Listening to the Mind: Integrating Vocal Biomarkers into Digital Health
Abstract
1. Introduction: Vocal Biomarkers
2. Vocal Biomarkers: Acoustic and Linguistic Features
Classification | Sub-Classification | Feature | Definition | Condition |
---|---|---|---|---|
Acoustic features | Prosodic | Pitch | Reflects the fundamental frequency (F0) of vocal fold vibration [16]. | Stress [11,15,16,18], MDD [19,20], BDI [11], PD [21], AD [27], cognitive impairment [23]. |
Formants (F1, F2) | The first and second peaks in the spectrum that result from a resonance of the vocal tract [11]. | Stress [11,16], cognitive impairment [23]. | ||
Jitter | Measure of variation in frequency [10]. | Stress [18], MDD [11], AD [27], PD [21,22]. | ||
Shimmer | Measure of variation in amplitude [10]. | Stress [15,17], MDD [11], BDI [11], PD [21,22]. | ||
Energy | Represents the intensity [11]. | Stress [18], MDD [11]. | ||
Spectral features | Spectral Centroid | Brightness and sharpness of sound [24]. | Stress [17], PD [24]. | |
Spectral Spread | Standard deviation around the spectral centroid [24]. | PD [24]. | ||
Spectral Flux | The rate of change of the spectrum [24]. | PD [24]. | ||
Spectral Flatness | Capture the presence of a large number of peaks in the spectrum [24]. | PD [24]. | ||
Spectral Kurtosis | Measure of the flatness of the spectrum distribution around its mean value [24]. | PD [24]. | ||
Spectral Skewness | Measure of the spectrum distribution asymmetry around its mean value [24]. | PD [24]. | ||
Voice quality | Zero-crossing rate | Rate at which the signal changes from positive to negative, or vice versa [12]. | MDD [12]. | |
Harmonic-to-noise ratio (HNR) | Turbulent noise present in the voice signal [10]. | Stress [16], MDD [11], PD [22]. | ||
Noise-to-harmonic ratio (NHR) | The opposite of HNR [10]. | Stress [16]. | ||
Articulatory features | Mel-frequency cepstral coefficients (MFCCs) | Power density spectrum of speech, presented on a frequency scale [22]. | Stress [17], MDD [11], BDI [11], PD [22]. | |
Linguistic features | Lexical | Vocabulary diversity | Complexity of vocabulary [13]. | Dementia (AD, FTD) [13] and PD [28]. |
Word length | Average length of words used [13]. | Dementia (AD, FTD) and cognitive impairment [13]. | ||
Word frequency usage | For instance, noun or adjective frequency [13]. | Dementia (AD, FTD) [13] and PD [28]. | ||
Syntactic | Syntactic complexity | The usage of different syntactic structures and measures of syntactic complexity [13]. | Dementia (AD, FTD) [13] and PD [28]. | |
Temporal | Speech rate | Words per minute [13]. | Stress [18], MDD [11], BDI [11], dementia (AD, FTD) [13], PD [22,28], and cognitive impairment [23]. | |
Speech pause duration | Duration of pauses taken during speaking, both between and within words [22]. | Stress [15,16], MDD [11], dementia (AD, FTD) [13], PD [22,28], and cognitive impairment [23]. |
3. Vocal Biomarkers in Mental and Emotional Health
4. Vocal Biomarkers and Cognitive Health
5. The Role of Singing in Cognitive and Emotional Assessment and Training
6. Technical, Methodological, and Ethical Challenges
6.1. Data Governance and Ethical Safeguards
6.2. Robustness and Generalizability of Models
6.3. Clinical Utility and Validation Pathway
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fagherazzi, G.; Fischer, A.; Ismael, M.; Despotovic, V. Voice for Health: The Use of Vocal Biomarkers from Research to Clinical Practice. Digit. Biomark. 2021, 5, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Karjadi, C.; Paschalidis, I.C.; Au, R.; Kolachalama, V.B. Detection of dementia on voice recordings using deep learning: A Framingham Heart Study. Alzheimer’s Res. Ther. 2021, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Mahon, E.; Lachman, M.E. Voice biomarkers as indicators of cognitive changes in middle and later adulthood. Neurobiol. Aging 2022, 119, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Mazur, A.; Costantino, H.; Tom, P.; Wilson, M.P.; Thompson, R.G. Evaluation of an AI-Based Voice Biomarker Tool to Detect Signals Consistent With Moderate to Severe Depression. Ann. Fam. Med. 2025, 23, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, I.; Okafor, M.; Choi, J.D.; Moore, E., 2nd; Abrol, A.; Calhoun, V.D.; Goldstein, F.C. Development of digital voice biomarkers and associations with cognition, cerebrospinal biomarkers, and neural representation in early Alzheimer’s disease. Alzheimer’s Dement. 2023, 15, e12393. [Google Scholar] [CrossRef] [PubMed]
- Pisanski, K.; Sorokowski, P. Human Stress Detection: Cortisol Levels in Stressed Speakers Predict Voice-Based Judgments of Stress. Perception 2021, 50, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.A.; Burkhardt, H.A.; Chaudhry, S.; Ngo, A.D.; Sharma, S.; Zhang, L.; Au, R.; Hosseini Ghomi, R. Assessing the Utility of Language and Voice Biomarkers to Predict Cognitive Impairment in the Framingham Heart Study Cognitive Aging Cohort Data. J. Alzheimer’s Dis. JAD 2020, 76, 905–922. [Google Scholar] [CrossRef] [PubMed]
- Low, D.M.; Bentley, K.H.; Ghosh, S.S. Automated assessment of psychiatric disorders using speech: A systematic review. Laryngoscope Investig. Otolaryngol. 2020, 5, 96–116. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Jiang, H.; Yang, Y.; Hou, X.; Su, Y.; Yang, L. Acoustic Features for Identifying Suicide Risk in Crisis Hotline Callers: Machine Learning Approach. J. Med. Internet Res. 2025, 27, e67772. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.F.; Green, J.R.; Murton, O.; Yunusova, Y.; Rowe, H.P.; Wehbe, F.; Diana, K.; Nicholson, K.; Berry, J.D.; Connaghan, K.P. Acoustic Measures of Dysphonia in Amyotrophic Lateral Sclerosis. J. Speech Lang. Hear. Res. JSLHR 2023, 66, 872–887. [Google Scholar] [CrossRef] [PubMed]
- Ettore, E.; Müller, P.; Hinze, J.; Riemenschneider, M.; Benoit, M.; Giordana, B.; Hurlemann, R.; Postin, D.; Lecomte, A.; Musiol, M.; et al. Digital Phenotyping for Differential Diagnosis of Major Depressive Episode: Narrative Review. JMIR Ment. Health 2023, 10, e37225. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, S.; Toda, H.; Nakamura, M.; Omiya, Y.; Higuchi, M.; Takano, T.; Saito, T.; Tanichi, M.; Boku, S.; Mitsuyoshi, S.; et al. Evaluation of the Severity of Major Depression Using a Voice Index for Emotional Arousal. Sensors 2020, 20, 5041. [Google Scholar] [CrossRef] [PubMed]
- Gumus, M.; Koo, M.; Studzinski, C.M.; Bhan, A.; Robin, J.; Black, S.E. Linguistic changes in neurodegenerative diseases relate to clinical symptoms. Front. Neurol. 2024, 15, 1373341. [Google Scholar] [CrossRef] [PubMed]
- Robin, J.; Harrison, J.E.; Kaufman, L.D.; Rudzicz, F.; Simpson, W.; Yancheva, M. Evaluation of Speech-Based Digital Biomarkers: Review and Recommendations. Digit. Biomark. 2020, 4, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Chen, J.; Dodge, H.H.; Zhou, J. The Joint Effects of Acoustic and Linguistic Markers for Early Identification of Mild Cognitive Impairment. Front. Digit. Health 2022, 3, 702772. [Google Scholar] [CrossRef] [PubMed]
- Kappen, M.; van der Donckt, J.; Vanhollebeke, G.; Allaert, J.; Degraeve, V.; Madhu, N.; Van Hoecke, S.; Vanderhasselt, M.A. Acoustic speech features in social comparison: How stress impacts the way you sound. Sci. Rep. 2022, 12, 22022. [Google Scholar] [CrossRef] [PubMed]
- Namkung, J.; Kim, S.M.; Cho, W.I.; Yoo, S.Y.; Min, B.; Lee, S.Y.; Lee, J.H.; Park, H.; Baik, S.; Yun, J.Y.; et al. Novel Deep Learning-Based Vocal Biomarkers for Stress Detection in Koreans. Psychiatry Investig. 2024, 21, 1228–1237. [Google Scholar] [CrossRef] [PubMed]
- Larsen, E.; Murton, O.; Song, X.; Joachim, D.; Watts, D.; Kapczinski, F.; Venesky, L.; Hurowitz, G. Validating the efficacy and value proposition of mental fitness vocal biomarkers in a psychiatric population: Prospective cohort study. Front. Psychiatry 2024, 15, 1342835. [Google Scholar] [CrossRef] [PubMed]
- Di, Y.; Rahmani, E.; Mefford, J.; Wang, J.; Ravi, V.; Gorla, A.; Alwan, A.; Kendler, K.S.; Zhu, T.; Flint, J. Unraveling the Associations Between Voice Pitch and Major Depressive Disorder: A Multisite Genetic Study. medRxiv Prepr. Serv. Health Sci. 2024. [Google Scholar] [CrossRef]
- Ortiz, K.Z.; De Lira, J.O.; Minett, T.S.C.; Bertolucci, P.H.F. Language impairments in Alzheimer’s disease: What changes can be found between mild and moderate stages of the disease? Clinics 2024, 79, 100412. [Google Scholar] [CrossRef] [PubMed]
- Naeem, I.; Ditta, A.; Mazhar, T.; Anwar, M.; Saeed, M.M.; Hamam, H. Voice biomarkers as prognostic indicators for Parkinson’s disease using machine learning techniques. Sci. Rep. 2025, 15, 12129. [Google Scholar] [CrossRef] [PubMed]
- Wright, H.; Aharonson, V. Vocal Feature Changes for Monitoring Parkinson’s Disease Progression—A Systematic Review. Brain Sci. 2025, 15, 320. [Google Scholar] [CrossRef] [PubMed]
- Tracy, J.M.; Özkanca, Y.; Atkins, D.C.; Hosseini Ghomi, R. Investigating voice as a biomarker: Deep phenotyping methods for early detection of Parkinson’s disease. J. Biomed. Inform. 2020, 104, 103362. [Google Scholar] [CrossRef] [PubMed]
- Majda-Zdancewicz, E.; Potulska-Chromik, A.; Nojszewska, M.; Kostera-Pruszczyk, A. Speech Signal Analysis in Patients with Parkinson’s Disease, Taking into Account Phonation, Articulation, and Prosody of Speech. Appl. Sci. 2024, 14, 11085. [Google Scholar] [CrossRef]
- Menne, F.; Dörr, F.; Schräder, J.; Tröger, J.; Habel, U.; König, A.; Wagels, L. The voice of depression: Speech features as biomarkers for major depressive disorder. BMC Psychiatry 2024, 24, 794. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yang, H.; Che, Y.; Yang, J. Automatic speech analysis for detecting cognitive decline of older adults. Front. Public Health 2024, 12, 1417966. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Karjadi, C.; Ang, T.F.A.; Prajakta, J.; McManus, C.; Alhanai, T.W.; Glass, J.; Au, R. Identification of digital voice biomarkers for cognitive health. Explor. Med. 2020, 1, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Rohl, A.; Gutierrez, S.; Johari, K.; Greenlee, J.; Tjaden, K.; Roberts, A. Speech dysfunction, cognition, and Parkinson’s disease. Prog. Brain Res. 2022, 269, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Kappen, M.; Vanderhasselt, M.A.; Slavich, G.M. Speech as a promising biosignal in precision psychiatry. Neurosci. Biobehav. Rev. 2023, 148, 105121. [Google Scholar] [CrossRef] [PubMed]
- Voleti, R.; Liss, J.M.; Berisha, V. A Review of Automated Speech and Language Features for Assessment of Cognitive and Thought Disorders. IEEE J. Sel. Top. Signal Process. 2020, 14, 282–298. [Google Scholar] [CrossRef] [PubMed]
- Rickwood, D.J.; Coleman-Rose, C.L. The effect of survey administration mode on youth mental health measures: Social desirability bias and sensitive questions. Heliyon 2023, 9, e20131. [Google Scholar] [CrossRef] [PubMed]
- George, S.M.; Ilyas, P.M. A review on speech emotion recognition: A survey, recent advances, challenges, and the influence of noise. Neurocomputing 2024, 568, 127015. [Google Scholar] [CrossRef]
- Hashem, A.; Arif, M.; Alghamdi, M. Speech emotion recognition approaches: A systematic review. Speech Commun. 2023, 154, 102974. [Google Scholar] [CrossRef]
- Zhang, L.; Duvvuri, R.; Chandra, K.K.L.; Nguyen, T.; Ghomi, R.H. Automated voice biomarkers for depression symptoms using an online cross-sectional data collection initiative. Depress. Anxiety 2020, 37, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Lister, A.; Karjadi, C.; Au, R.; Lin, H.; Bischoff, B.; Hwang, P.H. Detection of Mild Cognitive Impairment From Non-Semantic, Acoustic Voice Features: The Framingham Heart Study. JMIR Aging 2024, 7, e55126. [Google Scholar] [CrossRef] [PubMed]
- Burke, A.D.; Goldfarb, D. Diagnosing and Treating Alzheimer Disease During the Early Stage. J. Clin. Psychiatry 2023, 84, LI21019AH3C. [Google Scholar] [CrossRef] [PubMed]
- Schindler, S.E. Fluid Biomarkers in Dementia Diagnosis. Continuum 2022, 28, 822–833. [Google Scholar] [CrossRef] [PubMed]
- García-Gutiérrez, F.; Alegret, M.; Marquié, M.; Muñoz, N.; Ortega, G.; Cano, A.; De Rojas, I.; García-González, P.; Olivé, C.; Puerta, R.; et al. Unveiling the sound of the cognitive status: Machine Learning-based speech analysis in the Alzheimer’s disease spectrum. Alzheimer’s Res. Ther. 2024, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Liu, V.; Smith, D.; Yip, H. Prevalence and Treatment of Dysphonia in Parkinson’s Disease: A Cross-Sectional National Database Study. Laryngoscope Investig. Otolaryngol. 2025, 10, e70149. [Google Scholar] [CrossRef] [PubMed]
- Harel, B.; Cannizzaro, M.; Snyder, P.J. Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain Cogn. 2004, 56, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Twamley, E.W.; Ropacki, S.A.; Bondi, M.W. Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease. J. Int. Neuropsychol. Soc. JINS 2006, 12, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Themistocleous, C.; Eckerström, M.; Kokkinakis, D. Voice quality and speech fluency distinguish individuals with Mild Cognitive Impairment from Healthy Controls. PLoS ONE 2020, 15, e0236009. [Google Scholar] [CrossRef] [PubMed]
- Arslan-Sarımehmetoğlu, E.; Barmak, E. The effect of mild-stage Alzheimer’s disease on the acoustic parameters of voice. Egypt J. Otolaryngol. 2025, 41, 19. [Google Scholar] [CrossRef]
- Nagumo, R.; Zhang, Y.; Ogawa, Y.; Hosokawa, M.; Abe, K.; Ukeda, T.; Sumi, S.; Kurita, S.; Nakakubo, S.; Lee, S.; et al. Automatic Detection of Cognitive Impairments through Acoustic Analysis of Speech. Curr. Alzheimer Res. 2020, 17, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Cera, M.L.; Ortiz, K.Z.; Bertolucci, P.H.F.; Tsujimoto, T.; Minett, T. Speech and phonological impairment across Alzheimer’s disease severity. J. Commun. Disord. 2023, 105, 106364. [Google Scholar] [CrossRef] [PubMed]
- Valentova, J.V.; Tureček, P.; Varella, M.A.C.; Šebesta, P.; Mendes, F.D.C.; Pereira, K.J.; Kubicová, L.; Stolařová, P.; Havlíček, J. Vocal Parameters of Speech and Singing Covary and Are Related to Vocal Attractiveness, Body Measures, and Sociosexuality: A Cross-Cultural Study. Front. Psychol. 2019, 10, 2029. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Fiveash, A.; Thompson, W.F. Spontaneous emergence of language-like and music-like vocalizations from an artificial protolanguage. Semiotica 2019, 2019, 1–23. [Google Scholar] [CrossRef]
- Norman-Haignere, S.V.; Feather, J.; Boebinger, D.; Brunner, P.; Ritaccio, A.; McDermott, J.H.; Schalk, G.; Kanwisher, N. A neural population selective for song in human auditory cortex. Curr. Biol. CB 2022, 32, 1470–1484.e12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Respiratory Laryngeal Coordination in Airflow Conservation and Reduction of Respiratory Effort of Phonation. J. Voice Off. J. Voice Found. 2016, 30, 760.e7–760.e13. [Google Scholar] [CrossRef] [PubMed]
- Behroozmand, R.; Khoshhal Mollasaraei, Z.; Nejati, V.; Daliri, A.; Fridriksson, J. Vocal and articulatory speech control deficits in individuals with post-stroke aphasia. Sci. Rep. 2025, 15, 13350. [Google Scholar] [CrossRef] [PubMed]
- Dedry, M.; Maryn, Y.; Szmalec, A.; Lith-Bijl, J.V.; Dricot, L.; Desuter, G. Neural Correlates of Healthy Sustained Vowel Phonation Tasks: A Systematic Review and Meta-Analysis of Neuroimaging Studies. J. Voice Off. J. Voice Found. 2024, 38, 969.e5–969.e19. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.H.L.; Bokshi, M.; Khorram, S. Speech variability: A cross-language study on acoustic variations of speaking versus untrained singing. J. Acoust. Soc. Am. 2020, 148, 829. [Google Scholar] [CrossRef] [PubMed]
- Tamplin, J.; Morris, M.E.; Marigliani, C.; Baker, F.A.; Vogel, A.P. ParkinSong: A Controlled Trial of Singing-Based Therapy for Parkinson’s Disease. Neurorehabilit. Neural Repair 2019, 33, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Molina, N.; Siponkoski, S.T.; Pitkäniemi, A.; Moisseinen, N.; Kuusela, L.; Pekkola, J.; Laitinen, S.; Särkämö, E.R.; Melkas, S.; Kleber, B.; et al. Neuroanatomical correlates of speech and singing production in chronic post-stroke aphasia. Brain Commun. 2022, 4, fcac001. [Google Scholar] [CrossRef] [PubMed]
- Alqutub, A.; Alqutub, A.; Mogharbel, A.M.; Awadh, M.A.; Sait, S.; Aldharrab, A.S.; Zagzoog, F.H. Effectiveness of Singing-Based Therapy on Voice Outcomes in Parkinson’s Disease: A Systematic Review and Meta-Analysis. J. Voice Off. J. Voice Found. 2024; advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Song, B.; Chen, A.C.N.; Sun, C.; Zhou, J.; Zhu, H.; Beauchaine, T.P. Review on Neural Correlates of Emotion Regulation and Music: Implications for Emotion Dysregulation. Front. Psychol. 2017, 8, 501. [Google Scholar] [CrossRef] [PubMed]
- Lichtensztejn, M.; Cui, A.-X.; Geretsegger, M.; Lundervold, A.J.; Koelsch, S.; Pfabigan, D.M.; Assmus, J.; Langeland, E.; Tabernig, C.; Skogseth, R.E.; et al. Memory for Music (M4M) protocol for an international randomized controlled trial: Effects of individual intensive musical training based on singing in non-musicians with Alzheimer’s disease. medRxiv 2024. [Google Scholar] [CrossRef]
- Ramaswamy, M.; Philip, J.L.; Priya, V.; Priyadarshini, S.; Ramasamy, M.; Jeevitha, G.C.; Mathkor, D.M.; Haque, S.; Dabaghzadeh, F.; Bhattacharya, P.; et al. Therapeutic use of music in neurological disorders: A concise narrative review. Heliyon 2024, 10, e35564. [Google Scholar] [CrossRef] [PubMed]
- Lassner, A.; Siafis, S.; Wiese, E.; Leucht, S.; Metzner, S.; Wagner, E.; Hasan, A. Evidence for music therapy and music medicine in psychiatry: Transdiagnostic meta-review of meta-analyses. BJPsych Open 2024, 11, e4. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Morales, C.; Calero, R.; Moreno-Morales, P.; Pintado, C. Music Therapy in the Treatment of Dementia: A Systematic Review and Meta-Analysis. Front. Med. 2020, 7, 160. [Google Scholar] [CrossRef] [PubMed]
- Behaghel, E.; Zumbansen, A. Singing for the Rehabilitation of Acquired Neurogenic Communication Disorders: Continuing the Evidence Dialogue with a Survey of Current Practices in Speech-Language Pathology. Healthcare 2022, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Gold, C. Abstracts of the 10th European Music Therapy Conference. Nord. J. Music. Ther. 2016, 25 (Suppl. 1), 1–156. [Google Scholar] [CrossRef]
- Pereira, A.P.S.; Marinho, V.; Gupta, D.; Magalhães, F.; Ayres, C.; Teixeira, S. Music Therapy and Dance as Gait Rehabilitation in Patients With Parkinson Disease: A Review of Evidence. J. Geriatr. Psychiatry Neurol. 2019, 32, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Ye, S.; Huangfu, J.; Calimag, D.P. Music therapy is a potential intervention for cognition of Alzheimer’s Disease: A mini-review. Transl. Neurodegener. 2017, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Ting, B.; Su, C.H.; Chen, D.T.; Hsu, W.T.; Tsai, C.L.; Lin, P.Y.; Jingling, L. The Sound of Memory: Investigating Music Therapy’s Cognitive Benefits in Patients with Dementia-A Network Meta-Analysis of Randomized Controlled Trials. J. Pers. Med. 2024, 14, 497. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Romero-Garcia, R.; Suckling, J.; Tan, J.; Larbi, A.; Cheah, I.; Wong, G.; Tsakok, M.; Lanskey, B.; Lim, D.; et al. Effects of choral singing versus health education on cognitive decline and aging: A randomized controlled trial. Aging 2020, 12, 24798–24816. [Google Scholar] [CrossRef] [PubMed]
- McCrary, J.M.; Altenmüller, E.; Kretschmer, C.; Scholz, D.S. Association of Music Interventions With Health-Related Quality of Life: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e223236. [Google Scholar] [CrossRef] [PubMed]
- Koshimori, Y.; Akkunje, P.S.; Tjiandri, E.; Kowaleski, J.B.; Thaut, M.H. Music-based interventions for nonfluent aphasia: A systematic review of randomized control trials. Ann. N. Y. Acad. Sci. 2025; advance online publication. [Google Scholar] [CrossRef] [PubMed]
- Somayaji, K.; Frenkel, M.; Tabaza, L.; Visotcky, A.; Ruck, T.K.; Ofori, E.K.; Widlansky, M.E.; Kulinski, J. Acute effects of singing on cardiovascular biomarkers. Front. Cardiovasc. Med. 2022, 9, 869104. [Google Scholar] [CrossRef] [PubMed]
- Somasundaram, N.; Mohrdieck, N.; Visotcky, A.; Kulinski, J. Predictors of improvement in cardiovascular biomarkers with singing. Am. Heart J. Plus Cardiol. Res. Pract. 2025, 53, 100533. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Yeo, M.S.; Kim, S.Y.; Kang, S.Y. A scoping review of music-based interventions for swallowing difficulties: Implications for treating older adults with presbyphagia. Front. Med. 2023, 10, 1285835. [Google Scholar] [CrossRef] [PubMed]
- Tamplin, J.; Clark, I.N.; Lee, Y.C.; Baker, F.A. Remini-Sing: A Feasibility Study of Therapeutic Group Singing to Support Relationship Quality and Wellbeing for Community-Dwelling People Living With Dementia and Their Family Caregivers. Front. Med. 2018, 5, 245. [Google Scholar] [CrossRef] [PubMed]
- Raglio, A.; Attardo, L.; Gontero, G.; Rollino, S.; Groppo, E.; Granieri, E. Effects of music and music therapy on mood in neurological patients. World J. Psychiatry 2015, 5, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Papadakakis, A.; Sidiropoulou, K.; Panagis, G. Music exposure attenuates anxiety- and depression-like behaviors and increases hippocampal spine density in male rats. Behav. Brain Res. 2019, 372, 112023. [Google Scholar] [CrossRef] [PubMed]
- Kreutz, G.; Bongard, S.; Rohrmann, S.; Hodapp, V.; Grebe, D. Effects of choir singing or listening on secretory immunoglobulin A, cortisol, and emotional state. J. Behav. Med. 2004, 27, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Busch, F.; Kather, J.N.; Johner, C.; Moser, M.; Truhn, D.; Adams, L.C.; Bressem, K.K. Navigating the European Union Artificial Intelligence Act for Healthcare. npj Digit. Med. 2024, 7, 210. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, D. Design Control, Medical Device Risk and Medical Device Regulation (MDR 2017/745): An Integrated Approach for Medical Devices; Independently Published: USA, 2020; Available online: https://www.waterstones.com/book/design-control-medical-device-risk-and-medical-device-regulation-mdr-2017-745/des-obrien/9798690205256 (accessed on 15 June 2025).
- Guidance Document Medical Devices—Scope, Field of Application, Definition—Qualification and Classification of Stand Alone Software—MEDDEV 2.1/6. European Commission. Available online: https://ec.europa.eu/docsroom/documents/17921/attachments/1/translations (accessed on 15 June 2025).
- Matts, S.T.; Webber, C.M.; Bocell, F.D.; Caldwell, B.; Chen, A.L.; Tarver, M.E. Inclusion of patient-reported outcome instruments in US FDA medical device marketing authorizations. J. Patient-Rep. Outcomes 2022, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance). EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2016/679/oj (accessed on 15 June 2025).
- Cui, Y.; Li, Z.; Liu, L.; Zhang, J.; Liu, J. Privacy-preserving Speech-based Depression Diagnosis via Federated Learning. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 11–15 July 2022; Volume 2022, pp. 1371–1374. [Google Scholar] [CrossRef]
- Noë, A.; Vaillancourt, E.; Zawati, M.H. Verbal consent in biomedical research: Moving toward a future standard practice? Front. Genet. 2025, 16, 1472655. [Google Scholar] [CrossRef] [PubMed]
- Hireš, M.; Drotár, P.; Pah, N.D.; Ngo, Q.C.; Kumar, D.K. On the inter-dataset generalization of machine learning approaches to Parkinson’s disease detection from voice. Int. J. Med. Inform. 2023, 179, 105237. [Google Scholar] [CrossRef] [PubMed]
- Wiley, R.L.; Schwoebel, J.; Shor, J.; Chanagala, B.; Caccia, M.; García, A.M.; Fisher, S.D.; Frasch, M.G. Voice biomarkers of perinatal depression: Cross-sectional nationwide pilot study report. arXiv 2025. [Google Scholar] [CrossRef]
- Ghasemzadeh, H.; Hillman, R.E.; Mehta, D.D. Toward Generalizable Machine Learning Models in Speech, Language, and Hearing Sciences: Estimating Sample Size and Reducing Overfitting. J. Speech Lang. Hear. Res. JSLHR 2024, 67, 753–781. [Google Scholar] [CrossRef] [PubMed]
- Fahed, V.S.; Doheny, E.P.; Busse, M.; Hoblyn, J.; Lowery, M.M. Comparison of Acoustic Voice Features Derived From Mobile Devices and Studio Microphone Recordings. J. Voice Off. J. Voice Found. 2025, 39, 559.e1–559.e18. [Google Scholar] [CrossRef] [PubMed]
- Bottalico, P.; Codino, J.; Cantor-Cutiva, L.C.; Marks, K.; Nudelman, C.J.; Skeffington, J.; Shrivastav, R.; Jackson-Menaldi, M.C.; Hunter, E.J.; Rubin, A.D. Reproducibility of Voice Parameters: The Effect of Room Acoustics and Microphones. J. Voice Off. J. Voice Found. 2020, 34, 320–334. [Google Scholar] [CrossRef] [PubMed]
- Awan, S.N.; Shaikh, M.A.; Desjardins, M.; Feinstein, H.; Abbott, K.V. The effect of microphone frequency response on spectral and cepstral measures of voice: An examination of low-cost electret headset microphones. Am. J. Speech-Lang. Pathol. 2022, 31, 959–973. [Google Scholar] [CrossRef] [PubMed]
- Brockmann-Bauser, M.; de Paula Soares, M.F. Do We Get What We Need from Clinical Acoustic Voice Measurements? Appl. Sci. 2023, 13, 941. [Google Scholar] [CrossRef]
- Schuller, B.; Batliner, A.; Steidl, S.; Seppi, D. Speech emotion recognition: Emotional models, databases, features, and algorithms. Speech Commun. 2011, 53, 1162–1181. [Google Scholar] [CrossRef]
- Rahmatallah, Y.; Kemp, A.S.; Iyer, A.; Pillai, L.; Larson-Prior, L.J.; Virmani, T.; Prior, F. Pre-trained convolutional neural networks identify Parkinson’s disease from spectrogram images of voice samples. Sci. Rep. 2025, 15, 7337. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.M.; Kim, S.; Lee, E.C.; Kim, H.J. Exploring Spectrogram-Based Audio Classification for Parkinson’s Disease: A Study on Speech Classification and Qualitative Reliability Verification. Sensors 2024, 24, 4625. [Google Scholar] [CrossRef] [PubMed]
- Goldsack, J.C.; Coravos, A.; Bakker, J.P.; Bent, B.; Dowling, A.V.; Fitzer-Attas, C.; Godfrey, A.; Godino, J.G.; Gujar, N.; Izmailova, E.; et al. Verification, analytical validation, and clnical validation (V3): The foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). npj Digit. Med. 2020, 3, 55. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigo, I.; Duñabeitia, J.A. Listening to the Mind: Integrating Vocal Biomarkers into Digital Health. Brain Sci. 2025, 15, 762. https://doi.org/10.3390/brainsci15070762
Rodrigo I, Duñabeitia JA. Listening to the Mind: Integrating Vocal Biomarkers into Digital Health. Brain Sciences. 2025; 15(7):762. https://doi.org/10.3390/brainsci15070762
Chicago/Turabian StyleRodrigo, Irene, and Jon Andoni Duñabeitia. 2025. "Listening to the Mind: Integrating Vocal Biomarkers into Digital Health" Brain Sciences 15, no. 7: 762. https://doi.org/10.3390/brainsci15070762
APA StyleRodrigo, I., & Duñabeitia, J. A. (2025). Listening to the Mind: Integrating Vocal Biomarkers into Digital Health. Brain Sciences, 15(7), 762. https://doi.org/10.3390/brainsci15070762