The Use of Non-Invasive Brain Stimulation for the Management of Chronic Musculoskeletal Pain: Fad or Future?
Abstract
1. Growing Popularity of Non-Invasive Brain Stimulation in Pain Management
2. The Definition of Chronic Musculoskeletal Pain (CMP)
3. Types of Non-Invasive Brain Stimulation Techniques
3.1. Magnetic Stimulation
3.2. Electrical Stimulation
4. Evidence of Efficacy in CMP
4.1. Chronic Primary Spinal Pain
4.2. Myofascial Pain Syndrome
4.3. Osteoarthritis
4.4. Other Joint Pain
Specific Condition Authors, Year | NIBS Techniques (Target) | Study Design and Sample Size | Results | Power Calculation | Assessment of Blinding | Prospective Registration |
---|---|---|---|---|---|---|
Chronic Primary Spinal Pain | ||||||
CLBP Patricio, 2021 [33] | All NIBS techniques (tDCS, rTMS, tACS, and CES) | Systematic review with meta-analysis Twelve studies included (n total = 492) | - A single session of NIBS can reduce pain compared to placebo NIBS (very-low-quality evidence) - Repeated sessions of NIBS have no effect in the short and medium term on pain compared to placebo NIBS (moderate-quality evidence) - Not more effective when combined to a co-intervention (moderate-quality evidence) | N/A | Yes for 4 out of the 12 studies included | N/A |
CLBP Alwardat, 2020 [34] | tDCS | Systematic review with meta-analysis Nine studies included (n total = 411) | - The pooled analysis showed no statistically significant improvements in pain in favor of tDCS over M1 compared to sham tDCS (no assessment of the overall quality of the evidence) | N/A | N/A | N/A |
CLBP Patricio, 2023 [38] | rTMS (M1) | Factorial RCT (n total = 140) | - The 3 groups, rTMS, rTMS + exercise, and sham rTMS + exercise, did not outperform the sham rTMS group for pain reduction | Yes | Yes | Yes |
CLBP Alcon, 2025 [35] | tDCS (DLPFC) | RCT (n total = 20) | - The combination of tDCS and education was not more effective than placebo tDCS and education to reduce pain | No | No | Yes |
Neck pain Dere, 2025, [41] | tDCS (M1) | RCT (n total for the groups of interest = 19) | - The combination of tDCS + exercise was more effective in reducing pain than placebo tDCS + exercise | Yes | No | No |
Myofascial Pain Syndrome (MPS) | ||||||
MPS Sakrajai, 2014 [42] | tDCS (M1) | RCT (n total = 31) | - tDCS with exercise was more effective than sham tDCS with exercise to reduce pain in the short term (1-week follow-up), but not at 3- and 4-week follow-ups | No | No | No |
MPS Choi, 2014 [43] | tDCS (M1 and DLPFC) | RCT (n total = 24) | - tDCS over the DLPFC, over M1, or sham tDCS did not show any between-group differences in pain reduction | No | No | No |
MPS Dall’Agnol, 2014 [44] | rTMS (M1) | RCT (n total = 24) | - rTMS significantly reduced pain compared to sham rTMS up until 12 weeks after the conclusion of the interventions. | Yes | No | Yes |
MPS Medeiros, 2016 [45] | rTMS (M1) | Factorial RCT (n total = 46) | - The 3 groups, rTMS + DIMST, sham-rTMS + DIMST, and rTMS + sham-DIMST, showed lower pain compared to sham-rTMS + sham-DIMST. However, the group x time interaction was not reported | Yes | No | Yes |
Osteoarthritis | ||||||
Knee osteoarthritis Dissanayaka, 2023 [46] | tDCS | Systematic review with meta-analysis 14 studies included (n total = 740) | - tDCS was significantly better at reducing pain than sham tDCS in the short term (less than a week post-intervention) but not at longer follow-ups (low-quality evidence) - tDCS combined with other therapies was better than sham tDCS combined with other therapies at all follow-up durations (low-quality evidence) | N/A | N/A | N/A |
Hip/knee osteoarthritis Katsnelson, 2004 [47] | CES | RCT (n total = 64) | - tDCS using symmetric or asymmetric waveforms was not better than sham tDCS to reduce pain | No | No | No |
Other Joint Pain | ||||||
Shoulder pain Larrivée, 2021 [48] | tDCS (M1) | RCT (n = 38) | - One session of tDCS following a corticosteroid injection did not reduce pain more than sham tDCS and an injection or an injection alone | No | No | No |
Shoulder pain Belley, 2018 [49] | tDCS (M1) | RCT (n = 40) | - No significant effect of combining tDCS and sensorimotor training compared to sham tDCS + sensorimotor training on symptoms and function | Yes | Yes | Yes |
Patellofemoral pain Moraes Rodrigues, 2021 [50] | tDCS (M1) | RCT (n = 28) | - No between-group difference on pain level was found between tDCS + resistance training and sham tDCS + resistance training groups | No | No | No |
4.5. General Overview of the Evidence
5. Rationale of the Use of NIBS in Chronic Musculoskeletal Pain
6. Different Pain Mechanisms, Different Responses to Treatment?
- Patients with predominantly nociplastic CMP should respond less to NIBS because of improper functioning of their pain modulation system, while patients with predominantly nociceptive CMP could benefit from NIBS via the transient activation of the pain modulation system (similarly to using medications, TENS, or any other analgesics). For the latter, repeated sessions should be needed to maintain pain relief; any cessation of NIBS sessions would result in the loss of gains.
- Patients with nociplastic CMP should respond better to NIBS because it would “re-establish/re-set” the functioning of their pain system, while patients with nociceptive CMP may benefit from a transient effect. Repeated sessions may be necessary to elicit long-lasting neuroplasticity, but may be stopped once neuroplasticity is installed without losing the gains.
7. Methodological Considerations: Blinding Efficacy and Placebo/Contextual Effects Secondary to NIBS
8. Balancing the Benefits and the Risks of the Use of NIBS in CMP
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lefaucheur, J.P.; André-Obadia, N.; Antal, A.; Ayache, S.S.; Baeken, C.; Benninger, D.H.; Cantello, R.M.; Cincotta, M.; de Carvalho, M.; De Ridder, D.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin. Neurophysiol. 2014, 125, 2150–2206. [Google Scholar] [CrossRef] [PubMed]
- Begemann, M.J.; Brand, B.A.; Ćurčić-Blake, B.; Aleman, A.; Sommer, I.E. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: A meta-Analysis. Psychol. Med. 2020, 50, 2465–2486. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Lane, H.Y.; Lin, C.H. Brain stimulation in Alzheimer’s disease. Front. Psychiatry 2018, 9, 201. [Google Scholar] [CrossRef]
- Hyde, J.; Carr, H.; Kelley, N.; Seneviratne, R.; Reed, C.; Parlatini, V.; Garner, M.; Solmi, M.; Rosson, S.; Cortese, S.; et al. Efficacy of neurostimulation across mental disorders: Systematic review and meta-analysis of 208 randomized controlled trials. Mol. Psychiatry 2022, 27, 2709–2719. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. Repetitive Transcranial Magnetic Stimulation (rTMS) Systems—Class II Special Controls Guidance for Industry and FDA Staff 2011. Available online: https://www.fda.gov/medical-devices/guidance-documents-medical-devices-and-radiation-emitting-products/repetitive-transcranial-magnetic-stimulation-rtms-systems-class-ii-special-controls-guidance (accessed on 1 June 2025).
- Lefaucheur, J.-P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- O’Connell, N.E.; Marston, L.; Spencer, S.; Desouza, L.; Wand, B. Non-invasive brain stimulation techniques for chronic pain (Review). Cochrane Database Syst. Rev. 2018, 4, 8208. [Google Scholar] [CrossRef]
- Cuenca-Martínez, F.; Sempere-Rubio, N.; Mollà-Casanova, S.; Muñoz-Gómez, E.; Fernández-Carnero, J.; Sánchez-Sabater, A.; Suso-Martí, L. Effects of Repetitive-Transcranial Magnetic Stimulation (rTMS) in Fibromyalgia Syndrome: An Umbrella and Mapping Review. Brain Sci. 2023, 13, 1059. [Google Scholar] [CrossRef]
- Chang, M.C.; Kwak, S.G.; Park, D. The effect of rTMS in the management of pain associated with CRPS. Transl. Neurosci. 2020, 11, 363–370. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef]
- Credence Research. Non-Invasive Brain Stimulation System Market 2025. Available online: https://www.credenceresearch.com/report/non-invasive-brain-stimulation-system-market#summary (accessed on 1 June 2025).
- McQuaid, J.R.; Buelt, A.; Capaldi, V.; Fuller, M.; Issa, F.; Lang, A.E.; Hoge, C.; Oslin, D.W.; Sall, J.; Wiechers, I.R.; et al. The Management of Major Depressive Disorder: Synopsis of the 2022 U.S. Department of Veterans Affairs and U.S. Department of Defense Clinical Practice Guideline. Ann. Intern. Med. 2022, 175, 1440–1451. [Google Scholar] [CrossRef]
- Moisset, X.; Bouhassira, D.; Avez Couturier, J.; Alchaar, H.; Conradi, S.; Delmotte, M.H.; Lanteri-Minet, M.; Lefaucheur, J.; Mick, G.; Piano, V.; et al. Pharmacological and non-pharmacological treatments for neuropathic pain: Systematic review and French recommendations. Rev. Neurol. 2020, 176, 325–352. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.M.; Treister, R.; Raij, T.; Pascual-Leone, A.; Park, L.; Nurmikko, T.; Lenz, F.; Lefaucheur, J.-P.; Lang, M.; Hallett, M.; et al. Transcranial magnetic stimulation of the brain: Guidelines for pain treatment research. Pain 2015, 156, 1601–1614. [Google Scholar] [CrossRef] [PubMed]
- Rikard, S.M.; Strahan, A.E.; Schmit, K.M.; Guy, G.P. Chronic Pain Among Adults—United States, 2019–2021. MMWR Morb. Mortal. Wkly. Rep. 2023, 72, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Mei, H.; Fang, F.; Ma, X. What Is New in Classification, Diagnosis and Management of Chronic Musculoskeletal Pain: A Narrative Review. Front. Pain Res. 2022, 3, 937004. [Google Scholar] [CrossRef]
- Perrot, S.; Cohen, M.; Barke, A.; Korwisi, B.; Rief, W.; Treede, R.D. The IASP classification of chronic pain for ICD-11: Chronic secondary musculoskeletal pain. Pain 2019, 160, 77–82. [Google Scholar] [CrossRef]
- Treede, R.D. Chronic musculoskeletal pain: Traps and pitfalls in classification and management of a major global disease burden. Pain Rep. 2022, 7, E1023. [Google Scholar] [CrossRef]
- Cohen, M.L. Clarifying “chronic primary musculoskeletal pain”? The waters remain murky. Pain Rep. 2022, 7, E1021. [Google Scholar] [CrossRef]
- Fitzcharles, M.A.; Cohen, S.P.; Clauw, D.J.; Littlejohn, G.; Usui, C.; Häuser, W. Chronic primary musculoskeletal pain: A new concept of nonstructural regional pain. Pain Rep. 2022, 7, e1024. [Google Scholar] [CrossRef]
- Shah, J.P.; Thaker, N.; Heimur, J.; Aredo, J.V.; Sikdar, S.; Gerber, L. Myofascial Trigger Points Then and Now: A Historical and Scientific Perspective. PM&R 2015, 7, 746–761. [Google Scholar] [CrossRef]
- Nicholas, M.; Vlaeyen, J.W.S.; Barke, A.; Rief, W.; Aziz, Q.; Benoliel, R.; Cohen, M.; Evers, S.; Giamberardino, M.A.; Goebel, A.; et al. The IASP classification of chronic pain for ICD-11. Pain 2018, 160, 88–94. [Google Scholar]
- Jayathilake, N.J.; Phan, T.T.; Kim, J.; Lee, K.P.; Park, J.M. Modulating neuroplasticity for chronic pain relief: Noninvasive neuromodulation as a promising approach. Exp. Mol. Med. 2025, 57, 501–514. [Google Scholar] [CrossRef]
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 325, 1106–1107. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P. Transcranial magnetic stimulation. In Handbook of Clinical Neurology; Elsevier B.V.: Amsterdam, The Netherlands, 2019; Volume 160, pp. 559–580. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527 Pt 3, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Dawidziuk, A.; Darzi, A.; Singh, H.; Leff, D.R. Systematic review of combined functional near-infrared spectroscopy and transcranial direct-current stimulation studies. Neurophotonics 2020, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Mindes, J.; Dubin, M.J.; Altemus, M. Cranial Electrical Stimulation. In Textbook of Neuromodulation; Springer: New York, NY, USA, 2015; pp. 127–150. [Google Scholar] [CrossRef]
- Fröhlich, F. Endogenous and exogenous electric fields as modifiers of brain activity: Rational design of noninvasive brain stimulation with transcranial alternating current stimulation. Dialogues Clin. Neurosci. 2014, 16, 93–102. [Google Scholar] [CrossRef]
- Ploner, M.; Gross, J.; Timmermann, L.; Pollok, B.; Schnitzler, A. Pain suppresses spontaneous brain rhythms. Cereb. Cortex 2006, 16, 537–540. [Google Scholar] [CrossRef]
- Hu, L.; Peng, W.; Valentini, E.; Zhang, Z.; Hu, Y. Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. J. Pain 2013, 14, 89–99. [Google Scholar] [CrossRef]
- Jensen, M.P.; Sherlin, L.H.; Gertz, K.J.; Braden, A.L.; Kupper, A.E.; Gianas, A.; Howe, J.D.; Hakimian, S. Brain EEG activity correlates of chronic pain in persons with spinal cord injury: Clinical implications. Spinal Cord 2013, 51, 55–58. [Google Scholar] [CrossRef]
- Patricio, P.; Roy, J.-S.; Rohel, A.; Gariépy, C.; Émond, C.; Hamel, É.; Massé-Alarie, H. The Effect of Noninvasive Brain Stimulation to Reduce Nonspecific Low Back Pain. Clin. J. Pain 2021, 37, 475–485. [Google Scholar] [CrossRef]
- Alwardat, M.; Pisani, A.; Etoom, M.; Carpenedo, R.; Chinè, E.; Dauri, M.; Leonardis, F.; Natoli, S. Is transcranial direct current stimulation (tDCS) effective for chronic low back pain? A systematic review and meta-analysis. J. Neural Transm. 2020, 127, 1257–1270. [Google Scholar] [CrossRef]
- Alcon, C.; Zoch, C.; Luetkenhaus, R.; Lyman, E.; Brizzolara, K.; Goh, H.-T.; Wang-Price, S. Combined transcranial direct current stimulation and pain neuroscience education for chronic low back pain: A randomized controlled trial. Pain Med. 2025, 26, 90–97. [Google Scholar] [CrossRef]
- Ambriz-Tututi, M.; Alvarado-Reynoso, B.; Drucker-Colín, R. Analgesic effect of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic low back pain. Bioelectromagnetics 2016, 37, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Summers, J.; Pridmore, S. Changes to somatosensory detection and pain thresholds following high frequency repetitive TMS of the motor cortex in individuals suffering from chronic pain. Pain 2006, 123, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Patricio, P.; Tittley, J.; de Oliveira, F.; Macedo, L.; Léonard, G.; Hodges, P.; Massé-Alarie, H. Repetitive transcranial magnetic stimulation alone and in combination with motor control exercise for the treatment of individuals with chronic non-specific low back pain: The ExTraStim randomised sham-controlled trial. In Proceedings of the 11th Interdisciplinary World Congress on Low Back & Pelvic Girdle Pain, Melbourne, Australia, 1–4 November 2023. [Google Scholar]
- Gabis, L.; Shklar, B.; Baruch, Y.K.; Raz, R.; Gabis, E.; Geva, D. Pain reduction using transcranial electrostimulation: A double-blind “active placebo” controlled trial. J. Rehabil. Med. 2009, 41, 256–261. [Google Scholar] [CrossRef]
- Ahn, S.; Prim, J.H.; Alexander, M.L.; McCulloch, K.L.; Fröhlich, F. Identifying and Engaging Neuronal Oscillations by Transcranial Alternating Current Stimulation in Patients with Chronic Low Back Pain: A Randomized, Crossover, Double-Blind, Sham-Controlled Pilot Study. J. Pain 2019, 20, e1–e277. [Google Scholar] [CrossRef] [PubMed]
- Dere, T.; Abakay, H.; Saritaş, N.; Güç, A.; Uğur, R.; Eda Ekşi, F.; Seyrek, K. Transcranial Direct Current Stimulation Combined with Stabilization Exercises in Chronic Neck Pain: A Randomized Controlled Trial. Altern. Ther. Health Med. 2025, 31, 36–44. [Google Scholar]
- Sakrajai, P.; Janyacharoen, T.; Jensen, M.P.; Sawanyawisuth, K.; Auvichayapat, N.; Tunkamnerdthai, O.; Keeratitanont, K.B.; Auvichayapat, P. Pain reduction in myofascial pain syndrome by anodal transcranial direct current stimulation combined with standard treatment a randomized controlled study. Clin. J. Pain 2014, 30, 1076–1083. [Google Scholar] [CrossRef]
- Choi, Y.H.; Jung, S.J.; Lee, C.H.; Lee, S.U. Additional effects of transcranial direct-current stimulation and trigger-point injection for treatment of myofascial pain syndrome: A pilot study with randomized, single-blinded trial. J. Altern. Complement. Med. 2014, 20, 698–704. [Google Scholar] [CrossRef]
- Dall’Agnol, L.; Medeiros, L.F.; Torres, I.L.S.; Deitos, A.; Brietzke, A.; Laste, G.; de Souza, A.; Vieira, J.L.; Fregni, F.; Caumo, W. Repetitive transcranial magnetic stimulation increases the corticospinal inhibition and the brain-derived neurotrophic factor in chronic myofascial pain syndrome: An explanatory double-blinded, randomized, sham-controlled trial. J. Pain 2014, 15, 845–855. [Google Scholar] [CrossRef]
- Medeiros, L.F.; Caumo, W.; Dussán-Sarria, J.; Deitos, A.; Brietzke, A.; Laste, G.; Campos-Carraro, C.; de Souza, A.; Scarabelot, V.L.; Cioato, S.G.; et al. Effect of deep intramuscular stimulation and transcranial magnetic stimulation on neurophysiological biomarkers in chronic myofascial pain syndrome. Pain Med. 2016, 17, 122–135. [Google Scholar] [CrossRef]
- Dissanayaka, T.; Nakandala, P.; Malwanage, K.; Hill, A.T.; Ashthree, D.N.; Lane, M.M.; Travica, N.; Gamage, E.; Marx, W.; Jaberzadeh, S. The effects of anodal tDCS on pain reduction in people with knee osteoarthritis: A systematic review and meta-analysis. Neurophysiol. Clin. 2023, 53, 102921. [Google Scholar] [CrossRef]
- Katsnelson, Y.; Khokhlov, A.; Tsvetkov, V.; Bartoo, G.; Bartoo, M. Temporary pain relief using transcranial electrotherapy stimulation: Results of a randomized, double-blind pilot study. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 4, pp. 4087–4090. [Google Scholar] [CrossRef]
- Larrivée, S.; Balg, F.; Léonard, G.; Bédard, S.; Tousignant, M.; Boissy, P. Transcranial direct current stimulation (a-tCDS) after subacromial injections in patients with subacromial pain syndrome: A randomized controlled pilot study. BMC Musculoskelet. Disord. 2021, 22, 265. [Google Scholar] [CrossRef] [PubMed]
- Belley, A.F.; Mercier, C.; Bastien, M.; Léonard, G.; Gaudreault, N.; Roy, J.S. Anodal transcranial direct-current stimulation to enhance rehabilitation in individuals with rotator cuff tendinopathy: A triple-blind randomized controlled trial. J. Orthop. Sports Phys. Ther. 2018, 48, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Moraes Rodrigues, G.; Paixã, A.; Arruda, T.; Ribeiro Ramalho de Oliveira, B.; Albuquerque Maranhã Neto, G.; Rodrigues Marques Neto, S.; Lattari, E.; Machado, S. Anodal Transcranial Direct Current Stimulation Increases Muscular Strength and Reduces Pain Perception in Women with Patellofemoral Pain. J. Strength Cond. Res. 2022, 36, 371–378. [Google Scholar] [CrossRef]
- Attal, N.; Poindessous-Jazat, F.; De Chauvigny, E.; Quesada, C.; Mhalla, A.; Ayache, S.S.; Fermanian, C.; Nizard, J.; Peyron, R.; Lefaucheur, J.-P.; et al. Repetitive transcranial magnetic stimulation for neuropathic pain: A randomized multicentre sham-controlled trial. Brain 2021, 144, 3328–3339. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Larrea, L.; Quesada, C. Cortical stimulation for chronic pain: From anecdote to evidence. Eur. J. Phys. Rehabil. Med. 2022, 58, 290–305. [Google Scholar] [CrossRef]
- Heinricher, M.M.; Tavares, I.; Leith, J.L.; Lumb, B.M. Descending control of nociception. Brain 2010, 60, 214–225. [Google Scholar] [CrossRef]
- Goto, T.; Saitoh, Y.; Hashimoto, N.; Hirata, M.; Kishima, H.; Oshino, S.; Tani, N.; Hosomi, K.; Kakigi, R.; Yoshimine, T. Diffusion tensor fiber tracking in patients with central post-stroke pain; correlation with efficacy of repetitive transcranial magnetic stimulation. Pain 2008, 140, 509–518. [Google Scholar] [CrossRef]
- Cummiford, C.M.; Nascimento, T.D.; Foerster, B.R.; Clauw, D.J.; Zubieta, J.K.; Harris, R.E.; DaSilva, A.F. Changes in resting state functional connectivity after repetitive transcranial direct current stimulation applied to motor cortex in fibromyalgia patients. Arthritis Res. Ther. 2016, 18, 40. [Google Scholar] [CrossRef]
- De Andrade, D.C.; Mhalla, A.; Adam, F.; Texeira, M.J.; Bouhassira, D. Neuropharmacological basis of rTMS-induced analgesia: The role of endogenous opioids. Pain 2011, 152, 320–326. [Google Scholar] [CrossRef]
- Peckys, D.; Landwehrmeyer, G.B. Expression of mu, kappa, and delta opioid receptor messenger RNA in the human CNS: A 33P in situ hybridization study. Neuroscience 1999, 88, 1093–1135. [Google Scholar] [CrossRef]
- Nahmias, F.; Debes, C.; de Andrade, D.C.; Mhalla, A.; Bouhassira, D. Diffuse analgesic effects of unilateral repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers. Pain 2009, 147, 224–232. [Google Scholar] [CrossRef]
- Taylor, J.J.; Borckardt, J.J.; Canterberry, M.; Li, X.; Hanlon, C.A.; Brown, T.R.; George, M.S. Naloxone-Reversible Modulation of Pain Circuitry by Left Prefrontal rTMS. Neuropsychopharmacology 2013, 38, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Padberg, F.; George, M.S. Repetitive transcranial magnetic stimulation of the prefrontal cortex in depression. Exp. Neurol. 2009, 219, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.C.; Dunn, K.M.; Lewis, M.; Mullis, R.; Main, C.J.; Foster, N.E.; Hay, E.M. A primary care back pain screening tool: Identifying patient subgroups for initial treatment. Arthritis Care Res. 2008, 59, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Menezes Costa, L.d.C.; Maher, C.G.; Hancock, M.J.; McAuley, J.H.; Herbert, R.D.; Costa, L.O.P. The prognosis of acute and persistent low-back pain: A meta-analysis. Can. Med. Assoc. J. 2012, 184, E613–E624. [Google Scholar] [CrossRef]
- Alcon, C.A.; Wang-Price, S. Non-invasive brain stimulation and pain neuroscience education in the cognitive-affective treatment of chronic low back pain: Evidence and future directions. Front. Pain Res. 2022, 3, 959609. [Google Scholar] [CrossRef]
- Dupuis, F.; Tousignant-Laflamme, Y.; Marier Deschênes, P.; Fournier, P.; Nduwimana, I.; Pinard, A.M.; Lacombe, R.M.L.; Langevin, P.; Gaumond, A.; Roy, J.-S.; et al. Combining non-invasive brain stimulation and physiotherapy to improve the management of chronic low back pain in veterans—Study protocol for a multi-arm randomized controlled trial. Preprint 2025, 78952. [Google Scholar] [CrossRef]
- Landmark, L.; Sunde, H.F.; Fors, E.A.; Kennair, L.E.O.; Sayadian, A.; Backelin, C.; Reme, S.E. Associations between pain intensity, psychosocial factors, and pain-related disability in 4285 patients with chronic pain. Sci. Rep. 2024, 14, 13477. [Google Scholar] [CrossRef]
- Hazime, F.A.; Baptista, A.F.; De Freitas, D.G.; Monteiro, R.L.; Maretto, R.L.; Hasue, R.H. Treating low back pain with combined cerebral and peripheral electrical stimulation: A randomized, double-blind, factorial clinical trial. Eur. J. Pain 2017, 21, 1132–1143. [Google Scholar] [CrossRef]
- Fregni, F.; Potvin, K.; Silva, D.; Wang, X.; Lenkinski, R.E.; Freedman, S.D.; Pascual-Leone, A. Clinical effects and brain metabolic correlates in non-invasive cortical neuromodulation for visceral pain. Eur. J. Pain 2011, 15, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Schabrun, S.M.; Chipchase, L.S. Priming the brain to learn: The future of therapy? Man. Ther. 2012, 17, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Bolognini, N.; Pascual-Leone, A.; Fregni, F. Using non-invasive brain stimulation to augment motor training-induced plasticity. J. Neuroeng. Rehabil. 2009, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Mustafaoglu, R.; Rossi, S.; Cavdar, F.A.; Agyenkwa, S.K.; Pang, M.Y.C.; Straudi, S. Non-invasive Brain Stimulation Techniques for the Improvement of Upper Limb Motor Function and Performance in Activities of Daily Living After Stroke: A Systematic Review and Network Meta-analysis. Arch. Phys. Med. Rehabil. 2023, 104, 1683–1697. [Google Scholar] [CrossRef]
- Cardenas-Rojas, A.; Pacheco-Barrios, K.; Giannoni-Luza, S.; Rivera-Torrejon, O.; Fregni, F. Noninvasive brain stimulation combined with exercise in chronic pain: A systematic review and meta-analysis. Expert. Rev. Neurother. 2020, 20, 401–412. [Google Scholar] [CrossRef]
- Naugle, K.M.; Fillingim, R.B.; Riley, J.L. A meta-analytic review of the hypoalgesic effects of exercise. J. Pain 2012, 13, 1139–1150. [Google Scholar] [CrossRef]
- Corlier, J.; Tadayonnejad, R.; Wilson, A.C.; Lee, J.C.; Marder, K.G.; Ginder, N.D.; Wilke, S.A.; Levitt, J.; Krantz, D.; Leuchter, A.F. Repetitive transcranial magnetic stimulation treatment of major depressive disorder and comorbid chronic pain: Response rates and neurophysiologic biomarkers. Psychol. Med. 2023, 53, 823–832. [Google Scholar] [CrossRef]
- Kosek, E. The concept of nociplastic pain—Where to from here? Pain 2024, 165, S50–S57. [Google Scholar] [CrossRef]
- Task Force on Taxonomy. International Association for the Study of Pain. IASP Terminology. 2020. Available online: https://www.iasp-pain.org/resources/terminology/ (accessed on 5 May 2024).
- Fillingim, M.; Tanguay-Sabourin, C.; Parisien, M.; Zare, A.; Guglietti, G.V.; Norman, J.; Petre, B.; Bortsov, A.; Ware, M.; Perez, J.; et al. Biological markers and psychosocial factors predict chronic pain conditions. Nat. Hum. Behav. 2025. [Google Scholar] [CrossRef]
- Hodges, P.W. Hybrid approach to treatment tailoring for low back pain: A proposed model of care. J. Orthop. Sports Phys. Ther. 2019, 49, 453–463. [Google Scholar] [CrossRef]
- Nijs, J.; Kosek, E.; Chiarotto, A.; Cook, C.; Danneels, L.A.; Fernández-de-las-Peñas, C.; Hodges, P.W.; Koes, B.; Louw, A.; Ostelo, R.; et al. Nociceptive, neuropathic, or nociplastic low back pain? The low back pain phenotyping (BACPAP) consortium’s international and multidisciplinary consensus recommendations. Lancet Rheumatol. 2024, 6, E178–E188. [Google Scholar] [CrossRef] [PubMed]
- Gwilym, S.E.; Keltner, J.R.; Warnaby, C.E.; Carr, A.J.; Chizh, B.; Chessell, I.; Tracey, I. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Care Res. 2009, 61, 1226–1234. [Google Scholar] [CrossRef]
- Sunavsky, A.; Hashmi, M.A.; Robertson, J.W.; Veinot, J.; Hashmi, J.A. The nucleus accumbens-prefrontal connectivity as a predictor of chronic low back pain. Pain 2025. [Google Scholar] [CrossRef] [PubMed]
- Deyo, R.A.; Dworkin, S.F.; Amtmann, D.; Andersson, G.; Borenstein, D.; Carragee, E.; Carrino, J.; Chou, R.; Cook, K.; DeLitto, A.; et al. Report of the NIH task force on research standards for chronic low back pain. J. Pain 2014, 15, 569–585. [Google Scholar] [CrossRef] [PubMed]
- Shraim, M.A.; Massé-Alarie, H.; Farrell, M.J.; Cavaleri, R.; Loggia, M.L.; Hodges, P.W. Neuroinflammatory activation in sensory and motor regions of the cortex is related to sensorimotor function in individuals with low back pain maintained by nociplastic mechanisms: A preliminary proof-of-concept study. Eur. J. Pain 2024, 28, 1607–1626. [Google Scholar] [CrossRef]
- Patricio, P.; Tittley, J.; de Oliveira, F.C.L.; Roy, M.; Macedo, L.G.; Roy, J.-S.; Massé-Alarie, H. Repetitive transcranial magnetic stimulation hinders functional recovery in a subgroup of patients with chronic low back pain and clinical features of central sensitization: A moderation analysis. In Proceedings of the 19th International Forum for Back and Neck Pain, Davos, Switzerland, 24–27 June 2025. [Google Scholar]
- Mayer, T.G.; Neblett, R.; Cohen, H.; Howard, K.J.; Choi, Y.H.; Williams, M.J.; Perez, Y.; Gatchel, R.J. The Development and Psychometric Validation of the Central Sensitization Inventory. Pain Pract. 2012, 12, 276–285. [Google Scholar] [CrossRef]
- Nijs, J.; Apeldoorn, A.; Hallegraeff, H.; Clark, J.; Smeets, R.; Malfiet, A.; Girbes, E.L.; De Kooning, M.; Ickmans, K. Low Back Pain: Guidelines for the Clinical Classification of Predominant Neuropathic, Nociceptive, or Central Sensitization Pain. Pain Physician 2015, 18, 333–346. [Google Scholar] [CrossRef]
- Ahmed, I.; Mustafaoglu, R.; Memon, A.R.; Zafeer, R.; Xiong, H.; Straudi, S.; Runge, N.M. Comparative Effectiveness of Noninvasive Brain Stimulation for the Treatment of Pain, Fatigue, and Sleep Quality in Fibromyalgia. A Systematic Review with Network Meta-Analysis. Clin. J. Pain 2025, 41, e1282. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Benedetti, F. Placebo effects: From the neurobiological paradigm to translational implications. Neuron 2014, 84, 623–637. [Google Scholar] [CrossRef]
- Kaptchuk, T.J.; Stason, W.B.; Davis, R.B.; Legedza, A.T.R.; Schnyer, R.N.; Kerr, C.E.; Stone, D.A.; Nam, B.H.; Kirsch, I.; Goldman, R.H. Sham device versus inert pill: Randomised controlled trial of two placebo treatments. Br. Med. J. 2006, 332, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.; Kaptchuk, T.; Pascual-Leone, A. Challenges of Differential Placebo Effects in Contemporary Medicine: The Example of Brain Stimulation. Ann. Neurol. 2019, 85, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Liebetanz, D.; Lang, N.; Antal, A.; Tergau, F.; Paulus, W. Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin. Neurophysiol. 2003, 114, 2220–2222. [Google Scholar] [CrossRef]
- Gandiga, P.C.; Hummel, F.C.; Cohen, L.G. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin. Neurophysiol. 2006, 117, 845–850. [Google Scholar] [CrossRef]
- O’Connell, N.E.; Cossar, J.; Marston, L.; Wand, B.M.; Bunce, D.; Moseley, G.L.; De Souza, L.H.; Eldabe, S. Rethinking Clinical Trials of Transcranial Direct Current Stimulation: Participant and Assessor Blinding Is Inadequate at Intensities of 2 mA. PLoS ONE 2012, 7, e47514. [Google Scholar] [CrossRef]
- Szymoniuk, M.; Chin, J.H.; Domagalski, Ł.; Biszewski, M.; Jóźwik, K.; Kamieniak, P. Brain stimulation for chronic pain management: A narrative review of analgesic mechanisms and clinical evidence. Neurosurg. Rev. 2023, 46, 127. [Google Scholar] [CrossRef]
- Rossi, S.; Antal, A.; Bestmann, S.; Bikson, M.; Brewer, C.; Brockmöller, J.; Carpenter, L.L.; Cincotta, M.; Chen, R.; Daskalakis, J.D.; et al. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin. Neurophysiol. 2021, 132, 269–306. [Google Scholar] [CrossRef]
- Patricio, P.; Massé-Alarie, H. Focal to bilateral tonic-clonic seizure induced by high-frequency repetitive transcranial magnetic stimulation over the primary motor cortex in a woman with chronic low back pain: A case report. Neurophysiol. Clin. 2024, 54, 102967. [Google Scholar] [CrossRef]
- O’Connell, N.E.; Wand, B.M. Transcranial direct current brain stimulation for chronic pain. BMJ (Online) 2015, 350, h1774. [Google Scholar] [CrossRef]
- Ioannidis, J.P.A. Why Most Discovered True Associations Are Inflated. Epidemiology 2008, 19, 640–648. [Google Scholar] [CrossRef]
- Zhou, T.; Salman, D.; McGregor, A.H. Recent clinical practice guidelines for the management of low back pain: A global comparison. BMC Musculoskelet. Disord. 2024, 25, 344. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patricio, P.; Massé-Alarie, H. The Use of Non-Invasive Brain Stimulation for the Management of Chronic Musculoskeletal Pain: Fad or Future? Brain Sci. 2025, 15, 760. https://doi.org/10.3390/brainsci15070760
Patricio P, Massé-Alarie H. The Use of Non-Invasive Brain Stimulation for the Management of Chronic Musculoskeletal Pain: Fad or Future? Brain Sciences. 2025; 15(7):760. https://doi.org/10.3390/brainsci15070760
Chicago/Turabian StylePatricio, Philippe, and Hugo Massé-Alarie. 2025. "The Use of Non-Invasive Brain Stimulation for the Management of Chronic Musculoskeletal Pain: Fad or Future?" Brain Sciences 15, no. 7: 760. https://doi.org/10.3390/brainsci15070760
APA StylePatricio, P., & Massé-Alarie, H. (2025). The Use of Non-Invasive Brain Stimulation for the Management of Chronic Musculoskeletal Pain: Fad or Future? Brain Sciences, 15(7), 760. https://doi.org/10.3390/brainsci15070760