Usefulness of Direct Auricular Artery Injection as Refinement of the Well-Established Rabbit Blood Shunt Subarachnoid Hemorrhage Model
Abstract
1. Introduction
2. Methods
2.1. Animals and Brief Study Design
2.2. Experimental Protocol
2.2.1. Animal Preparation: Positioning and SA Cannulation on Day 1
2.2.2. Hemodynamics Monitoring: Blood Pressure and Arterial Blood Gas Analysis
2.2.3. Establishing Baseline: DSA for Precise Assessment
2.2.4. Transitioning to Prone Position: Optimal Repositioning
2.2.5. Insertion of Intracranial Monitors: Monitoring Pressure and Blood Flow
2.2.6. Targeting the Cisterna Magna: Needle Placement
2.2.7. Initiating Shunt Flow: Controlled Pressure Modulation
2.2.8. Angiography via Auricular Access
2.3. Postoperative Care Management: Pain Control and Monitoring
2.4. Experimental Day 3: Assessment of Vascular Dynamics
2.5. Ethic Approval and Statistics
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, S.C.; Selvin, S.; Gress, D.R. The burden, trends, and demographics of mortality from subarachnoid hemorrhage. Neurology 1998, 50, 1413–1418. [Google Scholar] [CrossRef]
- Steiner, T.; Juvela, S.; Unterberg, A.; Jung, C.; Forsting, M.; Rinkel, G. European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc. Dis. 2013, 35, 93–112. [Google Scholar] [CrossRef]
- Connolly, E.S., Jr.; Rabinstein, A.A.; Carhuapoma, J.R.; Derdeyn, C.P.; Dion, J.; Higashida, R.T.; Hoh, B.L.; Kirkness, C.J.; Naidech, A.M.; Ogilvy, C.S.; et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: A guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke 2012, 43, 1711–1737. [Google Scholar] [CrossRef]
- Laslo, A.M.; Eastwood, J.D.; Chen, F.X.; Lee, T.Y. Dynamic CT perfusion imaging in subarachnoid hemorrhage-related vasospasm. AJNR Am. J. Neuroradiol. 2006, 27, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Philipp, L.R.; McCracken, D.J.; McCracken, C.E.; Halani, S.H.; Lovasik, B.P.; Salehani, A.A.; Boulter, J.H.; Cawley, C.M.; Grossberg, J.A.; Barrow, D.L.; et al. Comparison Between CTA and Digital Subtraction Angiography in the Diagnosis of Ruptured Aneurysms. Neurosurgrey 2017, 80, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Kassell, N.F.; Torner, J.C.; Haley, E.C., Jr.; Jane, J.A.; Adams, H.P.; Kongable, G.L. The International Cooperative Study on the Timing of Aneurysm Surgery. Part 1: Overall management results. J. Neurosurg. 1990, 73, 18–36. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; Kuang, H.; Zhang, P.; Yang, X.; Luo, B.; Maimaitili, A.; Zhao, Y.; Song, D.; Guan, S.; Zhang, H.; et al. Pipeline Embolization Device for the Treatment of Ruptured Intracerebral Aneurysms: A Multicenter Retrospective Study. Front. Neurol. 2021, 12, 675917. [Google Scholar] [CrossRef]
- Allen, G.S.; Ahn, H.S.; Preziosi, T.J.; Battye, R.; Boone, S.C.; Boone, S.C.; Chou, S.N.; Kelly, D.L.; Weir, B.K.; Crabbe, R.A.; et al. Cerebral arterial spasm—A controlled trial of nimodipine in patients with subarachnoid hemorrhage. N. Engl. J. Med. 1983, 308, 619–624. [Google Scholar] [CrossRef]
- Vatter, H.; Konczalla, J.; Weidauer, S.; Preibisch, C.; Zimmermann, M.; Raabe, A.; Seifert, V. Effect of delayed cerebral vasospasm on cerebrovascular endothelin A receptor expression and function. J. Neurosurg. 2007, 107, 121–127. [Google Scholar] [CrossRef]
- Marbacher, S.; Fandino, J.; Kitchen, N.D. Standard intracranial in vivo animal models of delayed cerebral vasospasm. Br. J. Neurosurg. 2010, 24, 415–434. [Google Scholar] [CrossRef]
- Budohoski, K.P.; Czosnyka, M.; Smielewski, P.; Kasprowicz, M.; Helmy, A.; Bulters, D.; Pickard, J.D.; Kirkpatrick, P.J. Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: A prospective observational study. Stroke 2012, 43, 3230–3237. [Google Scholar] [CrossRef]
- Vatter, H.; Konczalla, J.; Seifert, V. Endothelin related pathophysiology in cerebral vasospasm: What happens to the cerebral vessels? Acta Neurochir. Suppl. 2011, 110, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Pluta, R.M.; Hansen-Schwartz, J.; Dreier, J.; Vajkoczy, P.; Macdonald, R.L.; Nishizawa, S.; Kasuya, H.; Wellman, G.; Keller, E.; Zauner, A.; et al. Cerebral vasospasm following subarachnoid hemorrhage: Time for a new world of thought. Neurol. Res. 2009, 31, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Sehba, F.A.; Pluta, R.M.; Zhang, J.H. Metamorphosis of subarachnoid hemorrhage research: From delayed vasospasm to early brain injury. Mol. Neurobiol. 2011, 43, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Marbacher, S.; Nevzati, E.; Croci, D.; Erhardt, S.; Muroi, C.; Jakob, S.M.; Fandino, J. The rabbit shunt model of subarachnoid haemorrhage. Transl. Stroke Res. 2014, 5, 669–680. [Google Scholar] [CrossRef]
- Lin, C.L.; Dumont, A.S.; Su, Y.F.; Dai, Z.K.; Cheng, J.T.; Tsai, Y.J.; Huang, J.H.; Chang, K.P.; Hwang, S.L. Attenuation of subarachnoid hemorrhage-induced apoptotic cell death with 17 beta-estradiol. Laboratory investigation. J. Neurosurg. 2009, 111, 1014–1022. [Google Scholar] [CrossRef]
- Offerhaus, L.; van Gool, J. Electrocardiographic changes and tissue catecholamines in experimental subarachnoid haemorrhage. Cardiovasc. Res. 1969, 3, 433–440. [Google Scholar] [CrossRef]
- Nakajima, M.; Date, I.; Takahashi, K.; Ninomiya, Y.; Asari, S.; Ohmoto, T. Effects of aging on cerebral vasospasm after subarachnoid hemorrhage in rabbits. Stroke 2001, 32, 620–628. [Google Scholar] [CrossRef]
- Marbacher, S.; Sherif, C.; Neuschmelting, V.; Schläppi, J.A.; Takala, J.; Jakob, S.M.; Fandino, J. Extra-intracranial blood shunt mimicking aneurysm rupture: Intracranial-pressure-controlled rabbit subarachnoid hemorrhage model. J. Neurosci. Methods 2010, 191, 227–233. [Google Scholar] [CrossRef]
- Andereggen, L.; Neuschmelting, V.; von Gunten, M.; Widmer, H.R.; Takala, J.; Jakob, S.M.; Fandino, J.; Marbacher, S. The rabbit blood-shunt model for the study of acute and late sequelae of subarachnoid hemorrhage: Technical aspects. J. Vis. Exp. 2014, 92, e52132. [Google Scholar] [CrossRef]
- Bi, Y.; Yu, Z.; Xu, K.; Zhong, H.; Wu, G.; Han, X. Transauricular intra-arterial and intravenous digital subtraction angiography for abdominal aortic aneurysm imaging in a rabbit model. Ann. Med. Surg. 2017, 18, 24–27. [Google Scholar] [CrossRef]
- Ding, Y.H.; Dai, D.; Danielson, M.A.; Kadirvel, R.; Lewis, D.A.; Cloft, H.J.; Kallmes, D.F. Intra-arterial digital subtraction angiography through the ear artery for experimental aneurysm imaging. AJNR Am. J. Neuroradiol. 2006, 27, 1700–1702. [Google Scholar]
- Miskolczi, L.; Nemes, B.; Cesar, L.; Masanari, O.; Gounis, M.J. Contrast injection via the central artery of the left ear in rabbits: A new technique to simplify follow-up studies. AJNR Am. J. Neuroradiol. 2005, 26, 1964–1966. [Google Scholar]
Auricular Access | Subclavian Access | Femoral Access |
---|---|---|
Less invasive | Invasive | Invasive |
Less complex procedure | Complex Procedure | Complex procedure |
Decreased perioperative morbidity, no risk of deep vessel perforation with relevant blood loss, catheter dislocation | Increased perioperative morbidity, potential risk of deep SA perforation with relevant blood loss, catheter dislocation when turning the rabbit from supine to prone | Increased perioperative morbidity, potential risk of deep femoral artery perforation with relevant blood loss, catheter dislocation when turning the rabbit from supine to prone |
Significant shorter operation times | Prolonged operation time | Prolonged operation time |
Facilitated neurological recovery by avoiding splitting muscles | Potential neurological impairment by splitting the pectoralis muscle | Potential neurological impairment by femoral nerve damage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanderer, S.; von Gunten, M.; Casoni, D.; Di Santo, S.; Konczalla, J.; Fathi, A.-R. Usefulness of Direct Auricular Artery Injection as Refinement of the Well-Established Rabbit Blood Shunt Subarachnoid Hemorrhage Model. Brain Sci. 2025, 15, 826. https://doi.org/10.3390/brainsci15080826
Wanderer S, von Gunten M, Casoni D, Di Santo S, Konczalla J, Fathi A-R. Usefulness of Direct Auricular Artery Injection as Refinement of the Well-Established Rabbit Blood Shunt Subarachnoid Hemorrhage Model. Brain Sciences. 2025; 15(8):826. https://doi.org/10.3390/brainsci15080826
Chicago/Turabian StyleWanderer, Stefan, Michael von Gunten, Daniela Casoni, Stefano Di Santo, Jürgen Konczalla, and Ali-Reza Fathi. 2025. "Usefulness of Direct Auricular Artery Injection as Refinement of the Well-Established Rabbit Blood Shunt Subarachnoid Hemorrhage Model" Brain Sciences 15, no. 8: 826. https://doi.org/10.3390/brainsci15080826
APA StyleWanderer, S., von Gunten, M., Casoni, D., Di Santo, S., Konczalla, J., & Fathi, A.-R. (2025). Usefulness of Direct Auricular Artery Injection as Refinement of the Well-Established Rabbit Blood Shunt Subarachnoid Hemorrhage Model. Brain Sciences, 15(8), 826. https://doi.org/10.3390/brainsci15080826