Glial Diversity and Evolution: Insights from Teleost Fish
Abstract
1. Historical Background
2. The Teleost Fish Brain: An Overview
3. Microglia
4. Neural Stem Cells, Neuroepithelial Cells, and Radial Glial Cells
5. Ependymocytes
6. Astrocytes
7. Oligodendrocytes
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kettenmann, H.; Verkhratsky, A. Neuroglia: The 150 years after. Trends Neurosci. 2008, 31, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Bentivoglio, M.; Mazzarello, P. The history of radial glia. Brain Res. Bull. 1999, 49, 305–315. [Google Scholar] [PubMed]
- Herculano-Houzel, S. The glia/neuron ratio: How it varies uniformly across brain structures and species and what that means for brain physiology and evolution. GLIA 2014, 62, 1377–1391. [Google Scholar] [CrossRef] [PubMed]
- Bahney, J.; von Bartheld, C.S. The Cellular Composition and Glia–Neuron Ratio in the Spinal Cord of a Human and a Nonhuman Primate: Comparison With Other Species and Brain Regions. Anat. Rec. 2018, 301, 697–710. [Google Scholar] [CrossRef]
- Allen, N.J.; Lyons, D.A. Glia as architects of central nervous system formation and function. Science 2018, 362, 181–185. [Google Scholar] [CrossRef]
- Sancho, L.; Contreras, M.; Allen, N.J. Glia as sculptors of synaptic plasticity. Neurosci. Res. 2021, 167, 17–29. [Google Scholar] [CrossRef]
- Losada-Perez, M. Glia: From ‘just glue’ to essential players in complex nervous systems: A comparative view from flies to mammals. J. Neurogenet. 2018, 32, 78–91. [Google Scholar] [CrossRef]
- Nieuwenhuys, R.; Donkelaar, H.J.; Nicholson, C. The Central Nervous system of Vertebrates; Springer: Berlin/Heidelberg, Germany, 1988. [Google Scholar]
- Wulliman, M.F.; Rupp, B.; Reichert, H. Neuroanatomy of Zebrafish Brain: A Topological Atlas; Birkhauser Verlag: Basel, Switzerland, 1996. [Google Scholar]
- Levine, R.L.; Evans, M.D.C. The source of reactive cells during central Wallerian degeneration in the goldfish: A differential irradiation protocol. Exp. Neurol. 2002, 173, 136–144. [Google Scholar] [CrossRef]
- Cuoghi, B.; Mola, L. Microglia of teleosts: Facing a challenge in neurobiology. Eur. J. Histochem. 2007, 51, 231–239. [Google Scholar]
- Herbomel, P.; Thisse, B.; Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 1999, 126, 3735–3745. [Google Scholar] [CrossRef]
- Herbomel, P.; Thisse, B.; Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 2001, 238, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Oosterhof, N.; Boddeke, E.; van Ham, T.J. Immune cell dynamics in the CNS: Learning from the zebrafish. GLIA 2015, 63, 719–735. [Google Scholar] [CrossRef] [PubMed]
- Oosterhof, N.; Kuil, L.E.; van der Linde, H.C.; Burm, S.M.; Berdowski, W.; van Ijcken, W.F.J.; van Swieten, J.C.; Hol, E.M.; Verheijen, M.H.G.; van Ham, T.J. Colony-Stimulating Factor 1 Receptor (CSF1R) Regulates Microglia Density and Distribution, but Not Microglia Differentiation In Vivo. Cell Rep. 2018, 24, 1203–1217.e6. [Google Scholar] [CrossRef]
- Xu, J.; Wang, T.; Wu, Y.; Jin, W.; Wen, Z. Microglia Colonization of Developing Zebrafish Midbrain Is Promoted by Apoptotic Neuron and Lysophosphatidylcholine. Dev. Cell 2016, 38, 214–222. [Google Scholar] [CrossRef]
- Sharma, K.; Bisht, K.; Eyo, U.B. A Comparative Biology of Microglia Across Species. Front. Cell Dev. Biol. 2021, 9, 652748. [Google Scholar] [CrossRef]
- Lindsey, B.W.; Aitken, G.E.; Tang, J.K.; Khabooshan, M.; Douek, A.M.; Vandestadt, C.; Kaslin, J. Midbrain tectal stem cells display diverse regenerative capacities in zebrafish. Sci. Rep. 2019, 9, 4420. [Google Scholar] [CrossRef]
- Campos-Sánchez, J.C.; Meseguer, J.; Guardiola, F.A. Fish microglia: Beyond the resident macrophages of the central nervous system—A review of their morphofunctional characteristics. Dev. Comp. Immunol. 2025, 162, 105274. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhu, L.; He, S.; Wu, Y.; Jin, W.; Yu, T.; Qu, J.Y.; Wen, Z. Temporal-Spatial Resolution Fate Mapping Reveals Distinct Origins for Embryonic and Adult Microglia in Zebrafish. Dev. Cell 2015, 34, 632–641. [Google Scholar] [CrossRef]
- Ferrero, G.; Miserocchi, M.; di Ruggiero, E.; Wittamer, V. A csf1rb mutation uncouples two waves of microglia development in zebrafish. Development 2021, 148, dev194241. [Google Scholar] [CrossRef]
- Wu, S.; Nguyen, L.T.M.; Pan, H.; Hassan, S.; Dai, Y.; Xu, J.; Wen, Z. Two phenotypically and functionally distinct microglial populations in adult zebrafish. Sci. Adv. 2020, 6, eabd1160. [Google Scholar]
- Morizet, D.; Foucher, I.; Alunni, A.; Bally-Cuif, L. Reconstruction of macroglia and adult neurogenesis evolution through cross-species single-cell transcriptomic analyses. Nat. Commun. 2024, 15, 3306. [Google Scholar] [CrossRef] [PubMed]
- Temple, S. Defining neural stem cells and their role in normal development of the nervous system. In Neural Development and Stem Cells, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Mira, H.; Morante, J. Neurogenesis From Embryo to Adult—Lessons From Flies and Mice. Front. Cell Dev. Biol. 2020, 8, 533. [Google Scholar] [CrossRef]
- Page, C.E.; Ross, D.A. Adult Hippocampal Neurogenesis and the Landscape of Plasticity in the Human Brain. Biol. Psychiatry 2025, 97, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Jin, N.; Guo, W. Neural stem cell heterogeneity in adult hippocampus. Cell Regen. 2025, 14, 6. [Google Scholar] [CrossRef]
- Simard, S.; Matosin, N.; Mechawar, N. Adult Hippocampal Neurogenesis in the Human Brain: Updates, Challenges, and Perspectives. Neuroscientist 2025, 31, 141–158. [Google Scholar] [CrossRef]
- Zupanc, G.K.H. Adult neurogenesis in the central nervous system of teleost fish: From stem cells to function and evolution. J. Exp. Biol. 2021, 224, 226357. [Google Scholar] [CrossRef]
- Zupanc, G.K.H.; Hinsch, K.; Gage, F.H. Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J. Comp. Neurol. 2005, 488, 290–319. [Google Scholar] [CrossRef]
- Adolf, B.; Chapouton, P.; Lam, C.S.; Topp, S.; Tannhäuser, B.; Strähle, U.; Götz, M.; Bally-Cuif, L. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev. Biol. 2006, 295, 278–293. [Google Scholar] [CrossRef]
- Grandel, H.; Kaslin, J.; Ganz, J.; Wenzel, I.; Brand, M. Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Dev. Biol. 2006, 295, 263–277. [Google Scholar] [CrossRef]
- Lindsey, B.W.; Darabie, A.; Tropepe, V. The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain. J. Comp. Neurol. 2012, 520, 2275–2316. [Google Scholar] [CrossRef]
- Mueller, T. What is the thalamus in zebrafish? Front. Neurosci. 2012, 6, 64. [Google Scholar] [CrossRef]
- Kishimoto, N.; Alfaro-Cervello, C.; Shimizu, K.; Asakawa, K.; Urasaki, A.; Nonaka, S.; Kawakami, K.; Garcia-Verdugo, J.M.; Sawamoto, K. Migration of neuronal precursors from the telencephalic ventricular zone into the olfactory bulb in adult zebrafish. J. Comp. Neurol. 2011, 519, 3549–3565. [Google Scholar] [CrossRef] [PubMed]
- Obermann, J.; Wagner, F.; Kociaj, A.; Zambusi, A.; Ninkovic, J.; Hauck, S.M.; Chapouton, P. The Surface Proteome of Adult Neural Stem Cells in Zebrafish Unveils Long-Range Cell-Cell Connections and Age-Related Changes in Responsiveness to IGF. Stem Cell Rep. 2019, 12, 258–273. [Google Scholar] [CrossRef]
- März, M.; Chapouton, P.; Diotel, N.; Vaillant, C.; Hesl, B.; Takamiya, M.; Lam, C.S.; Kah, O.; Bally-Cuif, L.; Strähle, U. Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. GLIA 2010, 58, 870–888. [Google Scholar] [CrossRef] [PubMed]
- Diotel, N.; Rodriguez Viales, R.; Armant, O.; März, M.; Ferg, M.; Rastegar, S.; Strähle, U. Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches. J. Comp. Neurol. 2015, 523, 1202–1221. [Google Scholar] [CrossRef]
- Diotel, N.; Lübke, L.; Strähle, U.; Rastegar, S. Common and Distinct Features of Adult Neurogenesis and Regeneration in the Telencephalon of Zebrafish and Mammals. Front. Neurosci. 2020, 14, 568930. [Google Scholar] [CrossRef]
- Cosacak, M.I.; Bhattarai, P.; Reinhardt, S.; Petzold, A.; Dahl, A.; Zhang, Y.; Kizil, C. Single-Cell Transcriptomics Analyses of Neural Stem Cell Heterogeneity and Contextual Plasticity in a Zebrafish Brain Model of Amyloid Toxicity. Cell Rep. 2019, 27, 1307–1318.e3. [Google Scholar] [CrossRef]
- Lange, C.; Brand, M. Vertebrate brain regeneration—A community effort of fate-restricted precursor cell types. Curr. Opin. Genet. Dev. 2020, 64, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.S.; Sanchez-Gonzalez, R.; di Giaimo, R.; Baumgart, E.V.; Theis, F.J.; Götz, M.; Ninkovic, J. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain. Science 2015, 348, 789–793. [Google Scholar] [CrossRef]
- Dray, N.; Mancini, L.; Binshtok, U.; Cheysson, F.; Supatto, W.; Mahou, P.; Bedu, S.; Ortica, S.; Than-Trong, E.; Krecsmarik, M.; et al. Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain. Cell Stem Cell 2021, 28, 1457–1472.e12. [Google Scholar] [CrossRef]
- Foley, T.; Thetiot, M.; Bally-Cuif, L. Neural Stem Cell Regulation in Zebrafish. Annu. Rev. Genet. 2024, 58, 249–272. [Google Scholar] [CrossRef]
- Mahler, J.; Driever, W. Expression of the zebrafish intermediate neurofilament Nestin in the developing nervous system and in neural proliferation zones at postembryonic stages. BMC Dev. Biol. 2007, 7, 89. [Google Scholar] [CrossRef]
- Pérez, M.R.; Pellegrini, E.; Cano-Nicolau, J.; Gueguen, M.-M.; Menouer-Le Guillou, D.; Merot, Y.; Vaillant, C.; Somoza, G.M.; Kah, O. Relationships between radial glial progenitors and 5-HT neurons in the paraventricular organ of adult zebrafish—Potential effects of serotonin on adult neurogenesis. Eur. J. Neurosci. 2013, 38, 3292–3301. [Google Scholar] [CrossRef]
- Ito, Y.; Tanaka, H.; Okamoto, H.; Ohshima, T. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Dev. Biol. 2010, 342, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Kaslin, J.; Kroehne, V.; Ganz, J.; Hans, S.; Brand, M. Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration. Development 2017, 144, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Gatta, C.; Schiano, V.; Attanasio, C.; Lucini, C.; Palladino, A. Neurotrophins in Zebrafish Taste Buds. Animals 2022, 12, 1613. [Google Scholar] [CrossRef]
- Esmaeli, M.; Dehabadi, M.D.; Barazesh, M.; Ghanbari, A. The Role of Ciliated Cells of the Spinal Canal. Cell Tissue Biol. 2025, 19, 191–205. [Google Scholar] [CrossRef]
- Kruger, L.; Maxwell, D.S. The fine structure of ependymal processes in the teleost optic tectum. Am. J. Anat. 1966, 119, 479–497. [Google Scholar] [CrossRef]
- Stevenson, J.A.; Yoon, M.G. Morphology of radial glia, ependymal cells, and periventricular neurons in the optic tectum of goldfish (Carassius auratus). J. Comp. Neurol. 1982, 205, 128–138. [Google Scholar] [CrossRef]
- Maggs, A.; Scholes, J. Glial domains and nerve fiber patterns in the fish retinotectal pathway. J. Neurosci. 1986, 6, 424–438. [Google Scholar] [CrossRef]
- Nona, S.N.; Shehab, S.A.S.; Stafford, C.A.; Cronly-Dillon, J.R. Glial fibrillary acidic protein (GFAP) from goldfish: Its localisation in visual pathway. GLIA 1989, 2, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Cardone, B.; Roots, B.I. Comparative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus, and snail. GLIA 1990, 3, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Rubio, M.; Suarez, I.; Bodega, G.; Fernandez, B. Glial fibrillary acidic protein and vimentin immunohistochemistry in the posterior rhombencephalon of the Iberian barb (Barbus comiza). Neurosci. Lett. 1992, 134, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Bodega, G.; Suárez, I.; Rubio, M.; Villalba, R.M.; Fernández, B. Astroglial pattern in the spinal cord of the adult barbel (Barbus comiza). Anat. Embryol. 1993, 187, 385–395. [Google Scholar] [CrossRef]
- Cuoghi, B.; Mola, L. Macroglial cells of the teleost central nervous system: A survey of the main types. Cell Tissue Res. 2009, 338, 319–332. [Google Scholar] [CrossRef]
- Eng, L.F.; Vanderhaeghen, J.J.; Bignami, A.; Gerstl, B. An acidic protein isolated from fibrous astrocytes. Brain Res. 1971, 28, 351–354. [Google Scholar] [CrossRef]
- Dahl, D.; Bignami, A. Immunochemical and immunofluorescence studies of the glial fibrillary acidic protein in vertebrates. Brain Res. 1973, 61, 279–293. [Google Scholar] [CrossRef]
- Rasmussen, S.; Sensenbrenner, M.; Devilliers, G.; Schousboe, A.; Bock, E. Isolation of intermediate filaments from rat astrocytes in culture. Neurosci. Lett. 1981, 25, 119–124. [Google Scholar] [CrossRef]
- D’Gama, P.P.; Qiu, T.; Cosacak, M.I.; Rayamajhi, D.; Konac, A.; Hansen, J.N.; Ringers, C.; Acuña-Hinrichsen, F.; Hui, S.P.; Olstad, E.W.; et al. Diversity and function of motile ciliated cell types within ependymal lineages of the zebrafish brain. Cell Rep. 2021, 37, 109775. [Google Scholar] [CrossRef]
- das Gupta, A.; John, J.; Asan, L.; Beretta, C.; Kuner, T.; Knabbe, J. Accurate classification of major brain cell types using in vivo imaging and neural network processing. PLoS Biol. 2023, 21, e3002357. [Google Scholar] [CrossRef]
- Mysliveckova, A. Ultrastructural image of the neuroglia of fishes, amphibians and reptiles. Folia Morphol. 1978, 26, 49–54. [Google Scholar]
- Castejón, O.J.; Caraballo, A.J. Light and scanning electron microscopic study of cerebellar cortex of teleost fishes. Cell Tissue Res. 1980, 207, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Onteniente, B.; Kimura, H.; Maeda, T. Comparative study of the glial fibrillary acidic protein in vertebrates by PAP immunohistochemistry. J. Comp. Neurol. 1983, 215, 427–436. [Google Scholar] [CrossRef]
- Bernardos, R.L.; Raymond, P.A. GFAP transgenic zebrafish. Gene Expr. Patterns 2006, 6, 1007–1013. [Google Scholar] [CrossRef]
- Grupp, L.; Wolburg, H.; Mack, A.F. Astroglial structures in the zebrafish brain. J. Comp. Neurol. 2010, 518, 4277–4287. [Google Scholar] [CrossRef]
- Kálmán, M.; Matuz, V.; Sebők, O.M.; Lőrincz, D. Evolutionary Modifications Are Moderate in the Astroglial System of Actinopterygii as Revealed by GFAP Immunohistochemistry. Front. Neuroanat. 2021, 15, 698459. [Google Scholar] [CrossRef]
- Maggs, A.; Scholes, J. Reticular astrocytes in the fish optic nerve: Macroglia with epithelial characteristics form an axially repeated lacework pattern, to which nodes of ranvier are apposed. J. Neurosci. 1990, 10, 1600–1614. [Google Scholar] [CrossRef]
- Kawai, H.; Arata, N.; Nakayasu, H. Three-dimensional distribution of astrocytes in zebrafish spinal cord. GLIA 2001, 36, 406–413. [Google Scholar] [CrossRef]
- Chen, J.; Poskanzer, K.E.; Freeman, M.R.; Monk, K.R. Live-imaging of astrocyte morphogenesis and function in zebrafish neural circuits. Nat. Neurosci. 2020, 23, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Stadelmann, C.; Timmler, S.; Barrantes-Freer, A.; Simons, M. Myelin in the central nervous system: Structure, function, and pathology. Physiol. Rev. 2019, 99, 1381–1431. [Google Scholar] [CrossRef] [PubMed]
- Pérez, S.E.; Adrio, F.; Rodríguez, M.A.; Rodríguez-Moldes, I.; Anadón, R. NADPH-diaphorase histochemistry reveals oligodendrocytes in the rainbow trout (teleosts). Neurosci. Lett. 1996, 205, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Kruger, L.; Maxwell, D.S. Comparative fine structure of vertebrate neuroglia: Teleosts and reptiles. J. Comp. Neurol. 1967, 129, 115–141. [Google Scholar] [CrossRef]
- Brösamle, C.; Halpern, M.E. Characterization of myelination in the developing zebrafish. GLIA 2002, 39, 47–57. [Google Scholar] [CrossRef]
- Schweitzer, J.; Becker, T.; Schachner, M.; Nave, K.-A.; Werner, H. Evolution of myelin proteolipid proteins: Gene duplication in teleosts and expression pattern divergence. Mol. Cell. Neurosci. 2006, 31, 161–177. [Google Scholar] [CrossRef]
- Hu, H.; Gao, T.; Zhao, J.; Li, H. Oligodendrogenesis in Evolution, Development and Adulthood. GLIA 2025. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucini, C.; Gatta, C. Glial Diversity and Evolution: Insights from Teleost Fish. Brain Sci. 2025, 15, 743. https://doi.org/10.3390/brainsci15070743
Lucini C, Gatta C. Glial Diversity and Evolution: Insights from Teleost Fish. Brain Sciences. 2025; 15(7):743. https://doi.org/10.3390/brainsci15070743
Chicago/Turabian StyleLucini, Carla, and Claudia Gatta. 2025. "Glial Diversity and Evolution: Insights from Teleost Fish" Brain Sciences 15, no. 7: 743. https://doi.org/10.3390/brainsci15070743
APA StyleLucini, C., & Gatta, C. (2025). Glial Diversity and Evolution: Insights from Teleost Fish. Brain Sciences, 15(7), 743. https://doi.org/10.3390/brainsci15070743