Differences in Cerebral Small Vessel Disease Magnetic Resonance Imaging Depending on Cardiovascular Risk Factors: A Retrospective Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Information Collection and Definitions
2.3. MRI Analysis
2.4. Statistical Analysis
3. Results
3.1. Hypertension
3.2. Hyperlipidemia
3.3. Diabetes
3.4. Smoking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010, 9, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, J.M.; Smith, C.; Dichgans, M. Small vessel disease: Mechanisms and clinical implications. Lancet Neurol. 2019, 18, 684–696. [Google Scholar] [CrossRef]
- Duering, M.; Biessels, G.J.; Brodtmann, A. Neuroimaging standards for research into small vessel disease—Advances since 2013. Lancet Neurol. 2023, 22, 602–618. [Google Scholar] [CrossRef]
- Hsu, Y.; Raghavan, S.; Gunter, J.; Botz, J.; Schirmer, M.; Lohner, V. Spatial patterns of white matter hyperintensities: A systematic review. Front. Aging Neurosci. 2023, 15, 1165324. [Google Scholar] [CrossRef]
- Singh, A.; Bonnell, G.; De Prey, J. Small-vessel disease in the brain. Am. Heart J. Plus 2023, 27, 100277. [Google Scholar] [CrossRef]
- Banegas, J.R.; Sánchez-Martínez, M.; Rodríguez-Artalejo, F. Numerical values and impact of hypertension in Spain. Rev. Esp. Cardiol. (Engl. Ed.) 2024, 77, 767–778. [Google Scholar] [CrossRef]
- Goldstein, E.D.; Wolcott, Z.; Garg, G. Effect of antihypertensives by class on cerebral small vessel disease: A post hoc analysis of SPRINT-MIND. Stroke 2022, 53, 2435–2440. [Google Scholar] [CrossRef]
- Kloska, A.; Malinowska, M.; Jakóbkiewicz-Banecka, J. Lipids and lipid mediators associated with the risk and pathology of ischemic stroke. Int. J. Mol. Sci. 2020, 21, 3618. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S. Role of blood lipid levels and lipid-lowering therapy in stroke patients with different levels of cerebral artery diseases: Reconsidering recent stroke guidelines. J. Stroke 2021, 23, 149–161. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Q.; Chen, J. Risk factors of cerebral small vessel disease: A systematic review and meta-analysis. Medicine 2021, 100, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Luitse, M.J.; Biessels, G.J.; Rutten, G.E.; Kappelle, L.J. Diabetes, hyperglycaemia, and acute ischaemic stroke. Lancet Neurol. 2012, 11, 261–271. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Chabriat, H.; de Leeuw, F.E.; Debette, S.; Dichgans, M.; Doubal, F.; Jokinen, H.; Katsanos, A.H.; Ornello, R.; Pantoni, L.; et al. European Stroke Organisation guideline on cerebral small vessel disease, part 2, lacunar ischaemic stroke. Eur. Stroke J. 2024, 9, 5. [Google Scholar] [CrossRef]
- Rudilosso, S.; Muñoz-Moreno, E.; Laredo, C.; Calvet, A.; Rodríguez-Vázquez, A.; Girona, A.; dels Angels Calderon, M.; Zarco, F.; Gil-Lopez, F.; Arboix, A.; et al. Perivascular and parenchymal brain fluid diffusivity in patients with type 1 cSVD and a recent small subcortical infarct. Neuroradiology 2025, 67, 599–611. [Google Scholar] [CrossRef]
- Yushkevich, P.A.; Piven, J.; Hazlett, H.C.; Smith, R.G.; Ho, S.; Gee, J.C.; Gerig, G. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006, 31, 1116–1128. [Google Scholar] [CrossRef]
- Valdés Hernández, M.D.; Ferguson, K.J.; Chappell, F.M.; Wardlaw, J.M. New multispectral MRI data fusion technique for white matter lesion segmentation: Method and comparison with thresholding in FLAIR images. Eur. Radiol. 2010, 20, 1684–1691. [Google Scholar] [CrossRef]
- Valdés Hernández, M.D.C.; Ballerini, L.; Glatz, A. Step-by-Step Pipeline for Segmenting Enlarged Perivascular Spaces from 3D T2-Weighted MRI, 2018–2023; University of Edinburgh: Edinburgh, UK, 2023. [Google Scholar]
- Brenlla, C.; Sozzi, C.; Girona, A.; Muñoz-Moreno, E.; Laredo, C.; Rodríguez-Vázquez, A.; Amaro, S.; Renú, A.; Doncel-Moriano, A.; Llull, L.; et al. Deep Medullary Vein Integrity and Relationships with Small Vessel Disease and Interstitial Diffusivity Measures in Patients with a Recent Small Subcortical Infarct. Am. J. Neuroradiol. 2025, 46, 1103–1111. [Google Scholar] [CrossRef]
- Fischl, B.; Salat, D.H.; Busa, E.; Albert, M.; Dieterich, M.; Haselgrove, C.; van der Kouwe, A.; Killiany, R.; Kennedy, D.; Klaveness, S.; et al. Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33, 341–355. [Google Scholar] [CrossRef]
- Blanco, P.J.; Müller, L.O.; Spence, J.D. Blood pressure gradients in cerebral arteries: A clue to pathogenesis of cerebral small vessel disease. Stroke Vasc. Neurol. 2017, 2, 108–117. [Google Scholar] [CrossRef]
- Debette, S.; Markus, H.S. The clinical importance of white matter hyperintensities on brain MRI: Systematic review and meta-analysis. BMJ 2010, 341, c3666. [Google Scholar] [CrossRef]
- Basile, A.M.; Pantoni, L.; Pracucci, G.; Asplund, K.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; Hennerici, M.; O’Brien, J.; et al. Age, hypertension, and lacunar stroke are the major determinants of the severity of age-related white matter changes: The LADIS study. Cerebrovasc. Dis. 2006, 21, 315–322. [Google Scholar] [CrossRef]
- De Leeuw, F.E.; de Groot, J.C.; Achten, E.; Oudkerk, M.; Ramos, L.M.; Heijboer, R.; Hofman, A.; Jolles, J.; Van Gijn, J.; Breteler, M.M. Prevalence of cerebral white matter lesions in elderly people: The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 2001, 70, 9–14. [Google Scholar] [CrossRef]
- Beyer, F.; Lammer, L.; Loeffler, M.; Riedel-Heller, S.; Debette, S.; Villringer, A.; Witte, A.V. Progression of white matter hyperintensities is related to blood pressure increases and global cognitive decline—A registered report. Imaging Neurosci. 2024, 2, 1–26. [Google Scholar] [CrossRef]
- Harshfield, E.L.; Sands, C.J.; Tuladhar, A.M.; de Leeuw, F.E.; Lewis, M.R.; Markus, H.S. Metabolomic profiling in small vessel disease identifies multiple associations with disease severity. Brain 2022, 145, 2461–2471. [Google Scholar] [CrossRef]
- Jimenez-Conde, J.; Biffi, A.; Rahman, R.; Kanakis, A.; Butler, C.; Sonni, S.; Massasa, E.; Cloonan, L.; Gilson, A.; Capozzo, K.; et al. Hyperlipidemia and reduced white matter hyperintensity volume in patients with ischemic stroke. Stroke 2010, 41, 437–442. [Google Scholar] [CrossRef]
- Jiang, G.; Rabin, J.S.; Black, S.E.; Swardfager, W.; MacIntosh, B.J. A blood-based lipid profile associated with hippocampal volume and brain resting-state activation within obese adults from the UK Biobank. Brain Connect. 2023, 13, 578–588. [Google Scholar] [CrossRef]
- Waymont, J.M.; Hernandez, M.D.; Bernal, J.; Coello, R.D.; Brown, R.; Chappell, F.M.; Ballerini, L.; Wardlaw, J.M. Systematic review and meta-analysis of automated methods for quantifying enlarged perivascular spaces in the brain. J. NeuroImage 2024, 297, 120685. [Google Scholar] [CrossRef]
- Durazzo, T.C.; Meyerhoff, D.J.; Nixon, S.J. Chronic cigarette smoking: Implications for neurocognition and brain neurobiology. Int. J. Environ. Res. Public Health 2010, 7, 3760–3791. [Google Scholar] [CrossRef]
- Hara, M.; Yakushiji, Y.; Suzuyama, K.; Nishihara, M.; Eriguchi, M.; Noguchi, T.; Nishiyama, M.; Nanri, Y.; Tanaka, J.; Hara, H. Synergistic effect of hypertension and smoking on the total small vessel disease score in healthy individuals: The Kashima scan study. Hypertens. Res. 2019, 42, 1738–1744. [Google Scholar] [CrossRef]
- Jeerakathil, T.; Wolf, P.A.; Beiser, A.; Massaro, J.; Seshadri, S.; D’Agostino, R.B.; DeCarli, C. Stroke risk profile predicts white matter hyperintensity volume: The Framingham Study. Stroke 2004, 35, 1857–1861. [Google Scholar] [CrossRef]
Clinical Characteristics | Patients (n = 93) |
---|---|
Age (years), mean (SD) | 70.2 (10.8) |
Female sex, n (%) | 25 (26.7) |
BMI (kg/m2), median (SD) | 27.2 (4.0) |
History of hypertension, n (%) | 61 (65.6) |
ACEI, n (%) | 48 (51.2) |
ARBs, n (%) | 19 (20.4) |
Calcium channel blockers, n (%) | 17 (18.3) |
Beta blockers, n (%) | 10 (10.8) |
Diuretics, n (%) | 17 (18.3) |
History of hyperlipidemia, n (%) | 46 (49.5) |
Total cholesterol (mg/dL), mean (SD) | 186 (47.0) |
LDLc (mg/dL), mean (SD) | 117.9 (40.3) |
HDLc (mg/dL), mean (SD) | 43.2 (13.2) |
History of diabetes mellitus at admission, n (%) | 28 (30.1) |
Glycemia (mg/dL), mean (SD) | 120.1 (35) |
HbA1c (%), mean (SD) | 6 (1.1) |
HbA1c ≥ 6.5%, n (%) | 20 (21.5) |
Current smoker, n (%) | 24 (25.8) |
Any alcohol intake, n (%) | 29 (31.2) |
Lacunes, presence of, n (%) | 1.9 (2.5) |
Lacunes, number of, median (IQR) | 1 (0–3) |
Patients with >1 lacune, n (%) | 38 (48.9) |
CMB, presence of, n (%) | 18 (25.4) |
CMB, number, median (IQR) | 1 (0–4) |
Patients with >1 CMB, n (%) | 39 (41.9) |
BG-PVS (%), mean (SD) | 3.8 (1.5) |
WM-PVS (%), mean (SD) | 1.1 (1.1) |
WM-ratio (WMH/ICV), median (IQR) | 0.7 (0.4–1.7) |
Variable | Hypertension | Hyperlipidemia | Diabetes Mellitus | Smoking | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No | Yes | p | No | Yes | p | No | Yes | p | No | Yes | p | |
Clinical Characteristics | ||||||||||||
Age, mean (SD) | 66.0 (11.9) | 72.3 (9.5) | 0.011 | 68.6 (12.2) | 71.8 (9.0) | 0.150 | 68.0 (11.2) | 75.2 (8.0) | <0.001 | 72.5 (10.2) | 63.3 (9.5) | <0.001 |
BMI (kg/m2), mean (SD) | 26.5 (4.3) | 27.6 (3.9) | 0.120 | 27.8 (4.7) | 26.7 (3.2) | 0.280 | 27.2 (4.3) | 27.4 (3.3) | 0.740 | 27.5 (4.0) | 26.6 (4.0) | 0.290 |
Total cholesterol (mg/dL), mean (SD) | 195.5 (33.3) | 180.9 (52.6) | 0.030 | 191.0 (32.9) | 180.8 (58.1) | 0.080 | 195.0 (48.6) | 164.1 (35.2) | 0.003 | 179.5 (38.6) | 208.4 (65.2) | 0.023 |
LDLc (mg/dL), mean (SD) | 125.9 (27.51) | 113.6 (45.37) | 0.020 | 123.8 (28.4) | 111.8 (49.3) | 0.030 | 125.8 (41.0) | 98.7 (31.9) | <0.001 | 113.1 (35.8) | 134.4 (50.8) | 0.052 |
HDLc (mg/dL), mean (SD) | 46.0 (14.5) | 41.8 (12.3) | 0.120 | 45.0 (15.4) | 41.5 (10.4) | 0.440 | 44.7 (14.2) | 39.9 (9.6) | 0.160 | 44.3 (12.8) | 39.7 (14.1) | 0.054 |
Glycemia (mg/dL), mean (SD) | 109.5 (24.6) | 125.7 (38.4) | 0.030 | 114.7 (30.0) | 125.6 (39.0) | 0.180 | 106.8 (18.3) | 151.1 (44.3) | <0.001 | 120.5 (36.1) | 119.1 (32.3) | 0.980 |
HbA1c (%), mean (SD) | 5.6 (0.6) | 6.2 (1.2) | 0.005 | 5.8 (0.7) | 6.3 (1.3) | 0.017 | 5.6 (0.5) | 7.1 (1.3) | <0.001 | 6.1 (1.2) | 6.0 (0.9) | 0.870 |
Any alcohol intake, n (%) | 9 (28) | 20 (32.8) | 0.820 | 16 (34.0) | 13 (28.3) | 0.710 | 24 (36.9) | 5 (17.9) | 0.110 | 15 (21.7) | 14 (58.3) | 0.002 |
Neuroimaging Markers | ||||||||||||
Lacunes, presence of, n (%) | 14.0 (43.8) | 47.0 (77.0) | 0.003 | 27.0 (57.4) | 34.0 (73.9) | 0.150 | 38.0 (58.5) | 23.0 (82.1) | 0.049 | 43.0 (62.3) | 18.0 (75.0) | 0.380 |
Lacunes, number of, median (IQR) | 0.0 (0–1) | 2.0 (1–4) | <0.001 | 1.0 (0–3) | 1.0 (0.3–4) | 0.110 | 1.0 (0–3) | 1.5 (1–4.3) | 0.061 | 1.0 (0–3) | 1.0 (0.8–3) | 0.350 |
CMBs, presence of, n (%) | 18.0 (56.2) | 41.0 (67.2) | 0.410 | 27.0 (56.2) | 32.0 (71.7) | 0.020 | 39.0 (59.1) | 20.0 (74.1) | 0.260 | 41.0 (58.6) | 18.0 (78.3) | 0.150 |
CMBs, number, median (IQR) | 1.0 (0–3) | 1.0 (0–4) | 0.660 | 1.0 (0–2.5) | 2.0 (0–4.8) | 0.020 | 1.0 (0–3) | 1.5 (0.8–4.3) | 0.190 | 1.0 (0–3) | 1.5 (0–5) | 0.070 |
BG-PVS (%), mean (SD) | 3.1 (1.4) | 4.1 (1.4) | 0.002 | 3.7 (1.6) | 3.8 (1.3) | 0.810 | 3.7 (1.6) | 4.0 (1.3) | 0.390 | 3.8 (1.3) | 3.6 (1.9) | 0.380 |
WM-PVS (%), mean (SD) | 0.8 (0.8) | 1.3 (0.9) | <0.001 | 1.1 (1.0) | 1.1 (0.8) | 0.440 | 1.1 (0.9) | 1.2 (0.9) | 0.190 | 1.1 (0.8) | 1.2 (1.1) | 0.950 |
WMH ratio, mean (SD) | 0.011 (0.0093) | 0.017 (0.013) | 0.018 | 0.014 (0.01) | 0.016 (0.014) | 0.530 | 0.014 (0.011) | 0.017 (0.015) | 0.390 | 0.015 (0.013) | 0.015 (0.012) | 0.900 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribera-Zabaco, M.; Laredo, C.; Muñoz-Moreno, E.; Cabero-Arnold, A.; Rosa-Batlle, I.; Bartolomé-Arenas, I.; Amaro, S.; Chamorro, Á.; Rudilosso, S. Differences in Cerebral Small Vessel Disease Magnetic Resonance Imaging Depending on Cardiovascular Risk Factors: A Retrospective Cross-Sectional Study. Brain Sci. 2025, 15, 804. https://doi.org/10.3390/brainsci15080804
Ribera-Zabaco M, Laredo C, Muñoz-Moreno E, Cabero-Arnold A, Rosa-Batlle I, Bartolomé-Arenas I, Amaro S, Chamorro Á, Rudilosso S. Differences in Cerebral Small Vessel Disease Magnetic Resonance Imaging Depending on Cardiovascular Risk Factors: A Retrospective Cross-Sectional Study. Brain Sciences. 2025; 15(8):804. https://doi.org/10.3390/brainsci15080804
Chicago/Turabian StyleRibera-Zabaco, Marta, Carlos Laredo, Emma Muñoz-Moreno, Andrea Cabero-Arnold, Irene Rosa-Batlle, Inés Bartolomé-Arenas, Sergio Amaro, Ángel Chamorro, and Salvatore Rudilosso. 2025. "Differences in Cerebral Small Vessel Disease Magnetic Resonance Imaging Depending on Cardiovascular Risk Factors: A Retrospective Cross-Sectional Study" Brain Sciences 15, no. 8: 804. https://doi.org/10.3390/brainsci15080804
APA StyleRibera-Zabaco, M., Laredo, C., Muñoz-Moreno, E., Cabero-Arnold, A., Rosa-Batlle, I., Bartolomé-Arenas, I., Amaro, S., Chamorro, Á., & Rudilosso, S. (2025). Differences in Cerebral Small Vessel Disease Magnetic Resonance Imaging Depending on Cardiovascular Risk Factors: A Retrospective Cross-Sectional Study. Brain Sciences, 15(8), 804. https://doi.org/10.3390/brainsci15080804