strengths be identified in autistic young people? A systematic review and meta-analysis. Res. Autism Spectr. Disord. 2022, 98, 102025. [Google Scholar] [CrossRef]
- Horgan, F.; Kenny, N.; Flynn, P. A systematic review of the experiences of autistic young people enrolled in mainstream second-level (post-primary) schools. Autism 2023, 27, 526–538. [Google Scholar] [CrossRef] [PubMed]
- Read, J.E.; Vasile-Tudorache, A.; Newsome, A.; Lorente, M.J.; Agustín-Pavón, C.; Howard, S.R. Disorders of puberty and neurodevelopment: A shared etiology? Ann. N. Y. Acad. Sci. 2024, 1541, 83–99. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Halladay, A.K.; Bishop, S.; Constantino, J.N.; Daniels, A.M.; Koenig, K.; Palmer, K.; Messinger, D.; Pelphrey, K.; Sanders, S.J.; Singer, A.T.; et al. Sex and gender differences in autism spectrum disorder: Summarizing evidence gaps and identifying emerging areas of priority. Mol. Autism 2015, 6, 36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Powell, P.S.; Klinger, L.G.; Klinger, M.R. Patterns of Age-Related Cognitive Differences in Adults with Autism Spectrum Disorder. J. Autism Dev. Disord. 2017, 47, 3204–3219. [Google Scholar] [CrossRef] [PubMed]
- Starkstein, S.; Gellar, S.; Parlier, M.; Payne, L.; Piven, J. High rates of parkinsonism in adults with autism. J. Neurodev. Disord. 2015, 7, 29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seltzer, M.M.; Shattuck, P.; Abbeduto, L.; Greenberg, J.S. Trajectory of development in adolescents and adults with autism. Ment. Retard. Dev. Disabil. Res. Rev. 2004, 10, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Dawson, G.; Jones, E.J.; Merkle, K.; Venema, K.; Lowy, R.; Faja, S.; Kamara, D.; Murias, M.; Greenson, J.; Winter, J.; et al. Early behavioral intervention is associated with normalized brain activity in young children with autism. J. Am. Acad. Child. Adolesc. Psychiatry 2012, 51, 1150–1159. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewis, A.S.; van Schalkwyk, G.I. Systematic Review: Distribution of Age and Intervention Modalities in Therapeutic Clinical Trials for Autism Spectrum Disorder. J. Autism. Dev. Disord. 2020, 50, 2208–2216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lai, M.C.; Kassee, C.; Besney, R.; Bonato, S.; Hull, L.; Mandy, W.; Szatmari, P.; Ameis, S.H. Prevalence of co-occurring mental health diagnoses in the autism population: A systematic review and meta-analysis. Lancet Psychiatry 2019, 6, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Uddin, L.Q.; Dajani, D.R.; Voorhies, W.; Bednarz, H.; Kana, R.K. Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder. Transl. Psychiatry 2017, 7, e1218. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Domain | What Is Known | What Is Unknown | What Is Equivocal |
---|---|---|---|
Behavioral | Social communication differences and restricted/repetitive behaviors are core features; heterogeneity by sex, language, and co-occurring conditions is established; camouflaging is common, especially in females; autistic burnout is recognized. | Long-term effects of camouflaging and burnout on mental health and quality of life; trajectories of autistic traits in older adulthood. | Mapping behavioral subtypes to biology; ecological validity of new digital/eye-tracking metrics; impact of camouflaging on adaptive outcomes. |
Psychological | Executive function differences (flexibility, working memory, inhibition) are robust; alexithymia explains much emotion recognition variance; perceptual strengths in detail focus; frameworks like monotropism and predictive coding provide explanatory models. | Aging trajectories in cognition; generalization of lab-based findings to daily life; contribution of co-occurring conditions to profiles. | Extent to which perceptual/cognitive styles confer resilience vs. vulnerability; variability of theory of mind across contexts. |
Genetic | High heritability (64–91%); >200 ASD risk genes; both common polygenic and rare de novo variants implicated; female protective effect supported. | Functional consequences of many variants; mechanisms of gene–environment interplay; how genetic heterogeneity maps to phenotype. | Extent of pleiotropy with ID/epilepsy; clinical utility of polygenic risk scores; biological basis of sex differences. |
Metabolic | Mitochondrial dysfunction, oxidative stress, and folate/methylation abnormalities in subsets; altered amino acid and lipid metabolism reproducibly reported. | Whether metabolic abnormalities are causal, compensatory, or secondary; which signatures generalize across the spectrum. | Efficacy of metabolic interventions (folinic acid, carnitine, omega-3s) across ASD subtypes; reproducibility of biomarker-based stratification. |
Immunological | Neuroinflammation, maternal immune activation, and systemic immune dysregulation reproducibly linked to ASD; altered cytokine/chemokine profiles identified. | Causality of immune abnormalities; optimal targets for immunomodulation; which patients benefit from immune-directed interventions. | Mixed results of immunomodulatory trials (e.g., IVIG, sulforaphane); reproducibility of immune biomarkers across labs. |
Language and Communication | Pragmatic deficits nearly universal; atypical lateralization and altered connectivity in language networks; AAC shown effective for minimally verbal children. | Predictors of language development trajectories; biomarkers for treatment responsiveness. | Extent to which interventions generalize beyond structured settings; variability in outcomes of speech–language therapies. |
Neurological and Connectivity | Altered white matter integrity and atypical functional connectivity consistently reported; atypical network efficiency and hub distribution via graph theory. | Functional meaning of oscillatory abnormalities; developmental progression of connectivity changes. | Patterns of hypo- vs. hyperconnectivity vary by age, task, and region; person-specific variability obscures group-level effects. |
Developmental and Maturational | Early brain overgrowth; atypical hemispheric asymmetry; maternal immune activation and metabolic risk factors robust; puberty as a sensitive period. | Postpartum influences (nutrition, caregiving) and their epigenetic mediation; cognitive aging and risk of neurodegeneration. | Evidence for accelerated cognitive aging is mixed; hemispheric asymmetry findings vary by developmental stage and modality. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leisman, G.; Melillo, R. Autism Spectrum Disorder: What Do We Know and Where Do We Go? Brain Sci. 2025, 15, 1010. https://doi.org/10.3390/brainsci15091010
Leisman G, Melillo R. Autism Spectrum Disorder: What Do We Know and Where Do We Go? Brain Sciences. 2025; 15(9):1010. https://doi.org/10.3390/brainsci15091010
Chicago/Turabian StyleLeisman, Gerry, and Robert Melillo. 2025. "Autism Spectrum Disorder: What Do We Know and Where Do We Go?" Brain Sciences 15, no. 9: 1010. https://doi.org/10.3390/brainsci15091010
APA StyleLeisman, G., & Melillo, R. (2025). Autism Spectrum Disorder: What Do We Know and Where Do We Go? Brain Sciences, 15(9), 1010. https://doi.org/10.3390/brainsci15091010