Connected by Boredom: A Systematic Review of the Role of Trait Boredom in Problematic Technology Use
Abstract
1. Introduction
1.1. Theoretical Models of Boredom
1.2. Aim of the Study
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Risk of Bias Assessment
3. Results
3.1. Characteristics of the Studies
3.2. Main Results
3.2.1. Boredom and Internet Addiction
3.2.2. Boredom and Social Network/Social Media Addiction
3.2.3. Boredom and Gambling Addiction
3.2.4. Boredom and Smartphone Addiction
3.2.5. Boredom and Online Pornography Consumption
4. Discussion
4.1. Boredom and Internet Addiction
4.2. Boredom and Social Network/Social Media Addiction
4.3. Boredom and Gambling Addiction
4.4. Boredom and Smartphone Addiction
4.5. Boredom and Online Pornography Consumption
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
I-PACE | Interaction of Person-Affect-Cognition-Execution |
CIUT | Compensatory Internet Use Theory |
FoMO | Fear of Missing Out |
IAD | Internet Addiction Disorder |
IGD | Internet Gaming Disorder |
SMA | Social Media Addiction |
ICD-11 | International Classification of Diseases |
MAC | Meaning and Attentional Components model |
BFM | The Boredom Feedback Model |
BPS | Boredom Proneness Scale |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PROSPERO | International Prospective Register of Systematic Reviews |
NIH | National Institutes of Health |
SD | Standard deviation |
IAS | Internet Addiction Scale |
SELSA | Social and Emotional Loneliness Scale |
HADS | Hospital Anxiety and Depression Scale |
MCQ-30 | Metacognitions Questionnaire 30 |
IAT | The Internet Addiction Test |
SPSRQ | The Sensitivity to Punishment and Sensitivity to Reward Questionnaire |
PIU | Problematic Internet Use |
ZBS | Boredom Susceptibility Scale |
CPGI | The Canadian Problem Gambling Index |
DQ | Five-item Dissociation Questionnaire |
BIS-SF | Barratt Impulsivity Scale–Short Form |
BPS-SF | Boredom Proneness Scale-Short Form |
PSU | Problematic Smartphone Use |
PMPU | Problematic Mobile Phone Use |
PFU | Problematic Use of Facebook |
PCI | Pornography Consumption Inventory |
PSNSU | Problematic Social Networking Sites Use |
PMSMU | Problematic Mobile Social Media Use |
ADHD | Hyperactivity Disorder |
HSDI | Validation of Hungarian Smartphone Deprivation Inventory |
SAS | Smartphone Addiction Scale |
SPAI | the Smartphone Addiction Inventory |
DASS-21 | the Depression Anxiety Stress Scales |
PIU-Q | Problem Internet Use Questionnaire |
UCLA | Loneliness Self-reporting Scale |
DTS | The Distress Tolerance Scale |
PDMS | Positive Drinking Expectancy Scale |
s-IAT-ICD | Short Internet Addiction Test for Internet-Communication Disorder |
IUES | Internet-Use Expectancies Scale |
RTSQ | Ruminative thought style questionnaire |
HSNS | Hypersensitive Narcissism Scale |
BSSS-8 | Brief Sensation Seeking Scale |
RSES | Rosenberg Self-Esteem Scale |
CD-RISC-10 | 10-item Connor–Davidson Resilience Scale |
SSS | Sensation seeking scale |
SAS-SV | The 10-item Smartphone Addiction Scale-Short Version |
CES-D | Center for Epidemiologic Studies Depression Scale |
MPAI | The Mobile Phone Addiction Index |
SUF | Smartphone Use Frequency Scale |
RRS | Ruminative Responses Scale |
UPPS-P | The Short Impulsive Behavior Scale |
MTUAS | The Anxiety/Dependence on Technology subscale of the Media and Technology Usage and Attitudes Scale |
MAAS | The Mindful Attention Awareness Scale |
SCS | Self-control Scale |
TAS-20 | Toronto Alexithymia-20 Scale |
SIAS | Social Interaction Anxiousness Scale |
BIS-15 | Barratt Impulsiveness Scale-15 |
MSUQ | Metacognitions about Smartphone Use Questionnaire |
SUES | Smartphone Use Expectancies Scale |
BFAS | The Bergen Facebook Addiction Scale |
MSBS-SF | The Multidimensional State Boredom Scale-Short Form |
CSES | Core self-evaluations scale |
BPS | Bedtime Procrastination Scale |
MPATS | Mobile phone addiction tendency scale |
PHQ-9 | The Patient Health Questionnaire-9 |
SIAS | The Social Interaction Anxiety Scale |
DIS | The Distress Intolerance Scale |
PERS | The Perth Emotional Reactivity Scale-Short Form |
MDTQ | Metacognitions about Desire Thinking Questionnaire |
DTQ | Desire Thinking Questionnaire |
PACS-SNSs | Penn Alcohol Craving Scale |
BSMAS | Bergen Social Media Addiction Scale |
PMSMUS | Problematic Mobile Social Media Use Scale |
Y-BOCS | Yale–Brown obsessive–compulsive scale |
HB | High Boredom |
LB | Low Boredom |
CBT | Cognitive Behavioral Therapy |
ADHD | Attention Deficit/Hyperactivity Disorder |
Appendix A
Section and Topic | Item | Checklist Item | Location Where Item Is Reported |
---|---|---|---|
TITLE | |||
Title | 1 | Identify the report as a systematic review | Page 1 |
ABSTRACT | |||
Abstract | 2 | Report an abstract addressing each item in the PRISMA 2020 for Abstracts checklist | Page 1 |
INTRODUCTION | |||
Rationale | 3 | Describe the rationale for the review in the context of existing knowledge | Page 2 |
Objectives | 4 | Provide an explicit statement of the objective(s) or question(s) the review addresses | Page 4 |
METHODS | |||
Eligibility criteria | 5 | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses | Page 5 |
Information sources | 6 | Specify all databases, registers, websites, organisations, reference lists, and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted | Page 5 |
Search strategy | 7 | Present the full search strategies for all databases, registers, and websites, including any filters and limits used | Page 5 |
Selection process | 8 | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and, if applicable, details of automation tools used in the process | Page 5 |
Data collection process | 9 | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and, if applicable, details of automation tools used in the process | Page 5 |
Data items | 10a | List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (for example, for all measures, time points, analyses), and, if not, the methods used to decide which results to collect | Page 5 |
Data items | 10b | List and define all other variables for which data were sought (such as participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information | Page 5 |
Study risk of bias assessment | 11 | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and, if applicable, details of automation tools used in the process | Page 6 |
Effect measures | 12 | Specify for each outcome the effect measure(s) (such as risk ratio, mean difference) used in the synthesis or presentation of results | NA |
Synthesis methods | 13a | Describe the processes used to decide which studies were eligible for each synthesis (such as tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)) | Page 5 |
Synthesis methods | 13b | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics or data conversions | - |
Synthesis methods | 13c | Describe any methods used to tabulate or visually display results of individual studies and syntheses | Page 9–15 |
Synthesis methods | 13d | Describe any methods used to synthesise results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used | - |
Synthesis methods | 13e | Describe any methods used to explore possible causes of heterogeneity among study results (such as subgroup analysis, meta-regression) | NA |
Synthesis methods | 13f | Describe any sensitivity analyses conducted to assess robustness of the synthesised results | - |
Reporting bias assessment | 14 | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases) | Page 6–8 |
Certainty assessment | 15 | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome | Page 6–8 |
RESULTS | |||
Study selection | 16a | Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram https://www.prisma-statement.org/prisma-2020 (accessed on 21 July 2024) | Page 5–6 |
Study selection | 16b | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded | - |
Study characteristics | 17 | Cite each included study and present its characteristics | Page 9–15 |
Risk of bias in studies | 18 | Present assessments of risk of bias for each included study | Page 6–8 |
Results of individual studies | 19 | For all outcomes, present for each study (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (such as confidence/credible interval), ideally using structured tables or plots | Page 9–15 |
Results of syntheses | 20a | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies | Page 9–15 |
Results of syntheses | 20b | Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (such as confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect | NA |
Reporting biases | 21 | Present results of all investigations of possible causes of heterogeneity among study results | NA |
Certainty of evidence | 22 | Present results of all sensitivity analyses conducted to assess the robustness of the synthesised results | - |
DISCUSSION | |||
Results in context | 23 | Provide a general interpretation of the results in the context of other evidence | Page 18–22 |
Limitations of included studies | 24 | Discuss any limitations of the evidence included in the review | Page 22–23 |
Limitations of the review methods | 25 | Discuss any limitations of the review processes used | Page 22–23 |
Implications | 26 | Discuss implications of the results for practice, policy, and future research | Page 23 |
OTHER INFORMATION | |||
Registration and protocol | 27a | Provide registration information for the review, including register name and registration number, or state that the review was not registered | Page 5 |
Registration and protocol | 27b | Indicate where the review protocol can be accessed, or state that a protocol was not prepared | Page 5 |
Registration and protocol | 27c | Describe and explain any amendments to information provided at registration or in the protocol | - |
Support | 28 | Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review | Page 23 |
Competing interests | 29 | Declare any competing interests of review authors | Page 23 |
Availability of data, code, and other materials | 30 | Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review | - |
References
- Widyanto, L.; Griffiths, M. ‘Internet Addiction’: A Critical Review. Int. J. Ment. Health Addict. 2006, 4, 31–51. [Google Scholar] [CrossRef]
- Marks, I. Behavioural (Non-Chemical) Addictions. Br. J. Addict. 1990, 85, 1389–1394. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M. University of Plymouth Technological Addictions. Clin. Psychol. Forum 1995, 1, 14–19. [Google Scholar] [CrossRef]
- Griffiths, M. Internet “Addiction”: An Issue for Clinical Psychology? Br. Psychol. Soc. 1996, 97, 32–36. [Google Scholar] [CrossRef]
- Young, K.S. Internet Addiction: Evaluation and Treatment. BMJ 1999, 319, 9910351. [Google Scholar] [CrossRef]
- LaRose, R.; Connolly, R.; Lee, H.; Li, K.; Kayla, K.D. Connection Overload? A Cross Cultural Study of the Consequences of Social Media Connection. Inf. Syst. Manag. 2014, 31, 59–73. [Google Scholar] [CrossRef]
- Ryan, T.; Chester, A.; Reece, J.; Xenos, S. The Uses and Abuses of Facebook: A Review of Facebook Addiction. J. Behav. Addict. 2014, 3, 133–148. [Google Scholar] [CrossRef]
- Reed, G.M.; First, M.B.; Billieux, J.; Cloitre, M.; Briken, P.; Achab, S.; Brewin, C.R.; King, D.L.; Kraus, S.W.; Bryant, R.A. Emerging Experience with Selected New Categories in the ICD-11: Complex PTSD, Prolonged Grief Disorder, Gaming Disorder, and Compulsive Sexual Behaviour Disorder. World Psychiatry 2022, 21, 189–213. [Google Scholar] [CrossRef]
- APA. The American Psychiatric Association Practice Guideline for the Treatment of Patients with Eating Disorders. Am. J. Psychiatry 2023, 180, 167–171. [Google Scholar] [CrossRef]
- Elhai, J.D.; Gallinari, E.F.; Rozgonjuk, D.; Yang, H. Depression, Anxiety and Fear of Missing out as Correlates of Social, Non-Social and Problematic Smartphone Use. Addict. Behav. 2020, 105, 106335. [Google Scholar] [CrossRef]
- Chotpitayasunondh, V.; Douglas, K.M. How “Phubbing” Becomes the Norm: The Antecedents and Consequences of Snubbing via Smartphone. Comput. Hum. Behav. 2016, 63, 9–18. [Google Scholar] [CrossRef]
- Gentile, D.A.; Choo, H.; Liau, A.; Sim, T.; Li, D.; Fung, D.; Khoo, A. Pathological Video Game Use Among Youths: A Two-Year Longitudinal Study. Pediatrics 2011, 127, e319–e329. [Google Scholar] [CrossRef]
- Savci, M.; Aysan, F. Relationship between Impulsivity, Social Media Usage and Loneliness. Educ. Process Int. J. 2016, 5, 106–115. [Google Scholar] [CrossRef]
- Kiss, H.; Fitzpatrick, K.M.; Piko, B.F. The Digital Divide: Risk and Protective Factors and the Differences in Problematic Use of Digital Devices among Hungarian Youth. Child. Youth Serv. Rev. 2020, 108, 104612. [Google Scholar] [CrossRef]
- Donati, M.A.; Beccari, C.; Primi, C. Boredom and Problematic Facebook Use in Adolescents: What Is the Relationship Considering Trait or State Boredom? Addict. Behav. 2022, 125, 107132. [Google Scholar] [CrossRef] [PubMed]
- Larche, C.J.; Dixon, M.J. Winning Isn’t Everything: The Impact of Optimally Challenging Smartphone Games on Flow, Game Preference and Individuals Gaming to Escape Aversive Bored States. Comput. Hum. Behav. 2021, 123, 106857. [Google Scholar] [CrossRef]
- Eastwood, J.D.; Frischen, A.; Fenske, M.J.; Smilek, D. The Unengaged Mind: Defining Boredom in Terms of Attention. Perspect. Psychol. Sci. 2012, 7, 482–495. [Google Scholar] [CrossRef]
- Neu, J. Boring From Within: Endogenous versus Reactive Boredom. In A Tear Is an Intellectual Thing; Oxford University Press: Oxford, UK, 2000; pp. 95–107. ISBN 978-0-19-512337-1. [Google Scholar]
- Elpidorou, A. The Bored Mind Is a Guiding Mind: Toward a Regulatory Theory of Boredom. Phenomenol. Cogn. Sci. 2018, 17, 455–484. [Google Scholar] [CrossRef]
- Mercer-Lynn, K.B.; Bar, R.J.; Eastwood, J.D. Causes of Boredom: The Person, the Situation, or Both? Personal. Individ. Differ. 2014, 56, 122–126. [Google Scholar] [CrossRef]
- Farmer, R.; Sundberg, N.D. Boredom Proneness-The Development and Correlates of a New Scale. J. Pers. Assess. 1986, 50, 4–17. [Google Scholar] [CrossRef]
- Gorelik, D.; Eastwood, J.D. Trait Boredom as a Lack of Agency: A Theoretical Model and a New Assessment Tool. Assessment 2024, 31, 321–334. [Google Scholar] [CrossRef]
- Danckert, J.; Eastwood, J.D. Out of My Skull: The Psychology of Boredom; Harvard University Press: Cambridge, MA, USA, 2020; ISBN 0-674-24705-1. [Google Scholar]
- Fahlman, S.A.; Mercer-Lynn, K.B.; Flora, D.B.; Eastwood, J.D. Development and Validation of the Multidimensional State Boredom Scale. Assessment 2013, 20, 68–85. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, Y.K.; Eastwood, J.D.; LaGuardia, J.; Danckert, J. Boredom: An Emotional Experience Distinct from Apathy, Anhedonia, or Depression. J. Soc. Clin. Psychol. 2011, 30, 647–666. [Google Scholar] [CrossRef]
- Li, X.; Feng, X.; Xiao, W.; Zhou, H. Loneliness and Mobile Phone Addiction Among Chinese College Students: The Mediating Roles of Boredom Proneness and Self-Control. Psychol. Res. Behav. Manag. 2021, 14, 687–694. [Google Scholar] [CrossRef]
- Mercer-Lynn, K.B.; Flora, D.B.; Fahlman, S.A.; Eastwood, J.D. The Measurement of Boredom: Differences Between Existing Self-Report Scales. Assessment 2013, 20, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-J.; Liu, Q.-Q.; Lian, S.-L.; Zhou, Z.-K. Are Bored Minds More Likely to Be Addicted? The Relationship between Boredom Proneness and Problematic Mobile Phone Use. Addict. Behav. 2020, 108, 106426. [Google Scholar] [CrossRef]
- Xiao, W.; Zhou, H.; Li, X.; Lin, X. Why Are Individuals with Alexithymia Symptoms More Likely to Have Mobile Phone Addiction? The Multiple Mediating Roles of Social Interaction Anxiousness and Boredom Proneness. Psychol. Res. Behav. Manag. 2021, 14, 1631–1641. [Google Scholar] [CrossRef]
- Westgate, E.C.; Wilson, T.D. Boring Thoughts and Bored Minds: The MAC Model of Boredom and Cognitive Engagement. Psychol. Rev. 2018, 125, 689. [Google Scholar] [CrossRef]
- Westgate, E.C. Why Boredom Is Interesting. Curr. Dir. Psychol. Sci. 2020, 29, 33–40. [Google Scholar] [CrossRef]
- Poels, K.; Rudnicki, K.; Vandebosch, H. The Media Psychology of Boredom and Mobile Media Use. J. Media Psychol. 2022, 34, 113–125. [Google Scholar] [CrossRef]
- Tam, K.Y.Y.; van Tilburg, W.A.P.; Chan, C.S. What Is Boredom Proneness? A Comparison of Three Characterizations. J. Pers. 2021, 89, 831–846. [Google Scholar] [CrossRef]
- Brand, M.; Wegmann, E.; Stark, R.; Müller, A.; Wölfling, K.; Robbins, T.W.; Potenza, M.N. The Interaction of Person-Affect-Cognition-Execution (I-PACE) Model for Addictive Behaviors: Update, Generalization to Addictive Behaviors beyond Internet-Use Disorders, and Specification of the Process Character of Addictive Behaviors. Neurosci. Biobehav. Rev. 2019, 104, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Orsolini, L.; Longo, G.; Volpe, U. The Mediatory Role of the Boredom and Loneliness Dimensions in the Development of Problematic Internet Use. Int. J. Environ. Res. Public Health 2023, 20, 4446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Li, J. Effect and Mechanisms of State Boredom on Consumers’ Livestreaming Addiction. Front. Psychol. 2022, 13, 826121. [Google Scholar] [CrossRef] [PubMed]
- Freund, V.A.; Schulenberg, J.E.; Maslowsky, J. Boredom by Sensation-Seeking Interactions During Adolescence: Associations with Substance Use, Externalizing Behavior, and Internalizing Symptoms in a US National Sample. Prev. Sci. 2021, 22, 555–566. [Google Scholar] [CrossRef]
- Biolcati, R.; Mancini, G.; Trombini, E. Proneness to Boredom and Risk Behaviors During Adolescents’ Free Time. Psychol. Rep. 2018, 121, 303–323. [Google Scholar] [CrossRef]
- Camerini, A.-L.; Morlino, S.; Marciano, L. Boredom and Digital Media Use: A Systematic Review and Meta-Analysis. Comput. Hum. Behav. Rep. 2023, 11, 100313. [Google Scholar] [CrossRef]
- Struk, A.A.; Carriere, J.S.A.; Cheyne, J.A.; Danckert, J. A Short Boredom Proneness Scale: Development and Psychometric Properties. Assessment 2017, 24, 346–359. [Google Scholar] [CrossRef]
- Drody, A.C.; Ralph, B.C.W.; Danckert, J.; Smilek, D. Boredom and Media Multitasking. Front. Psychol. 2022, 13, 807667. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Panic, N.; Leoncini, E.; de Belvis, G.; Ricciardi, W.; Boccia, S. Evaluation of the Endorsement of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement on the Quality of Published Systematic Review and Meta-Analyses. PLoS ONE 2013, 8, e83138. [Google Scholar] [CrossRef]
- Brodeur, A.; Clark, A.E.; Fleche, S.; Powdthavee, N. COVID-19, Lockdowns and Well-Being: Evidence from Google Trends. J. Public Econ. 2021, 193, 104346. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhao, C.; Yu, T. The Relationship Between Boredom and Smartphone Addiction Before and After the Outbreak of the COVID-19 Pandemic: A Systematic Review and Meta-Analysis. Psychol. Rep. 2025, 0, 00332941251314713. [Google Scholar] [CrossRef] [PubMed]
- Elhai, J.D.; Levine, J.C.; Alghraibeh, A.M.; Alafnan, A.A.; Aldraiweesh, A.A.; Hall, B.J. Fear of Missing out: Testing Relationships with Negative Affectivity, Online Social Engagement, and Problematic Smartphone Use. Comput. Hum. Behav. 2018, 89, 289–298. [Google Scholar] [CrossRef]
- Elhai, J.D.; Vasquez, J.K.; Lustgarten, S.D.; Levine, J.C.; Hall, B.J. Proneness to Boredom Mediates Relationships Between Problematic Smartphone Use With Depression and Anxiety Severity. Soc. Sci. Comput. Rev. 2018, 36, 707–720. [Google Scholar] [CrossRef]
- Skues, J.; Williams, B.; Oldmeadow, J.; Wise, L. The Effects of Boredom, Loneliness, and Distress Tolerance on Problem Internet Use Among University Students. Int. J. Ment. Health Addict. 2016, 14, 167–180. [Google Scholar] [CrossRef]
- Hopley, A.A.B.; Nicki, R.M. Predictive Factors of Excessive Online Poker Playing. Cyberpsychol. Behav. Soc. Netw. 2010, 13, 379–385. [Google Scholar] [CrossRef]
- Regan, T.; Harris, B.; Loon, M.V.; Nanavaty, N.; Schueler, J.; Engler, S.; Fields, S.A. Does Mindfulness Reduce the Effects of Risk Factors for Problematic Smartphone Use? Comparing Frequency of Use versus Self-Reported Addiction. Addict. Behav. 2020, 108, 106435. [Google Scholar] [CrossRef]
- Wegmann, E.; Ostendorf, S.; Brand, M. Is It Beneficial to Use Internet-Communication for Escaping from Boredom? Boredom Proneness Interacts with Cue-Induced Craving and Avoidance Expectancies in Explaining Symptoms of Internet-Communication Disorder. PLoS ONE 2018, 13, e0195742. [Google Scholar] [CrossRef]
- Holte, A.J.; Aukerman, K.; Padgett, R.; Kenna, M. “Let Me Check My Phone Just One More Time”: Understanding the Relationship of Obsessive-Compulsive Disorder Severity and Problematic Smartphone Use. Curr. Psychol. 2024, 43, 11593–11603. [Google Scholar] [CrossRef]
- Mercer, K.B.; Eastwood, J.D. Is Boredom Associated with Problem Gambling Behaviour? It Depends on What You Mean by ‘Boredom.’ . Int. Gambl. Stud. 2010, 10, 91–104. [Google Scholar] [CrossRef]
- Spada, M.M.; Langston, B.; Nikčević, A.V.; Moneta, G.B. The Role of Metacognitions in Problematic Internet Use. Comput. Hum. Behav. 2008, 24, 2325–2335. [Google Scholar] [CrossRef]
- Bai, J.; Mo, K.; Peng, Y.; Hao, W.; Qu, Y.; Lei, X.; Yang, Y. The Relationship Between the Use of Mobile Social Media and Subjective Well-Being: The Mediating Effect of Boredom Proneness. Front. Psychol. 2021, 11, 568492. [Google Scholar] [CrossRef] [PubMed]
- Casale, S.; Fioravanti, G.; Spada, M.M. Modelling the Contribution of Metacognitions and Expectancies to Problematic Smartphone Use. J. Behav. Addict. 2021, 10, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Pi, L.; Wang, Y.; Zou, L.; Mo, X.; and, L.G. An Analysis of the Latent Class and Influencing Factors of Problematic Mobile Social Media Usage Among Chinese College Students. Psychol. Res. Behav. Manag. 2024, 17, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Bocci Benucci, S.; Tonini, B.; Roffo, G.; Casale, S.; Fioravanti, G. The Application of the Metacognitive Model of Desire Thinking and Craving in Problematic Social Networking Sites Use. Psychiatr. Q. 2024, 95, 1–16. [Google Scholar] [CrossRef]
- Moynihan, A.B.; Igou, E.R.; van Tilburg, W.A.P. Pornography Consumption as Existential Escape from Boredom. Personal. Individ. Differ. 2022, 198, 111802. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, H.; Montag, C.; Elhai, J.D. Boredom Proneness and Rumination Mediate Relationships between Depression and Anxiety with Problematic Smartphone Use Severity. Curr. Psychol. 2022, 41, 5287–5297. [Google Scholar] [CrossRef]
- Ksinan, A.J.; Mališ, J.; Vazsonyi, A.T. Swiping Away the Moments That Make up a Dull Day: Narcissism, Boredom, and Compulsive Smartphone Use. Curr. Psychol. 2021, 40, 2917–2926. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, X.; Zhang, X. Relationships among Boredom Proneness, Sensation Seeking and Smartphone Addiction among Chinese College Students: Mediating Roles of Pastime, Flow Experience and Self-Regulation. Technol. Soc. 2020, 62, 101319. [Google Scholar] [CrossRef]
- Wolniewicz, C.A.; Rozgonjuk, D.; Elhai, J.D. Boredom Proneness and Fear of Missing out Mediate Relations between Depression and Anxiety with Problematic Smartphone Use. Hum. Behav. Emerg. Technol. 2020, 2, 61–70. [Google Scholar] [CrossRef]
- Nichols, L.; Nicki, R. Development of a Psychometrically Sound Internet Addiction Scale: A Preliminary Step. Psychol. Addict. Behav. J. Soc. Psychol. Addict. Behav. 2004, 18, 381–384. [Google Scholar] [CrossRef]
- Yao, N.; Chen, J.; Huang, S.; Montag, C.; Elhai, J.D. Depression and Social Anxiety in Relation to Problematic TikTok Use Severity: The Mediating Role of Boredom Proneness and Distress Intolerance. Comput. Hum. Behav. 2023, 145, 107751. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, J.; Wang, Q.; Huang, J.; Li, X.; Liu, J. Examining the Association Between Boredom Proneness and Bedtime Procrastination Among Chinese College Students: A Sequential Mediation Model with Mobile Phone Addiction and Negative Emotions. Psychol. Res. Behav. Manag. 2023, 16, 4329–4340. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, H.; Xiao, W. Boredom Proneness and Core Self-Evaluation as Mediators between Loneliness and Mobile Phone Addiction among Chinese College Students. Psychol. Sch. 2022, 59, 628–638. [Google Scholar] [CrossRef]
- DiTommaso, E.; Spinner, B. The Development and Initial Validation of the Social and Emotional Loneliness Scale for Adults (SELSA). Personal. Individ. Differ. 1993, 14, 127–134. [Google Scholar] [CrossRef]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef]
- Wells, A.; Cartwright-Hatton, S. A Short Form of the Metacognitions Questionnaire: Properties of the MCQ-30. Behav. Res. Ther. 2004, 42, 385–396. [Google Scholar] [CrossRef]
- Zuckerman, M. Sensation Seeking: Beyond the Optimal Level of Arousal; Lawrence Erlbaum Associates Software & Alternative Media, Incorporated: Mahwah, NJ, USA, 1979; ISBN 978-0-89859-512-3. [Google Scholar]
- Torrubia, R.; Ávila, C.; Moltó, J.; Caseras, X. The Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ) as a Measure of Gray’s Anxiety and Impulsivity Dimensions. Personal. Individ. Differ. 2001, 31, 837–862. [Google Scholar] [CrossRef]
- Ferris, J.; Wynne, H.; Ladouceur, R.; Stinchfield, R.; Turner, N. The Canadian Problem Gambling Index: Final Report; Canadian Consortium for Gambling Research: Ottawa, ON, Canada, 2001. [Google Scholar]
- Diskin, K.M.; Hodgins, D.C. Narrowing of Attention and Dissociation in Pathological Video Lottery Gamblers. J. Gambl. Stud. 1999, 15, 17–28. [Google Scholar] [CrossRef]
- Spinella, M. Normative data and a short form of the barratt impulsiveness scale. Int. J. Neurosci. 2007, 117, 359–368. [Google Scholar] [CrossRef]
- Lovibond, P.F.; Lovibond, S.H. The Structure of Negative Emotional States: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behav. Res. Ther. 1995, 33, 335–343. [Google Scholar] [CrossRef]
- Demetrovics, Z.; Szeredi, B.; Rózsa, S. The Three-Factor Model of Internet Addiction: The Development of the Problematic Internet Use Questionnaire. Behav. Res. Methods 2008, 40, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.W. UCLA Loneliness Scale (Version 3): Reliability, Validity, and Factor Structure. J. Pers. Assess. 1996, 66, 20–40. [Google Scholar] [CrossRef] [PubMed]
- Simons, J.S.; Gaher, R.M. The Distress Tolerance Scale: Development and Validation of a Self-Report Measure. Motiv. Emot. 2005, 29, 83–102. [Google Scholar] [CrossRef]
- D’Alessio, M.; Baiocco, R.; Laghi, F. The Problem of Binge Drinking among Italian University Students: A Preliminary Investigation. Addict. Behav. 2006, 31, 2328–2333. [Google Scholar] [CrossRef]
- Wegmann, E.; Stodt, B.; Brand, M. Addictive Use of Social Networking Sites Can Be Explained by the Interaction of Internet Use Expectancies, Internet Literacy, and Psychopathological Symptoms. J. Behav. Addict. 2015, 4, 155–162. [Google Scholar] [CrossRef]
- Wegmann, E.; Oberst, U.; Stodt, B.; Brand, M. Online-Specific Fear of Missing out and Internet-Use Expectancies Contribute to Symptoms of Internet-Communication Disorder. Addict. Behav. Rep. 2017, 5, 33–42. [Google Scholar] [CrossRef]
- Love, A.; James, D.; Willner, P. A Comparison of Two Alcohol Craving Questionnaires. Addiction 1998, 93, 1091–1102. [Google Scholar] [CrossRef]
- Brand, M.; Laier, C.; Young, K.S. Internet Addiction: Coping Styles, Expectancies, and Treatment Implications. Front. Psychol. 2014, 5, 1256. [Google Scholar] [CrossRef]
- Elhai, J.D.; Levine, J.C.; Dvorak, R.D.; Hall, B.J. Fear of Missing out, Need for Touch, Anxiety and Depression Are Related to Problematic Smartphone Use. Comput. Hum. Behav. 2016, 63, 509–516. [Google Scholar] [CrossRef]
- Kwon, M.; Lee, J.-Y.; Won, W.-Y.; Park, J.-W.; Min, J.-A.; Hahn, C.; Gu, X.; Choi, J.-H.; Kim, D.-J. Development and Validation of a Smartphone Addiction Scale (SAS). PLoS ONE 2013, 8, e56936. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, A.K.; Murayama, K.; DeHaan, C.R.; Gladwell, V. Motivational, Emotional, and Behavioral Correlates of Fear of Missing Out. Comput. Hum. Behav. 2013, 29, 1841–1848. [Google Scholar] [CrossRef]
- van Deursen, A.J.A.M.; Bolle, C.L.; Hegner, S.M.; Kommers, P.A.M. Modeling Habitual and Addictive Smartphone Behavior: The Role of Smartphone Usage Types, Emotional Intelligence, Social Stress, Self-Regulation, Age, and Gender. Comput. Hum. Behav. 2015, 45, 411–420. [Google Scholar] [CrossRef]
- Brinker, J.K.; Campisi, M.; Gibbs, L.; Izzard, R. Rumination, Mood and Cognitive Performance. Psychology 2013, 4, 224–231. [Google Scholar] [CrossRef]
- Ames, D.R.; Rose, P.; Anderson, C.P. The NPI-16 as a Short Measure of Narcissism. J. Res. Personal. 2006, 40, 440–450. [Google Scholar] [CrossRef]
- Hendin, H.M.; Cheek, J.M. Assessing Hypersensitive Narcissism: A Reexamination of Murray’s Narcism Scale. J. Res. Personal. 1997, 31, 588–599. [Google Scholar] [CrossRef]
- Lee, Y.-K.; Chang, C.-T.; Lin, Y.; Cheng, Z.-H. The Dark Side of Smartphone Usage: Psychological Traits, Compulsive Behavior and Technostress. Comput. Hum. Behav. 2014, 31, 373–383. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chang, L.-R.; Lee, Y.-H.; Tseng, H.-W.; Kuo, T.B.J.; Chen, S.-H. Development and Validation of the Smartphone Addiction Inventory (SPAI). PLoS ONE 2014, 9, e98312. [Google Scholar] [CrossRef]
- Csibi, S.; Demetrovics, Z.; Szabo, A. Validation of Hungarian Smartphone Deprivation Inventory (HSDI) with School Children. Psychiatr. Hung. Magy. Pszichiatriai Tars. Tudomanyos Folyoirata 2017, 32, 307–312. [Google Scholar]
- Hoyle, R.H.; Stephenson, M.T.; Palmgreen, P.; Lorch, E.P.; Donohew, R.L. Reliability and Validity of a Brief Measure of Sensation Seeking. Personal. Individ. Differ. 2002, 32, 401–414. [Google Scholar] [CrossRef]
- Mayer, K.; Lukács, A.; Pauler, G. Hungarian Adaptation of the 8-Item Sensation Seeking Scale (BSSS-8). Mentálhig. Pszichoszomatika 2012, 13, 297–312. [Google Scholar] [CrossRef]
- Rosenberg, M. Society and the Adolescent Self-Image; Princeton University Press: Princeton, NJ, USA, 2015; ISBN 978-1-4008-7613-6. [Google Scholar]
- Luszczynska, A.; Diehl, M.; Gutiérrez-Doña, B.; Kuusinen, P.; Schwarzer, R. Measuring One Component of Dispositional Self-Regulation: Attention Control in Goal Pursuit. Personal. Individ. Differ. 2004, 37, 555–566. [Google Scholar] [CrossRef]
- Magyaródi, T.; Nagy, H.; Soltész, P.; Mózes, T.; Oláh, A. Psychometric Properties of a Newly Established Flow State Questionnaire. J. Happiness Well-Being 2013, 1, 89–100. [Google Scholar]
- Connor, K.M.; Davidson, J.R. Development of a New Resilience Scale: The Connor-Davidson Resilience Scale (CD-RISC). Depress. Anxiety 2003, 18, 76–82. [Google Scholar] [CrossRef]
- Campbell-Sills, L.; Stein, M.B. Psychometric Analysis and Refinement of the Connor–Davidson Resilience Scale (CD-RISC): Validation of a 10-item Measure of Resilience. J. Trauma. Stress 2007, 20, 1019–1028. [Google Scholar] [CrossRef]
- Róbert, J.; Dóra, V.; Rita, H.; László, N.; Krisztina, C.; Csilla, K.E. A connor-davidson reziliencia kérdőív 10 itemes változatának jellemzői. Alkalm. Pszichológia 2015, 15, 129–136. [Google Scholar]
- Wang, P.; Lei, L.; Wang, X.; Nie, J.; Chu, X.; Jin, S. The Exacerbating Role of Perceived Social Support and the “Buffering” Role of Depression in the Relation between Sensation Seeking and Adolescent Smartphone Addiction. Personal. Individ. Differ. 2018, 130, 129–134. [Google Scholar] [CrossRef]
- Chen, B.; Liu, F.; Ding, S.; Ying, X.; Wang, L.; Wen, Y. Gender Differences in Factors Associated with Smartphone Addiction: A Cross-Sectional Study among Medical College Students. BMC Psychiatry 2017, 17, 341. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chu, H.; Huang, Q.; Chen, X. Enhancing the Flow Experience of Consumers in China through Interpersonal Interaction in Social Commerce. Comput. Hum. Behav. 2016, 58, 306–314. [Google Scholar] [CrossRef]
- Gökçearslan, Ş.; Mumcu, F.K.; Haşlaman, T.; Çevik, Y.D. Modelling Smartphone Addiction: The Role of Smartphone Usage, Self-Regulation, General Self-Efficacy and Cyberloafing in University Students. Comput. Hum. Behav. 2016, 63, 639–649. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Leung, L. Linking psychological attributes to addiction and improper use of the mobile phone among adolescents in Hong Kong. J. Child. Media 2008, 2, 93–113. [Google Scholar] [CrossRef]
- Carriere, J.S.; Seli, P.; Smilek, D. Wandering in Both Mind and Body: Individual Differences in Mind Wandering and Inattention Predict Fidgeting. Can. J. Exp. Psychol. Can. Psychol. Expérimentale 2013, 67, 19. [Google Scholar] [CrossRef] [PubMed]
- Nolen-Hoeksema, S.; Wisco, B.E.; Lyubomirsky, S. Rethinking Rumination. Perspect. Psychol. Sci. 2008, 3, 400–424. [Google Scholar] [CrossRef] [PubMed]
- Cyders, M.A.; Littlefield, A.K.; Coffey, S.; Karyadi, K.A. Examination of a Short English Version of the UPPS-P Impulsive Behavior Scale. Addict. Behav. 2014, 39, 1372–1376. [Google Scholar] [CrossRef] [PubMed]
- Rosen, L.D.; Whaling, K.; Carrier, L.M.; Cheever, N.A.; Rokkum, J. The Media and Technology Usage and Attitudes Scale: An Empirical Investigation. Comput. Hum. Behav. 2013, 29, 2501–2511. [Google Scholar] [CrossRef]
- Brown, K.W.; Ryan, R.M. The Benefits of Being Present: Mindfulness and Its Role in Psychological Well-Being. J. Pers. Soc. Psychol. 2003, 84, 822. [Google Scholar] [CrossRef]
- Tangney, J.P.; Baumeister, R.F.; Boone, A.L. High Self-Control Predicts Good Adjustment, Less Pathology, Better Grades, and Interpersonal Success. J. Pers. 2004, 72, 271–324. [Google Scholar] [CrossRef]
- Bagby, R.M.; Parker, J.D.A.; Taylor, G.J. The Twenty-Item Toronto Alexithymia Scale-I. Item Selection and Cross-Validation of the Factor Structure. J. Psychosom. Res. 1994, 38, 23–32. [Google Scholar] [CrossRef]
- Leary, M.R.; Kowalski, R.M. The Interaction Anxiousness Scale: Construct and Criterion-Related Validity. J. Pers. Assess. 1993, 61, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Sun, J. A Study of the Happiness of Chinese University Students and Its Influencing Factors-A Case Study of Beijing Universities. Sustainability 2022, 14, 16057. [Google Scholar] [CrossRef]
- Bottesi, G.; Ghisi, M.; Altoè, G.; Conforti, E.; Melli, G.; Sica, C. The Italian Version of the Depression Anxiety Stress Scales-21: Factor Structure and Psychometric Properties on Community and Clinical Samples. Compr. Psychiatry 2015, 60, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor Structure of the Barratt Impulsiveness Scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef]
- Casale, S.; Caponi, L.; Fioravanti, G. Metacognitions about Problematic Smartphone Use: Development of a Self-Report Measure. Addict. Behav. 2020, 109, 106484. [Google Scholar] [CrossRef]
- De Pasquale, C.; Sciacca, F.; Hichy, Z. Italian Validation of Smartphone Addiction Scale Short Version for Adolescents and Young Adults (SAS-SV). Psychology 2017, 8, 1513. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Torsheim, T.; Brunborg, G.S.; Pallesen, S. Development of a Facebook Addiction Scale. Psychol. Rep. 2012, 110, 501–517. [Google Scholar] [CrossRef]
- Soraci, P.; Ferrari, A.; Barberis, N.; Luvarà, G.; Urso, A.; Del Fante, E.; Griffiths, M.D. Psychometric Analysis and Validation of the Italian Bergen Facebook Addiction Scale. Int. J. Ment. Health Addict. 2023, 21, 451–467. [Google Scholar] [CrossRef]
- Hunter, J.A.; Dyer, K.J.; Cribbie, R.A.; Eastwood, J.D. Exploring the Utility of the Multidimensional State Boredom Scale. Eur. J. Psychol. Assess. 2016, 32, 241–250. [Google Scholar] [CrossRef]
- Judge, T.A.; Erez, A.; Bono, J.E.; Thoresen, C.J. The core self-evaluations scale: Development of a measure. Pers. Psychol. 2003, 56, 303–331. [Google Scholar] [CrossRef]
- Steger, M.F.; Frazier, P.; Oishi, S.; Kaler, M. The Meaning in Life Questionnaire: Assessing the Presence of and Search for Meaning in Life. J. Couns. Psychol. 2006, 53, 80. [Google Scholar] [CrossRef]
- Reid, R.C.; Li, D.S.; Gilliland, R.; Stein, J.A.; Fong, T. Reliability, Validity, and Psychometric Development of the Pornography Consumption Inventory in a Sample of Hypersexual Men. J. Sex Marital Ther. 2011, 37, 359–385. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Huang, Y.-T.; Dou, K. Validation and Psychometric Properties of the Chinese Version of the Fear of Missing Out Scale. Int. J. Environ. Res. Public Health 2021, 18, 9896. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Meng, D.; Zhu, L.; Xu, H.; Guo, J.; Yang, L.; Yu, L.; Fu, Y.; Mu, L. Bedtime Procrastination Predicts the Prevalence and Severity of Poor Sleep Quality of Chinese Undergraduate Students. J. Am. Coll. Health 2020, 70, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhou, Z.-K.; Chen, W.; You, Z.-Q.; Zhai, Z.-Y. Mobile Phone Addiction Tendency Scale; APA PsycTests: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Gong, X.; Xie, X.; Xu, R.; Luo, Y. Psychometric Properties of the Chinese Versions of DASS-21 in Chinese College Students. Chin. J. Clin. Psychol. 2010, 18, 443–446. [Google Scholar]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Bian, C.; Li, C.; Duan, Q.; Wu, H. Reliability and Validity of Patient Health Questionnaire: Depressive Syndrome Module for Outpatients. Sci. Res. Essays 2011, 6, 278–282. [Google Scholar]
- Mattick, R.P.; Clarke, J.C. Development and validation of measures of social phobia scrutiny fear and social interaction anxiety. Behav. Res. Ther. 1998, 36, 455–470. [Google Scholar] [CrossRef]
- Ye, D.; Qian, M.; Liu, X.; Chen, X. Revision of Social Interaction Anxiety Scale and Social Phobia Scale. Chin. J. Clin. Psychol. 2007, 15, 115–117. [Google Scholar]
- McHugh, R.K.; Otto, M.W. Refining the Measurement of Distress Intolerance. Behav. Ther. 2012, 43, 641–651. [Google Scholar] [CrossRef]
- Preece, D.; Becerra, R.; Campitelli, G. Assessing Emotional Reactivity: Psychometric Properties of the Perth Emotional Reactivity Scale and the Development of a Short Form. J. Pers. Assess. 2019, 101, 589–597. [Google Scholar] [CrossRef]
- Caselli, G.; Spada, M.M. Desire Thinking: What Is It and What Drives It? Addict. Behav. 2015, 44, 71–79. [Google Scholar] [CrossRef]
- Caselli, G.; Spada, M.M. The Desire Thinking Questionnaire: Development and Psychometric Properties. Addict. Behav. 2011, 36, 1061–1067. [Google Scholar] [CrossRef]
- Hormes, J.M.; Kearns, B.; Timko, C.A. Craving Facebook? Behavioral Addiction to Online Social Networking and Its Association with Emotion Regulation Deficits. Addiction 2014, 109, 2079–2088. [Google Scholar] [CrossRef]
- Brandtner, A.; Wegmann, E. The Fear in Desire: Linking Desire Thinking and Fear of Missing out in the Social Media Context. BMC Psychol. 2023, 11, 176. [Google Scholar] [CrossRef]
- Cui, X.X.; Sun, X.J.; Niu, G.F. The Effect of Self-Presentation in Online Social Networking Sites on Adolescents’ Friendship Quality: The Mediating Role of Positive Feedback. Psychol. Dev. Educ. 2016, 32, 294–300. [Google Scholar]
- Goodman, W.K.; Price, L.H.; Rasmussen, S.A.; Mazure, C.; Fleischmann, R.L.; Hill, C.L.; Heninger, G.R.; Charney, D.S. The Yale-Brown Obsessive Compulsive Scale: I. Development, Use, and Reliability. Arch. Gen. Psychiatry 1989, 46, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Carleton, R.N.; Norton, M.A.P.J.; Asmundson, G.J.G. Fearing the Unknown: A Short Version of the Intolerance of Uncertainty Scale. J. Anxiety Disord. 2007, 21, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Kardefelt-Winther, D. A Conceptual and Methodological Critique of Internet Addiction Research: Towards a Model of Compensatory Internet Use. Comput. Hum. Behav. 2014, 31, 351–354. [Google Scholar] [CrossRef]
- Wölfling, K.; Beutel, M.E.; Dreier, M.; Müller, K.W. Treatment Outcomes in Patients with Internet Addiction: A Clinical Pilot Study on the Effects of a Cognitive-Behavioral Therapy Program. BioMed. Res. Int. 2014, 2014, 425924. [Google Scholar] [CrossRef]
- Han, D.H.; Kim, S.M.; Lee, Y.S.; Renshaw, P.F. The Effect of Family Therapy on the Changes in the Severity of On-Line Game Play and Brain Activity in Adolescents with on-Line Game Addiction. Psychiatry Res. Neuroimaging 2012, 202, 126–131. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Yao, Y.-W.; Potenza, M.N.; Xia, C.-C.; Lan, J.; Liu, L.; Wang, L.-J.; Liu, B.; Ma, S.-S.; Fang, X.-Y. Altered Resting-State Neural Activity and Changes Following a Craving Behavioral Intervention for Internet Gaming Disorder. Sci. Rep. 2016, 6, 28109. [Google Scholar] [CrossRef]
- Han, D.H.; Lee, Y.S.; Na, C.; Ahn, J.Y.; Chung, U.S.; Daniels, M.A.; Haws, C.A.; Renshaw, P.F. The Effect of Methylphenidate on Internet Video Game Play in Children with Attention-Deficit/Hyperactivity Disorder. Compr. Psychiatry 2009, 50, 251–256. [Google Scholar] [CrossRef]
- Han, D.H.; Renshaw, P.F. Bupropion in the Treatment of Problematic Online Game Play in Patients with Major Depressive Disorder. J. Psychopharmacol. 2012, 26, 689–696. [Google Scholar] [CrossRef]
- Demirtepe-Saygili, D. Stress, Coping, and Social Media Use. In Research Anthology on Combating Cyber-Aggression and Online Negativity; IGI Global Scientific Publishing: Hershey, PA, USA, 2022; pp. 1036–1055. [Google Scholar]
- Hurley, L.N. The Relationship Between Resilience, Coping, and Social Media. Master’s Thesis, Eastern Illinois University, Charleston, IL, USA, 2018. [Google Scholar]
- Sun, X.; Li, B.J.; Zhang, H.; Zhang, G. Social Media Use for Coping with Stress and Psychological Adjustment: A Transactional Model of Stress and Coping Perspective. Front. Psychol. 2023, 14, 1140312. [Google Scholar] [CrossRef]
- Tarafdar, M.; Maier, C.; Laumer, S.; Weitzel, T. Explaining the Link between Technostress and Technology Addiction for Social Networking Sites: A Study of Distraction as a Coping Behavior. Inf. Syst. J. 2020, 30, 96–124. [Google Scholar] [CrossRef]
- Wolfers, L.N.; Utz, S. Social Media Use, Stress, and Coping. Curr. Opin. Psychol. 2022, 45, 101305. [Google Scholar] [CrossRef]
- Sriwilai, K.; Charoensukmongkol, P. Face It, Don’t Facebook It: Impacts of Social Media Addiction on Mindfulness, Coping Strategies and the Consequence on Emotional Exhaustion. Stress Health 2016, 32, 427–434. [Google Scholar] [CrossRef]
Authors | Q 1. | Q 2. | Q 3. | Q 4. | Q 5. | Q 6. | Q 7. | Q 8. | Q 9. | Q 10. | Q 11. | Q 12. | Q 13. | Q 14. | Quality Rating |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[46] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | Y | NA | Y | Good |
[47] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | Y | NA | Y | Good |
[38] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | N | NA | N | Fair |
[48] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | Y | NA | N | Fair |
[49] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | Y | NA | N | Fair |
[50] | Y | Y | Y | Y | Y | N | N | Y | Y | NA | Y | Y | NA | Y | Good |
[51] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | NR | NA | Y | Fair |
[52] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | Y | NA | Y | Good |
[53] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | Y | NA | N | Fair |
[54] | Y | Y | Y | Y | Y | N | N | Y | Y | NA | Y | NR | NA | N | Fair |
[55] | Y | N | Y | N | Y | N | N | Y | Y | NA | Y | NR | NA | N | Fair |
[56] | Y | Y | NR | Y | Y | N | N | Y | Y | NA | Y | Y | NA | Y | Good |
[57] | Y | Y | Y | Y | Y | N | N | Y | Y | NA | Y | Y | NA | N | Good |
[58] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | Y | NA | Y | Good |
[59] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | NR | NA | N | Fair |
[15] | Y | Y | NR | N | Y | N | N | Y | N | NA | Y | NR | NA | Y | Poor |
[60] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | Y | NA | Y | Good |
[61] | Y | Y | NR | N | Y | N | N | Y | Y | NA | Y | Y | NA | Y | Fair |
[62] | Y | Y | NR | N | Y | N | N | Y | N | NA | N | Y | NA | N | Fair |
[63] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | Y | NA | Y | Good |
[14] | Y | Y | Y | N | N | N | N | Y | Y | NA | Y | Y | NA | N | Fair |
[64] | Y | Y | Y | N | N | N | N | Y | Y | NA | Y | NR | NA | Y | Fair |
[65] | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Good |
[66] | Y | Y | NR | N | Y | N | N | Y | Y | NA | Y | NR | NA | Y | Poor |
[67] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | NR | NA | N | Fair |
[26] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | NR | NA | N | Fair |
[29] | Y | Y | Y | N | Y | N | N | Y | Y | NA | Y | Y | NA | Y | Good |
[28] | Y | Y | NR | N | Y | N | N | Y | Y | NA | Y | N | NA | Y | Fair |
Author Country | Sample Size (n) | Mean Age (SD) | Percentage of Female (%) | Study Design | Addiction Investigated | Tools for Measuring Boredom | Other Tools |
---|---|---|---|---|---|---|---|
[64] Canada | 207 | 21 (1.73) | 42.5% | Cross- sectional study | Internet Addiction | Boredom Proneness Scale (BPS) [21] | |
[54] UK | 97 | 23.3 (3.0) | 41% | Cross- sectional study | Problematic Internet Use (PIU) | Boredom Proneness Scale (BPS) [21] | |
[53] Canada | 202 | 22.5 (5.9) | 68% | Cross- sectional study | Problematic Gambling Behavior | Boredom Proneness Scale (BPS) [21] Boredom Susceptibility Scale (ZBS) [71] | |
[49] Canada | 179 | 30 (10.25) | 3.91% | Cross- sectional study | Gambling/Online Poker Playing | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[48] USA | 164 | 26.86 (7.88) | 73.8% | Cross- sectional study | Problematic Internet Use (PIU) | Boredom Proneness Scale (BPS) [21] | |
[38] Italy | 478 | 16.31 (1.47) | 40% | Cross- sectional study | Internet Addiction | Boredom Proneness Scale (BPS) [21] | |
[51] Germany | 148 | 25.61 (8.94) | 61% | Cross- sectional study | Internet Communication Disorder | Boredom Proneness Scale (BPS) [21] | |
[47] China | 298 | 19.45 (2.17) | 76.8% | Cross- sectional study | Problematic Smartphone Use (PSU) | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[46] China, Saudi Arabia and USA | 296 | 19.44 (2.16) | 76.7% | Cross- sectional study | Smartphone Use and Problematic Smartphone Use (PSU) | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[61] -- | 532 | 23.33 (1.75) | 54.9% | Cross- sectional study | Compulsive Smartphone Use | Boredom Proneness Scale (BPS) [21] | |
[14] Hungary | 249 | 22.5 (3.5) | 62.2% | Cross- sectional study | Problematic Internet and Smartphone Use | Boredom Proneness Scale (BPS) [21] | |
[62] China | 442 | -- | 54.5% | Cross- sectional study | Smartphone Addiction | Boredom Proneness Scale (BPS) [21] | |
[28] China | 1099 | 20.04 (1.25) | 59.6% | Cross- sectional study | Problematic Mobile Phone Use (PMPU) | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[63] USA | 297 | 19.70 (3.96) | 72.1% | Cross- sectional study | Problematic Smartphone Use (PSU) | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[60] China | 1097 | 19.38 (1.18) | 81.9% | Cross- sectional study | Problematic Smartphone Use (PSU) | Boredom Proneness Scale (BPS) [21] | |
[50] USA | 135 | 19.15 (1.22) | 68.1% | Cross- sectional study | Problematic Smartphone Use (PSU) | Boredom Proneness Scale (BPS) [21] |
|
[26] China | 1078 | 20 (1.10) | 28% | Cross- sectional study | Mobile Phone Addiction | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[29] China | 1267 | 20.36 (0.97) | 59.19% | Cross- sectional study | Problematic Mobile Phone Use (PMPU) | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[55] China | 656 | 22.13 (4.36) | 63.9% | Cross- sectional study | Social Media Use | Boredom Proneness Scale (BPS) [21] | |
[56] Italy and UK | 535 | 27.38 (9.05) | 71.2% | Cross- sectional study | Problematic Smartphone Use (PSU) | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[15] Italy | 169 | 17.13 (1.61) | 43% | Cross- sectional study | Problematic Use of Facebook (PFU) | Boredom Proneness Scale-short form (BPS-SF) [40] |
|
[67] China | 1267 | 20.40 (0.97) | 67.3% | Cross- sectional study | Smartphone Addiction | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[59] UK | 179 | 30.22 (10.70) | 41.9% | Cross- sectional study | Pornography Use | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[66] China | 668 | 20.36 (1.69) | 64.97% | Cross- sectional study | Mobile Phone Addiction | Boredom Proneness Scale- short form (BPS-SF; Chinese version: [128]) | |
[65] China | T1: 822 T2: 715 | 27.5 (5.93) | 65.3% | Longitudinal study | Problematic TikTok Use | Boredom Proneness Scale-short form (BPS-SF) [40] |
|
[58] Italy | 529 | 32.46 (13.34) | 62.9% | Cross- sectional study | Problematic Social Networking Sites Use (PSNSU) | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[57] China | 2591 | 20.21 (1.53) | 57.5% | Cross- sectional study | Problematic Mobile Social Media Use (PMSMU) | Boredom Proneness Scale-short form (BPS-SF) [40] | |
[52] USA | 424 | 38.44 (11.46) | 44.3% | Cross- sectional study | Problematic Smartphone Use (PSU) | Boredom Proneness Scale-short form (BPS-SF) [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagliaferri, G.; Martí-Vilar, M.; Frisari, F.V.; Quaglieri, A.; Mari, E.; Burrai, J.; Giannini, A.M.; Cricenti, C. Connected by Boredom: A Systematic Review of the Role of Trait Boredom in Problematic Technology Use. Brain Sci. 2025, 15, 794. https://doi.org/10.3390/brainsci15080794
Tagliaferri G, Martí-Vilar M, Frisari FV, Quaglieri A, Mari E, Burrai J, Giannini AM, Cricenti C. Connected by Boredom: A Systematic Review of the Role of Trait Boredom in Problematic Technology Use. Brain Sciences. 2025; 15(8):794. https://doi.org/10.3390/brainsci15080794
Chicago/Turabian StyleTagliaferri, Ginevra, Manuel Martí-Vilar, Francesca Valeria Frisari, Alessandro Quaglieri, Emanuela Mari, Jessica Burrai, Anna Maria Giannini, and Clarissa Cricenti. 2025. "Connected by Boredom: A Systematic Review of the Role of Trait Boredom in Problematic Technology Use" Brain Sciences 15, no. 8: 794. https://doi.org/10.3390/brainsci15080794
APA StyleTagliaferri, G., Martí-Vilar, M., Frisari, F. V., Quaglieri, A., Mari, E., Burrai, J., Giannini, A. M., & Cricenti, C. (2025). Connected by Boredom: A Systematic Review of the Role of Trait Boredom in Problematic Technology Use. Brain Sciences, 15(8), 794. https://doi.org/10.3390/brainsci15080794