Histopathological Changes of the Corticospinal Tract Following Hemorrhagic and Ischemic Stroke
Abstract
1. Introduction
2. Patients and Methods
2.1. Study Population
2.2. Methods
2.3. Immunhistochemical Analysis
2.4. Morphological Analysis of the Myelin Sheaths
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNS | central nervous system |
CST | corticospinal tract |
GLM | general linear model |
HEM | Hemorrhagic |
ISC | Ischemic |
KB | Klüver–Barrera |
MCA | middle cerebral artery |
NF-H | neurofilament H |
WD | Wallerian degeneration |
References
- Zhang, K.; Jiang, M.; Fang, Y. The Drama of Wallerian Degeneration: The Cast, Crew, and Script. Annu. Rev. Genet. 2021, 55, 93–113. [Google Scholar] [CrossRef]
- Waller, A. Experiments on the Section of the Glosso-Pharyngeal and Hypoglossal Nerves of the Frog, and Observations of the Alterations Produced Thereby in the Structure of Their Primitive Fibres. Edinb. Med. Surg. J. 1851, 76, 369–376. [Google Scholar]
- Coleman, M.P.; Freeman, M.R. Wallerian degeneration, wld(s), and nmnat. Annu. Rev. Neurosci. 2010, 33, 245–267. [Google Scholar] [CrossRef]
- Freeman, M.R. Signaling mechanisms regulating wallerian degeneration. Curr Opin Neurobiol. 2014, 27, 224–231. [Google Scholar] [CrossRef]
- Vargas, M.E.; Barres, B.A. Why is Wallerian degeneration in the CNS so slow? Annu. Rev. Neurosci. 2007, 30, 153–179. [Google Scholar] [CrossRef] [PubMed]
- George, R.; Griffin, J.W. Delayed macrophage responses and myelin clearance during Wallerian degeneration in the central nervous system: The dorsal radiculotomy model. Exp. Neurol. 1994, 129, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Schwab, M.E.; Bartholdi, D. Degeneration and regeneration of axons in the lesioned spinal cord. Physiol. Rev. 1996, 76, 319–370. [Google Scholar] [CrossRef] [PubMed]
- Dang, G.; Chen, X.; Chen, Y.; Zhao, Y.; Ouyang, F.; Zeng, J. Dynamic secondary degeneration in the spinal cord and ventral root after a focal cerebral infarction among hypertensive rats. Sci. Rep. 2016, 6, 22655. [Google Scholar] [CrossRef]
- Lama, S.; Qiao, M.; Kirton, A.; Sun, S.; Cheng, E.; Foniok, T.; Tuor, U.I. Imaging corticospinal degeneration in neonatal rats with unilateral cerebral infarction. Exp. Neurol. 2011, 228, 192–199. [Google Scholar] [CrossRef]
- Beirowski, B.; Nógrádi, A.; Babetto, E.; Garcia-Alias, G.; Coleman, M.P. Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration. J. Neuropathol. Exp. Neurol. 2010, 69, 455–472. [Google Scholar] [CrossRef]
- Buss, A.; Brook, G.A.; Kakulas, B.; Martin, D.; Franzen, R.; Schoenen, J.; Noth, J.; Schmitt, A.B. Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain 2004, 127, 34–44. [Google Scholar] [CrossRef]
- Buss, A.; Pech, K.; Merkler, D.; Kakulas, B.A.; Martin, D.; Schoenen, J.; Noth, J.; Schwab, M.E.; Brook, G.A. Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord. Brain 2005, 128, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.C.; Hawkins, C.; Armstrong, D.; Deveber, G.; Macgregor, D.; Moharir, M.; Askalan, R. Association between radiographic Wallerian degeneration and neuropathological changes post childhood stroke. Dev. Med. Child Neurol. 2013, 55, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Matsusue, E.; Sugihara, S.; Fujii, S.; Kinoshita, T.; Ohama, E.; Ogawa, T. Wallerian degeneration of the corticospinal tracts: Postmortem MR-pathologic correlations. Acta Radiol. 2007, 48, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Bigourdan, A.; Munsch, F.; Coupé, P.; Guttmann, C.R.; Sagnier, S.; Renou, P.; Debruxelles, S.; Poli, M.; Dousset, V.; Sibon, I.; et al. Early Fiber Number Ratio Is a Surrogate of Corticospinal Tract Integrity and Predicts Motor Recovery After Stroke. Stroke 2016, 47, 1053–1059. [Google Scholar] [CrossRef]
- Chen, Y.J.; Nabavizadeh, S.A.; Vossough, A.; Kumar, S.; Loevner, L.A.; Mohan, S. Wallerian Degeneration Beyond the Corticospinal Tracts: Conventional and Advanced MRI Findings. J. Neuroimaging 2017, 27, 272–280. [Google Scholar] [CrossRef]
- DeVetten, G.; Coutts, S.B.; Hill, M.D.; Goyal, M.; Eesa, M.; O’Brien, B.; Demchuk, A.M.; Kirton, A. Acute corticospinal tract Wallerian degeneration is associated with stroke outcome. Stroke 2010, 41, 751–756. [Google Scholar] [CrossRef]
- Fleck, J.D.; Azzarelli, B.; Biller, J. Wallerian degeneration of the corticospinal tract in a middle cerebral artery infarction. J. Stroke Cerebrovasc. Dis. 2002, 11, 201–203. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, C.H.; Chang, W.H.; Lee, A.; Kim, S.T.; Shin, Y.I.; Kim, Y.H. The brain-derived neurotrophic factor Val66Met polymorphism and degeneration of the corticospinal tract after stroke: A diffusion tensor imaging study. Eur. J. Neurol. 2016, 23, 76–84. [Google Scholar] [CrossRef]
- Kirton, A.; Shroff, M.; Visvanathan, T.; deVeber, G. Quantified corticospinal tract diffusion restriction predicts neonatal stroke outcome. Stroke 2007, 38, 974–980. [Google Scholar] [CrossRef]
- Koyama, T.; Uchiyama, Y.; Domen, K. Associations of Diffusion-Tensor Fractional Anisotropy and FIM Outcome Assessments After Intracerebral Hemorrhage. J. Stroke Cerebrovasc. Dis. 2018, 27, 2869–2876. [Google Scholar] [CrossRef]
- Liang, Z.; Zeng, J.; Liu, S.; Ling, X.; Xu, A.; Yu, J.; Ling, L. A prospective study of secondary degeneration following subcortical infarction using diffusion tensor imaging. J. Neurol. Neurosurg. Psychiatry 2007, 78, 581–586. [Google Scholar] [CrossRef]
- Liebeskind, D.S. Wallerian degeneration of the corticospinal tracts. Neurology 2004, 62, 828. [Google Scholar] [CrossRef]
- Miyai, I.; Suzuki, T.; Kii, K.; Kang, J.; Kubota, K. Wallerian degeneration of the pyramidal tract does not affect stroke rehabilitation outcome. Neurology 1998, 51, 1613–1616. [Google Scholar] [CrossRef]
- Møller, M.; Frandsen, J.; Andersen, G.; Gjedde, A.; Vestergaard-Poulsen, P.; Østergaard, L. Dynamic changes in corticospinal tracts after stroke detected by fibretracking. J. Neurol. Neurosurg. Psychiatry 2007, 78, 587–592. [Google Scholar] [CrossRef]
- Puig, J.; Pedraza, S.; Blasco, G.; Daunis, I.E.J.; Prats, A.; Prados, F.; Boada, I.; Castellanos, M.; Sánchez-González, J.; Remollo, S.; et al. Wallerian degeneration in the corticospinal tract evaluated by diffusion tensor imaging correlates with motor deficit 30 days after middle cerebral artery ischemic stroke. AJNR Am. J. Neuroradiol. 2010, 31, 1324–1330. [Google Scholar] [CrossRef]
- Werring, D.J.; Toosy, A.T.; Clark, C.A.; Parker, G.J.; Barker, G.J.; Miller, D.H.; Thompson, A.J. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J. Neurol. Neurosurg. Psychiatry 2000, 69, 269–272. [Google Scholar] [CrossRef]
- Domi, T.; deVeber, G.; Shroff, M.; Kouzmitcheva, E.; MacGregor, D.L.; Kirton, A. Corticospinal tract pre-wallerian degeneration: A novel outcome predictor for pediatric stroke on acute MRI. Stroke 2009, 40, 780–787. [Google Scholar] [CrossRef]
- Yu, C.; Zhu, C.; Zhang, Y.; Chen, H.; Qin, W.; Wang, M.; Li, K. A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke. Neuroimage 2009, 47, 451–458. [Google Scholar] [CrossRef]
- Schmitt, A.B.; Buss, A.; Breuer, S.; Brook, G.A.; Pech, K.; Martin, D.; Schoenen, J.; Noth, J.; Love, S.; Schröder, J.M.; et al. Major histocompatibility complex class II expression by activated microglia caudal to lesions of descending tracts in the human spinal cord is not associated with a T cell response. Acta Neuropathol. 2000, 100, 528–536. [Google Scholar] [CrossRef]
- Kollai, S.; Bereczki, D.; Glasz, T.; Hortobágyi, T.; Kovács, T. Early histopathological changes of secondary degeneration in the spinal cord after total MCA territory stroke. Sci. Rep. 2023, 13, 21934. [Google Scholar] [CrossRef]
- Schmitt, A.B.; Brook, G.A.; Buss, A.; Nacimiento, W.; Noth, J.; Kreutzberg, G.W. Dynamics of microglial activation in the spinal cord after cerebral infarction are revealed by expression of MHC class II antigen. Neuropathol. Appl. Neurobiol. 1998, 24, 167–176. [Google Scholar] [CrossRef]
- Venkatasubramanian, C.; Kleinman, J.T.; Fischbein, N.J.; Olivot, J.M.; Gean, A.D.; Eyngorn, I.; Snider, R.W.; Mlynash, M.; Wijman, C.A. Natural history and prognostic value of corticospinal tract Wallerian degeneration in intracerebral hemorrhage. J. Am. Heart Assoc. 2013, 2, e000090. [Google Scholar] [CrossRef]
- Kister, A.; Kister, I. Overview of myelin, major myelin lipids, and myelin-associated proteins. Front. Chem. 2022, 10, 1041961. [Google Scholar] [CrossRef] [PubMed]
- García-García, Ó.D.; Carriel, V.; Chato-Astrain, J. Myelin histology: A key tool in nervous system research. Neural Regen. Res. 2024, 19, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Stoll, G.; Müller, H.W. Nerve injury, axonal degeneration and neural regeneration: Basic insights. Brain Pathol. 1999, 9, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Jiaerken, Y.; Wang, S.; Hong, H.; Jackson, A.; Yuan, L.; Lou, M.; Jiang, Q.; Zhang, M.; Huang, P. Changes in the Corticospinal Tract Beyond the Ischemic Lesion Following Acute Hemispheric Stroke: A Diffusion Kurtosis Imaging Study. J. Magn. Reson. Imaging 2020, 52, 512–519. [Google Scholar] [CrossRef]
- Ni, J.; Li, M.L.; Yao, M.; Cui, L.Y. Early corticospinal tract Wallerian degeneration on diffusion-weighted MR imaging after adult stroke: Three cases report. Clin. Neurol. Neurosurg. 2013, 115, 1164–1166. [Google Scholar] [CrossRef]
- Uchino, A.; Sawada, A.; Takase, Y.; Egashira, R.; Kudo, S. Transient detection of early wallerian degeneration on diffusion-weighted MRI after an acute cerebrovascular accident. Neuroradiology 2004, 46, 183–188. [Google Scholar] [CrossRef]
- Kösel, S.; Egensperger, R.; Bise, K.; Arbogast, S.; Mehraein, P.; Graeber, M.B. Long-lasting perivascular accumulation of major histocompatibility complex class II-positive lipophages in the spinal cord of stroke patients: Possible relevance for the immune privilege of the brain. Acta Neuropathol. 1997, 94, 532–538. [Google Scholar] [CrossRef]
- Waller, R.; Baxter , L.; Fillingham, D.J.; Coelho , S.; Pozo , J.M.; Mozumder, M.; Frangi, A.F.; Ince, P.G.; Simpson, J.E.; Highley, J.R. Iba-1-/CD68+ microglia are a prominent feature of age-associated deep subcortical white matter lesions. PLoS ONE 2019, 14, e0210888, ISSN 1932-6203. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kapapa, T.; Jesuthasan, S.; Schiller, F.; Schiller, F.; Woischneck, D.; Gräve, S.; Barth, E.; Mayer, B.; Oehmichen, M.; Pala, A. Outcome after decompressive craniectomy in older adults after traumatic brain injury. Front. Med. 2024, 11, 1422040, ISSN 2296-858X. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hadjiathanasiou, A.; Schuss, P.; Ilic, I.; Borger, V.; Vatter, H.; Güresir, E. Decompressive craniectomy for intracerebral haematoma: The influence of additional haematoma evacuation. Neurosurg. Rev. 2018, 41, 649–654, ISSN 1437-2320. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.; Fung, C.; Beyeler, S.; Bütikofer, L.; Z’Graggen, W.; Ringel, F.; Gralla, J.; Schaller, K.; Plesnila, N.; Strbian, D.; et al. Swiss trial of decompressive craniectomy versus best medical treatment of spontaneous supratentorial intracerebral haemorrhage (SWITCH): An international, multicentre, randomised-controlled, two-arm, assessor-blinded trial. Eur. Stroke J. 2024, 9, 781–788, ISSN 2050-313X. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vahedi, K.; Vicaut, E.; George, B.; Algra, A.; Amelink, G.J.; Schmiedeck, P.; Schwab, S.; Rothwell, P.M.; Bousser, M.G.; Hofmeijer, J.; et al. Early decompressive surgery in malignant infarction of the middle cerebral artery: A pooled analysis of three randomised controlled trials. Lancet Neurol. 2007, 6, 215–222, ISSN 1474-4430. [Google Scholar] [CrossRef] [PubMed]
Patient ID | Sex, Age | Type of Stroke | Side of the Lesion | Survival |
---|---|---|---|---|
1 | M78 | HEM | R | 5H |
2 | M67 | HEM | L | 22H |
3 | M75 | HEM | R | 29H |
4 | F78 | HEM | R | 30H |
5 | F86 | ISC | L | 2D |
6 | F80 | ISC | R | 2D |
7 | M66 | HEM | L | 3D |
8 | M79 | HEM | R | 4D |
9 | F90 | ISC | R | 5D |
10 | M77 | HEM | R | 7D |
11 | M65 | HEM | R | 10D |
12 | F82 | ISC | R | 10D |
13 | F83 | ISC | L | 11D |
14 | F73 | HEM | L | 17D |
15 | M64 | HEM | L | 18D |
16 | F90 | ISC | R | 22D |
17 | M76 | ISC | R | 27D |
18 | F60 | ISC | R | 33D |
19 | M59 | ISC | R | 42D |
20 | M52 | HEM | R | 90D |
21 | M62 | ISC | L | 450D |
22 | M69 | ISC | L | 330D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kollai, S.; Bereczki, D.; Dobi, B.; Glasz, T.; Kovács, T. Histopathological Changes of the Corticospinal Tract Following Hemorrhagic and Ischemic Stroke. Brain Sci. 2025, 15, 864. https://doi.org/10.3390/brainsci15080864
Kollai S, Bereczki D, Dobi B, Glasz T, Kovács T. Histopathological Changes of the Corticospinal Tract Following Hemorrhagic and Ischemic Stroke. Brain Sciences. 2025; 15(8):864. https://doi.org/10.3390/brainsci15080864
Chicago/Turabian StyleKollai, Sarolta, Dániel Bereczki, Balázs Dobi, Tibor Glasz, and Tibor Kovács. 2025. "Histopathological Changes of the Corticospinal Tract Following Hemorrhagic and Ischemic Stroke" Brain Sciences 15, no. 8: 864. https://doi.org/10.3390/brainsci15080864
APA StyleKollai, S., Bereczki, D., Dobi, B., Glasz, T., & Kovács, T. (2025). Histopathological Changes of the Corticospinal Tract Following Hemorrhagic and Ischemic Stroke. Brain Sciences, 15(8), 864. https://doi.org/10.3390/brainsci15080864