Sex-Specific Association Between XPC rs2228001 Polymorphism and Parkinson’s Disease Risk in a Mexican Population: A Case–Control Study Exploring Gene–Environment Interactions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Ethical Considerations
2.2. Clinical Evaluation of Motor and Non-Motor Symptoms
2.3. Genomic DNA Extraction and SNP Genotyping
- 10 ng of genomic DNA.
- 0.625 µL of allele-specific TaqMan probe (assay ID listed below).
- 5.0 µL of TaqMan Genotyping Master Mix.
- ERCC1 rs11615–C_2532959_20.
- ERCC2 rs13181–C_3145033_10.
- XPA rs1800975–C_482935_1_.
- XPC rs2228001–C_234284_1.
- XPF rs1799801–C_7487514_10.
2.4. Statistical Analysis
2.4.1. Data Preprocessing
- Continuous variables were assessed for normality using the Kolmogorov–Smirnov test.
- Variables with normal distribution are summarized as mean ± standard deviation (SD) and were compared using two-tailed independent-samples t-tests.
- Non-normally distributed data are reported as median (IQR) and were compared using the Mann–Whitney U test.
- Categorical variables are expressed as frequencies and proportions and were compared using Pearson’s chi-square (χ2) test.
2.4.2. Genetic Association Testing
- Allele frequencies were compared between groups using the χ2 test, and genotype distributions were tested for Hardy–Weinberg equilibrium (HWE) in controls.
- Logistic regression models were applied to estimate the odds ratios (ORs) and 95% confidence intervals (CIs) for the association between each SNP and PD risk.
- Models were adjusted for pesticide exposure and uric acid where applicable.
3. Results
3.1. Clinical and Sociodemographic Characteristics of Participants
3.2. Association of NER Gene Polymorphisms with PD Susceptibility
3.3. Haplotype Analysis of ERCC1 and ERCC2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rawls, A.; Okun, M.S. Parkinson Disease. Continuum 2025, 31, 930–955. [Google Scholar] [CrossRef]
- Santana-Roman, E.; Ortega-Robles, E.; Arias-Carrion, O. Longitudinal dynamics of clinical and neurophysiological changes in Parkinson’s disease over four and a half years. Sci. Rep. 2025, 15, 27284. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson Disease Epidemiology, Pathology, Genetics, and Pathophysiology. Clin. Geriatr. Med. 2020, 36, 1–12. [Google Scholar] [CrossRef]
- Arias-Carrion, O.; Guerra-Crespo, M.; Padilla-Godinez, F.J.; Soto-Rojas, L.O.; Manjarrez, E. Alpha-synuclein pathology in synucleinopathies: Mechanisms, biomarkers, and therapeutic challenges. Int. J. Mol. Sci. 2025, 26, 5405. [Google Scholar] [CrossRef] [PubMed]
- Arias-Carrion, O.; Reyes-Mata, M.P.; Zuniga, J.; Ortuno-Sahagun, D. Translating exosomal microRNAs from bench to bedside in Parkinson’s disease. Brain Sci. 2025, 15, 756. [Google Scholar] [CrossRef]
- Aarsland, D.; Batzu, L.; Halliday, G.M.; Geurtsen, G.J.; Ballard, C.; Ray Chaudhuri, K.; Weintraub, D. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 2021, 7, 47. [Google Scholar] [CrossRef]
- Pena-Zelayeta, L.; Delgado-Minjares, K.M.; Villegas-Rojas, M.M.; Leon-Arcia, K.; Santiago-Balmaseda, A.; Andrade-Guerrero, J.; Perez-Segura, I.; Ortega-Robles, E.; Soto-Rojas, L.O.; Arias-Carrion, O. Redefining non-motor symptoms in Parkinson’s disease. J. Pers. Med. 2025, 15, 172. [Google Scholar] [CrossRef] [PubMed]
- Alster, P.; Madetko-Alster, N.; Migda, A.; Migda, B.; Kutyłowski, M.; Królicki, L.; Friedman, A. Sleep disturbances in progressive supranuclear palsy syndrome (PSPS) and corticobasal syndrome (CBS). Neurol. Neurochir. Pol. 2023, 57, 229–234. [Google Scholar] [CrossRef]
- Gonzalez-Hunt, C.P.; Sanders, L.H. DNA damage and repair in Parkinson’s disease: Recent advances and new opportunities. J. Neurosci. Res. 2021, 99, 180–189. [Google Scholar] [CrossRef]
- Miranda-Morales, E.; Meier, K.; Sandoval-Carrillo, A.; Salas-Pacheco, J.; Vazquez-Cardenas, P.; Arias-Carrion, O. Implications of DNA methylation in Parkinson’s disease. Front. Mol. Neurosci. 2017, 10, 225. [Google Scholar] [CrossRef]
- Jayaram, S.; Krishnamurthy, P.T. Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson’s disease: The therapeutic role of Nrf2 activators. Neurochem. Int. 2021, 145, 105014. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Bisaglia, M. Oxidative Stress and Neuroinflammation in Parkinson’s Disease: The Role of Dopamine Oxidation Products. Antioxidants 2023, 12, 955. [Google Scholar] [CrossRef]
- Shadfar, S.; Brocardo, M.; Atkin, J.D. The Complex Mechanisms by Which Neurons Die Following DNA Damage in Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 2484. [Google Scholar] [CrossRef] [PubMed]
- Migliore, L.; Coppedè, F. Environmental-Induced Oxidative Stress in Neurodegenerative Disorders and Aging. Mutat. Res. 2009, 674, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Sproviero, D.; Payán-Gómez, C.; Milanese, C.; Sun, S.; Gyenis, Á.; Delia, D.; Lashley, T.; Vijg, J.; Hoeijmakers, J.; Mastroberardino, P.G. Parkinson’s Disease Patients Display a DNA Damage Signature in Blood That Is Predictive of Disease Progression. medRxiv 2024. [Google Scholar] [CrossRef]
- Zhang, J.; Perry, G.; Smith, M.A.; Robertson, D.; Olson, S.J.; Graham, D.G.; Montine, T.J. Parkinson’s Disease Is Associated with Oxidative Damage to Cytoplasmic DNA and RNA in Substantia Nigra Neurons. Am. J. Pathol. 1999, 154, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Canugovi, C.; Misiak, M.; Scheibye-Knudsen, M.; Croteau, D.L.; Bohr, V.A. The Role of DNA Repair in Brain Related Disease Pathology. DNA Repair. 2013, 12, 578–587. [Google Scholar] [CrossRef] [PubMed]
- Sepe, S.; Payan-Gomez, C.; Milanese, C.; Hoeijmakers, J.H.; Mastroberardino, P.G. Nucleotide excision repair in chronic neurodegenerative diseases. DNA Repair. 2013, 12, 568–577. [Google Scholar] [CrossRef]
- Yang, J.L.; Chen, W.Y.; Mukda, S.; Yang, Y.R.; Sun, S.F.; Chen, S.D. Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)-initiated nonhomologous end joining (NHEJ) in cortical neurons. Neuropathol. Appl. Neurobiol. 2020, 46, 375–390. [Google Scholar] [CrossRef]
- Al-Shaheri, F.N.; Al-Shami, K.M.; Gamal, E.H.; Mahasneh, A.A.; Ayoub, N.M. Association of DNA repair gene polymorphisms with colorectal cancer risk and treatment outcomes. Exp. Mol. Pathol. 2020, 113, 104364. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y.; He, L.; Zhu, J.; Li, J.; Tang, Y.; Zhou, H.; He, J.; Wu, H. Association between NER pathway gene polymorphisms and neuroblastoma risk in an eastern Chinese population. Mol. Ther. Oncolytics 2021, 20, 3–11. [Google Scholar] [CrossRef]
- Bartlett, J.M.; White, A. Extraction of DNA from whole blood. Methods Mol. Biol. 2003, 226, 29–32. [Google Scholar] [CrossRef]
- Alizadeh, S.; Anani-Sarab, G.; Amiri, H.; Hashemi, M. Paraquat induced oxidative stress, DNA damage, and cytotoxicity in lymphocytes. Heliyon 2022, 8, e09895. [Google Scholar] [CrossRef]
- Casida, J.E.; Ford, B.; Jinsmaa, Y.; Sullivan, P.; Cooney, A.; Goldstein, D.S. Benomyl, aldehyde dehydrogenase, DOPAL, and the catecholaldehyde hypothesis for the pathogenesis of Parkinson’s disease. Chem. Res. Toxicol. 2014, 27, 1359–1361. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Naher, L.; Aka, T.D.; Aziz, M.A.; Shabnaz, S.; Shahriar, M.; Islam, M.S. The ERCC1 rs11615, ERCC4 rs2276466, XPC rs2228000 and XPC rs2228001 polymorphisms increase the cervical cancer risk and aggressiveness in the Bangladeshi population. Heliyon 2021, 7, e05919. [Google Scholar] [CrossRef] [PubMed]
- Dick, F.D. Parkinson’s disease and pesticide exposures. Br. Med. Bull. 2006, 79–80, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Torti, M.; Fossati, C.; Casali, M.; De Pandis, M.F.; Grassini, P.; Radicati, F.G.; Stirpe, P.; Vacca, L.; Iavicoli, I.; Leso, V.; et al. Effect of family history, occupation and diet on the risk of Parkinson disease: A case–control study. PLoS ONE 2020, 15, e0243612. [Google Scholar] [CrossRef]
- Schlesinger, I.; Schlesinger, N. Uric acid in Parkinson’s disease. Mov. Disord. 2008, 23, 1653–1657. [Google Scholar] [CrossRef]
- Shen, L.; Ji, H.F. Low uric acid levels in patients with Parkinson’s disease: Evidence from meta-analysis. BMJ Open 2013, 3, e003620. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; Zhou, B.; Chen, Y.H.; Ma, Z.L.; Gou, Y.; Zhang, C.L.; Yu, W.F.; Jiao, L. Serum uric acid levels in patients with Parkinson’s disease: A meta-analysis. PLoS ONE 2017, 12, e0173731. [Google Scholar] [CrossRef]
- Gallagher, J.; Gochanour, C.; Caspell-Garcia, C.; Dobkin, R.D.; Aarsland, D.; Alcalay, R.N.; Barrett, M.J.; Chahine, L.; Chen-Plotkin, A.S.; Coffey, C.S.; et al. Long-Term Dementia Risk in Parkinson Disease. Neurology 2024, 103, e209699. [Google Scholar] [CrossRef]
- Yu, R.L.; Wu, R.M. Mild Cognitive Impairment in Patients with Parkinson’s Disease: An Updated Mini-Review and Future Outlook. Front. Aging Neurosci. 2022, 14, 943438. [Google Scholar] [CrossRef]
- Cascone, A.D.; Langella, S.; Sklerov, M.; Dayan, E. Frontoparietal network resilience is associated with protection against cognitive decline in Parkinson’s disease. Commun. Biol. 2021, 4, 1021. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Alvarado, M.; Ferrer-Gallardo, V.J.; Paz-Alonso, P.M.; Caballero-Gaudes, C.; Rodríguez-Oroz, M.C. Interactions between functional networks in Parkinson’s disease mild cognitive impairment. Sci. Rep. 2023, 13, 20162. [Google Scholar] [CrossRef] [PubMed]
- Dou, K.; Xu, Q.; Han, X. The association between XPC Lys939Gln gene polymorphism and urinary bladder cancer susceptibility: A systematic review and meta-analysis. Diagn. Pathol. 2013, 8, 112. [Google Scholar] [CrossRef]
- Mucha, B.; Pytel, D.; Markiewicz, L.; Cuchra, M.; Szymczak, I.; Przybylowska-Sygut, K.; Dziki, A.; Majsterek, I.; Dziki, L. Nucleotide excision repair capacity and XPC and XPD gene polymorphism modulate colorectal cancer risk. Clin. Color. Cancer 2018, 17, e435–e441. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Gao, S.L.; Xu, K.; Su, Q.X.; Zhang, Z.; Shi, L.; Zhu, L.J.; Zhang, L.F.; Zuo, L. XPC exon 15 Lys939Gln variant increases susceptibility to prostate adenocarcinoma: Evidence based on 4306 patients and 4779 controls. Medicine 2020, 99, e21160. [Google Scholar] [CrossRef]
- Kaur, K.; Kaur, R. Polymorphisms in XPC and XPD genes modulate DNA damage in pesticide-exposed agricultural workers of Punjab, North-West India. Mol. Biol. Rep. 2020, 47, 5253–5262. [Google Scholar] [CrossRef]
Variable | Controls (n = 137) | PD Cases (n = 137) | p-Value |
---|---|---|---|
Age (years) | 70.28 ± 9.14 | 70.45 ± 9.07 | 0.87 1 |
Sex (M/F) | 73/64 | 73/64 | 1.00 + |
Glucose (mg/dL) | 112.80 ± 31.61 | 110.63 ± 18.35 | 0.488 1 |
Uric acid (mg/dL) | 5.94 ± 1.41 | 5.65 ± 1.59 | 0.114 1 |
Metal exposure (Yes/No) | 24/113 | 29/108 | 0.444 + |
Pesticide exposure (Yes/No) | 24/113 | 42/95 | 0.011 + |
MMSE | 27.68 ± 4.59 | 25.95 ± 4.69 | 0.002 1 |
UPDRS | — | 62 (43–83.5) | — |
Variable | Males | Females | ||||
---|---|---|---|---|---|---|
Controls (n = 73) | PD Cases (n = 73) | p-Value | Controls (n = 64) | PD Cases (n = 64) | p-Value | |
Age (years) | 70.45 ± 9.93 | 70.32 ± 9.27 | 0.938 1 | 70.09 ± 8.22 | 70.60 ± 8.9 | 0.734 1 |
Glucose (mg/dL) | 114.36 ± 33.81 | 113.25 ± 17.15 | 0.804 1 | 112.64 ± 26.18 | 107.68 ± 19.36 | 0.226 1 |
Uric acid (mg/dL) | 6.07 ± 1.34 | 5.60 ± 1.47 | 0.046 1 | 5.78 ± 1.48 | 5.70 ± 1.72 | 0.77 1 |
Metal exposure (Yes/No) | 24/49 | 28/45 | 0.489 + | 0/64 | 1/63 | |
Pesticide exposure (Yes/No) | 24/49 | 39/34 | 0.012 + | 0/64 | 3/61 | 0.080 + |
MMSE | 27.43 ± 4.67 | 25.73 ± 4.72 | 0.031 1 | 27.97 ± 4.51 | 26.19 ± 4.68 | 0.031 1 |
UPDRS | — | 64 (42–87.25) | — | — | 62 (49.5–80) |
Gene (SNP) | Controls (n = 274) | PD Cases (n = 274) | p-Value + |
---|---|---|---|
ERCC1 (rs11615) | C: 0.70 (191), T: 0.30 (83) | C: 0.67 (184), T: 0.33 (90) | 0.51 |
ERCC2 (rs13181) | A: 0.77 (211), C: 0.23 (63) | A: 0.81 (222), C: 0.19 (52) | 0.24 |
XPA (rs1800975) | C: 0.71 (195), T: 0.29 (79) | C: 0.69 (190), T: 0.31 (84) | 0.64 |
XPC (rs2228001) | A: 0.73 (201), C: 0.27 (73) | A: 0.64 (176), C: 0.36 (98) | 0.02 |
XPF (rs1799801) | T: 0.74 (203), C: 0.26 (71) | T: 0.79 (217), C: 0.21 (57) | 0.18 |
Gene (SNP) | Genotype | Controls (n = 137) | PD Cases (n = 137) | OR & (CI 95%) | p-Value + |
---|---|---|---|---|---|
ERCC1 (rs11615) | C/C | 68 (49.6%) | 59 (43.1%) | Ref | |
C/T | 55 (40.1%) | 66 (48.2%) | 1.48 (0.88–2.48) | 0.27 | |
T/T | 14 (10.2%) | 12 (8.8%) | 0.92 (0.38–2.20) | ||
ERCC2 (rs13181) | A/A | 83 (60.6%) | 88 (64.2%) | Ref | |
C/A | 45 (32.9%) | 45 (32.9%) | 0.97 (0.57–1.64) | 0.32 | |
C/C | 9 (6.6%) | 4 (2.9%) | 0.40 (0.12–1.37) | ||
XPA (rs1800975) | C/C | 81 (59.1%) | 74 (54%) | Ref | |
C/T | 33 (24.1%) | 41 (29.9%) | 1.22 (0.69–2.17) | 0.79 | |
T/T | 23 (16.8%) | 22 (16.1%) | 1.09 (0.55–2.15) | ||
XPC (rs2228001) | A/A | 77 (56.2%) | 63 (46%) | Ref | |
A/C | 47 (34.3%) | 50 (36.5%) | 1.24 (0.72–2.12) | 0.087 | |
C/C | 13 (9.5%) | 24 (17.5%) | 2.35 (1.08–5.11) | ||
XPF (rs1799801) | T/T | 77 (56.2%) | 87 (63.5%) | Ref | |
C/T | 49 (35.8%) | 43 (31.4%) | 0.82 (0.49–1.39) | 0.48 | |
C/C | 11 (8%) | 7 (5.1%) | 0.57 (0.21–1.57) |
Gene (SNP) | Genotype | Controls (n = 73) | PD Cases (n = 73) | OR & (CI 95%) | p-Value + |
---|---|---|---|---|---|
ERCC1 (rs11615) | C/C | 33 (45.2%) | 29 (39.7%) | Ref | |
C/T | 34 (46.6%) | 36 (49.3%) | 1.20 (0.61–2.39) | 0.74 | |
T/T | 6 (8.2%) | 8 (11%) | 1.52 (0.47–4.89) | ||
ERCC2 (rs13181) | A/A | 52 (71.2%) | 49 (67.1%) | Ref | |
C/A | 18 (24.7%) | 21 (28.8%) | 1.24 (0.59–2.60) | 0.85 | |
C/C | 3 (4.1%) | 3 (4.1%) | 1.06 (0.20–5.51) | ||
XPA (rs1800975) | C/C | 42 (57.5%) | 38 (52%) | Ref | |
C/T | 20 (27.4%) | 18 (24.7%) | 0.99 (0.46–2.16) | 0.45 | |
T/T | 11 (15.1%) | 17 (23.3%) | 1.71 (0.71–4.10) | ||
XPC (rs2228001) | A/A | 39 (53.4%) | 36 (49.3%) | Ref | |
A/C | 29 (39.7%) | 22 (30.1%) | 0.82 (0.40–1.68) | 0.042 | |
C/C | 5 (6.8%) | 15 (20.6%) | 3.25 (1.07–9.85) | ||
XPF (rs1799801) | T/T | 45 (61.6%) | 48 (65.8%) | Ref | |
C/T | 23 (31.5%) | 22 (30.1%) | 0.90 (0.44–1.83) | 0.73 | |
C/C | 5 (6.8%) | 3 (4.1%) | 0.56 (0.13–2.49) |
Gene (SNP) | Genotype | Controls (n = 64) | PD Cases (n = 64) | OR & (CI 95%) | p-Value + |
---|---|---|---|---|---|
ERCC1 (rs11615) | C/C | 35 (54.7%) | 30 (46.9%) | Ref | |
C/T | 21 (32.8%) | 30 (46.9%) | 1.72 (0.80–3.69) | 0.13 | |
T/T | 8 (12.5%) | 4 (6.2%) | 0.47 (0.11–1.97) | ||
ERCC2 (rs13181) | A/A | 31 (48.4%) | 39 (60.9%) | Ref | |
C/A | 27 (42.2%) | 24 (37.5%) | 0.76 (0.35–1.62) | 0.11 | |
C/C | 6 (9.4%) | 1 (1.6%) | 0.14 (0.02–1.28) | ||
XPA (rs1800975) | C/C | 39 (60.9%) | 36 (56.2%) | Ref | |
C/T | 13 (20.3%) | 23 (35.9%) | 1.66 (0.71–3.86) | 0.072 | |
T/T | 12 (18.8%) | 5 (7.8%) | 0.40 (0.12–1.27) | ||
XPC (rs2228001) | A/A | 38 (59.4%) | 27 (42.2%) | Ref | |
A/C | 18 (28.1%) | 28 (43.8%) | 2.15 (0.97–4.77) | 0.16 | |
C/C | 8 (12.5%) | 9 (14.1%) | 1.51 (0.50–4.61) | ||
XPF (rs1799801) | T/T | 32 (50%) | 39 (60.9%) | Ref | |
C/T | 26 (40.6%) | 21 (32.8%) | 0.64 (0.30–1.38) | 0.41 | |
C/C | 6 (9.4%) | 4 (6.2%) | 0.52 (0.13–2.09) |
ERCC1 | ERCC2 | Frequency | OR & (CI 95%) | p + |
---|---|---|---|---|
C | A | 0.5354 | ||
T | A | 0.2529 | 1.12 (0.70–1.81) | 0.63 |
C | C | 0.1489 | 0.81 (0.46–1.42) | 0.46 |
T | C | 0.0627 | 0.92 (0.39–2.16) | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarado-Retana, K.M.; Ramos-Rosales, D.F.; Antuna-Salcido, E.I.; Salas-Pacheco, S.M.; Castellanos-Juárez, F.X.; Méndez-Hernández, E.M.; Salas-Leal, A.C.; La Llave-León, O.; Quiñones-Canales, G.; Arias-Carrión, O.; et al. Sex-Specific Association Between XPC rs2228001 Polymorphism and Parkinson’s Disease Risk in a Mexican Population: A Case–Control Study Exploring Gene–Environment Interactions. Brain Sci. 2025, 15, 1008. https://doi.org/10.3390/brainsci15091008
Alvarado-Retana KM, Ramos-Rosales DF, Antuna-Salcido EI, Salas-Pacheco SM, Castellanos-Juárez FX, Méndez-Hernández EM, Salas-Leal AC, La Llave-León O, Quiñones-Canales G, Arias-Carrión O, et al. Sex-Specific Association Between XPC rs2228001 Polymorphism and Parkinson’s Disease Risk in a Mexican Population: A Case–Control Study Exploring Gene–Environment Interactions. Brain Sciences. 2025; 15(9):1008. https://doi.org/10.3390/brainsci15091008
Chicago/Turabian StyleAlvarado-Retana, Karla Mariana, Daniel Francisco Ramos-Rosales, Elizabeth Irasema Antuna-Salcido, Sergio Manuel Salas-Pacheco, Francisco Xavier Castellanos-Juárez, Edna Madai Méndez-Hernández, Alma Cristina Salas-Leal, Osmel La Llave-León, Gerardo Quiñones-Canales, Oscar Arias-Carrión, and et al. 2025. "Sex-Specific Association Between XPC rs2228001 Polymorphism and Parkinson’s Disease Risk in a Mexican Population: A Case–Control Study Exploring Gene–Environment Interactions" Brain Sciences 15, no. 9: 1008. https://doi.org/10.3390/brainsci15091008
APA StyleAlvarado-Retana, K. M., Ramos-Rosales, D. F., Antuna-Salcido, E. I., Salas-Pacheco, S. M., Castellanos-Juárez, F. X., Méndez-Hernández, E. M., Salas-Leal, A. C., La Llave-León, O., Quiñones-Canales, G., Arias-Carrión, O., Sandoval-Carrillo, A., & Salas-Pacheco, J. M. (2025). Sex-Specific Association Between XPC rs2228001 Polymorphism and Parkinson’s Disease Risk in a Mexican Population: A Case–Control Study Exploring Gene–Environment Interactions. Brain Sciences, 15(9), 1008. https://doi.org/10.3390/brainsci15091008