Measuring Multisensory Integration in Clinical Settings: Comparing an Established Laboratory Method with a Novel Digital Health App
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Evaluation
2.3. Apparatus
2.3.1. Tristimulator
2.3.2. CatchU®
2.4. Experimental Procedure
2.5. Preprocessing of Data
2.6. Reaction Time Probability Distributions and the CDF Difference for the Race Model Inequality
2.7. Statistical Analyses
3. Results
3.1. Demographic Information
3.2. Reaction Times
3.3. CDF Difference Curves
3.4. Bland–Altman Analysis
4. Discussion
4.1. Reaction Times
4.2. CDF Difference Curves
4.3. Bland–Altman Analysis
4.4. Other Instrumental Considerations
4.5. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RT | Reaction time |
MSI | Multisensory integration |
VSI | Visual–somatosensory integration |
CDF | Cumulative distribution function |
AUC | Area under the curve |
CV | Coefficient of variation |
IIV | Intra-individual variability |
References
- Todd, J.W. Reaction to multiple stimuli. In Archives of Psychology; Woodworth, R.S., Ed.; The Science Press: New York, NY, USA, 1912; Volume 25. [Google Scholar]
- Murray, M.M.; Thelen, A.; Thut, G.; Romei, V.; Martuzzi, R.; Matusz, P.J. The multisensory function of the human primary visual cortex. Neuropsychologia 2016, 83, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, J.R.; Cotton, K.; Verghese, J. Multisensory Integration Predicts Balance and Falls in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, J.R.; Verghese, J. Visual-Somatosensory Integration and Quantitative Gait Performance in Aging. Front. Aging Neurosci. 2018, 10, 377. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, J.R.; Verghese, J. Does Cognitive Impairment Influence Visual-Somatosensory Integration and Mobility in Older Adults? J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, 581–588. [Google Scholar] [CrossRef]
- Mahoney, J.R.; Ayers, E.; Verghese, J. Visual-somatosensory integration as a novel behavioral marker of amyloid pathology. Alzheimers Dement. 2025, 21, e14561. [Google Scholar] [CrossRef]
- Pinto, J.O.; Bastos, V.D.M.B.; Bruno, P.; Andreia, G.; Barbosa, F. Narrative review of the multisensory integration tasks used with older adults: Inclusion of multisensory integration tasks into neuropsychological assessment. Expert. Rev. Neurother. 2021, 21, 657–674. [Google Scholar] [CrossRef]
- Mahoney, J.R.; Verghese, J. Using the Race Model Inequality to Quantify Behavioral Multisensory Integration Effects. J. Vis. Exp. 2019, 147, e59575. [Google Scholar] [CrossRef]
- Mahoney, J.R. CatchU: A Quantitative Multisensory Falls-Assessment Randomized Clinical Trial. ClinicalTrials.gov identifier: NCT05544760. Available online: https://clinicaltrials.gov/study/NCT05544760 (accessed on 30 April 2025).
- Carson, N.; Leach, L.; Murphy, K.J. A re-examination of Montreal Cognitive Assessment (MoCA) cutoff scores. Int. J. Geriatr. Psychiatry 2018, 33, 379–388. [Google Scholar] [CrossRef]
- Thomann, A.E.; Berres, M.; Goettel, N.; Steiner, L.A.; Monsch, A.U. Enhanced diagnostic accuracy for neurocognitive disorders: A revised cut-off approach for the Montreal Cognitive Assessment. Alzheimer’s Res. Therapy 2020, 12, 39. [Google Scholar] [CrossRef]
- Feldman, E.L.; Stevens, M.J.; Thomas, P.K.; Brown, M.B.; Canal, N.; Greene, D.A. A Practical Two-Step Quantitative Clinical and Electrophysiological Assessment for the Diagnosis and Staging of Diabetic Neuropathy. Diabetes Care 1994, 17, 1281–1289. [Google Scholar] [CrossRef]
- Mahoney, J.R.; George, C.J.; Verghese, J. Introducing CatchU(TM): A Novel Multisensory Tool for Assessing Patients’ Risk of Falling. J. Percept. Imaging 2022, 5, 407. [Google Scholar] [CrossRef]
- Algorithm for Fall Risk Screening, Assessment, and Intervention. Available online: https://www.cdc.gov/steadi/media/pdfs/STEADI-Algorithm-508.pdf (accessed on 13 May 2025).
- Whelan, R. Effective analysis of reaction time data. Psychol. Rec. 2008, 58, 475–482. [Google Scholar] [CrossRef]
- Luce, R.D. Response Times: Their Role in Inferring Elementary Mental Organization; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Miller, J. Divided attention: Evidence for coactivation with redundant signals. Cogn. Psychol. 1982, 14, 247–279. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.; Ulrich, R. Simple reaction time and statistical facilitation: A parallel grains model. Cogn. Psychol. 2003, 46, 101–151. [Google Scholar] [CrossRef]
- Miller, J. Timecourse of coactivation in bimodal divided attention. Percept. Psychophys. 1986, 40, 331–343. [Google Scholar] [CrossRef]
- Gondan, M.; Minakata, K. A tutorial on testing the race model inequality. Atten. Percept. Psychophys. 2016, 78, 723–735. [Google Scholar] [CrossRef]
- Colonius, H.; Diederich, A. The race model inequality: Interpreting a geometric measure of the amount of violation. Psychol. Rev. 2006, 113, 148–154. [Google Scholar] [CrossRef]
- JASP Team. JASP; Version 0.19.3; Computer Software; JASP Team: New York, NY, USA, 2025. [Google Scholar]
- Montés-Micó, R.; Bueno, I.; Candel, J.; Pons, A.M. Eye-hand and eye-foot visual reaction times of young soccer players. Optometry 2000, 71, 775–780. [Google Scholar]
- Hoffmann, E.R. A comparison of hand and foot movement times. Ergonomics 1991, 34, 397–406. [Google Scholar] [CrossRef]
- Thomas, P.K.; Sears, T.A.; Gilliatt, R.W. The Range of Conduction Velocity in Normal Motor Nerve Fibres to the Small Muscles of the Hand and Foot. J. Neurol. Neurosur Psychiatry 1959, 22, 175–181. [Google Scholar] [CrossRef]
- Wilimzig, C.; Ragert, P.; Dinse, H.R. Cortical topography of intracortical inhibition influences the speed of decision making. Proc. Natl. Acad. Sci. USA 2012, 109, 3107–3112. [Google Scholar] [CrossRef] [PubMed]
- Mazade, R.; Jin, J.; Rahimi-Nasrabadi, H.; Najafian, S.; Pons, C.; Alonso, J.M. Cortical mechanisms of visual brightness. Cell Rep. 2022, 40, 111438. [Google Scholar] [CrossRef] [PubMed]
- Nunez, V.; Gordon, J.; Shapley, R. Signals from Single-Opponent Cortical Cells in the Human cVEP. J. Neurosci. 2022, 42, 4380–4393. [Google Scholar] [CrossRef]
- Johansson, R.S.; Vallbo, A.B. Tactile sensibility in the human hand: Relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 1979, 286, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, J.R.; Blumen, H.M.; De Sanctis, P.; Fleysher, R.; Frankini, C.; Hoang, A.; Hoptman, M.J.; Jin, R.; Lipton, M.; Nunez, V.; et al. Visual-somatosensory integration (VSI) as a novel marker of Alzheimer’s disease: A comprehensive overview of the VSI study. Front. Aging Neurosci. 2023, 15, 1125114. [Google Scholar] [CrossRef]
- Colonius, H.; Diederich, A. Formal models and quantitative measures of multisensory integration: A selective overview. Eur. J. Neurosci. 2020, 51, 1161–1178. [Google Scholar] [CrossRef]
- Berger, A.; Kiefer, M. Comparison of Different Response Time Outlier Exclusion Methods: A Simulation Study. Front. Psychol. 2021, 12, 675558. [Google Scholar] [CrossRef]
- Lachaud, C.M.; Renaud, O. A tutorial for analyzing human reaction times: How to filter data, manage missing values, and choose a statistical model. Appl. Psycholinguist. 2011, 32, 389–416. [Google Scholar] [CrossRef]
- Frey, A.; Spoden, C.; Goldhammer, F.; Wenzel, S.F.C. Response time-based treatment of omitted responses in computer-based testing. Behaviormetrika 2018, 45, 505–526. [Google Scholar] [CrossRef]
- Miller, J.; Lopes, A. Bias produced by fast guessing in distribution-based tests of race models. Percept. Psychophys. 1991, 50, 584–590. [Google Scholar] [CrossRef]
- Rousselet, G.A.; Wilcox, R.R. Reaction Times and other Skewed Distributions. Meta-Psychology 2020, 4, 1630. [Google Scholar] [CrossRef]
- Van Zandt, T. How to fit a response time distribution. Psychon. Bull. Rev. 2000, 7, 424–465. [Google Scholar] [CrossRef] [PubMed]
- Hervey, A.S.; Epstein, J.N.; Curry, J.F.; Tonev, S.; Eugene Arnold, L.; Keith Conners, C.; Hinshaw, S.P.; Swanson, J.M.; Hechtman, L. Reaction time distribution analysis of neuropsychological performance in an ADHD sample. Child. Neuropsychol. 2006, 12, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, A.; Rothlein, D.; Kucyi, A.; Valera, E.M.; Germine, L.; Wilmer, J.; DeGutis, J.; Esterman, M. Variable rather than extreme slow reaction times distinguish brain states during sustained attention. Sci. Rep. 2021, 11, 14883. [Google Scholar] [CrossRef]
Variable | Value |
---|---|
Number of participants, N | 50 |
% Female | 60.0 |
Age (y) | 76.5 (6.2), range 65–89 |
% Caucasian | 94.0 |
Education (y) | 17.4 (3.8), range 5–28 |
% Visual impairment | 54.0 |
% Neuropathy | 12.0 |
GHS # (0–10) | 2.3 (1.4), range 0–6 |
MoCA score | 27.1 (1.6), range 24–30 |
Instrument | Condition | Mean | SD | CV | IIV |
---|---|---|---|---|---|
CatchU | S | 708.0 | 139.9 | 0.198 | 0.133 |
V | 613.7 | 131.6 | 0.214 | 0.136 | |
VS | 595.9 | 139.7 | 0.234 | 0.121 | |
Tristimulator | S | 562.5 | 266.0 | 0.473 | 0.207 |
V | 542.1 | 280.1 | 0.517 | 0.226 | |
VS | 500.0 | 258.1 | 0.516 | 0.209 |
Bias and Limits of Agreement | Point Value | Lower 95% CI | Upper 95% CI |
---|---|---|---|
Bias (B) | 0.002 | −0.022 | 0.026 |
Upper limit of agreement (B + 1.96 SD) | 0.168 | 0.127 | 0.209 |
Lower limit of agreement (B − 1.96 SD) | −0.163 | −0.205 | −0.122 |
Tristimulator | |||
---|---|---|---|
Non-Integrator | Integrator | ||
CatchU | Non-integrator | 16 | 8 |
Integrator | 7 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunez, V.; Gordon, J.; Oh-Park, M.; Silvers, J.; Verghese, T.; Zemon, V.; Mahoney, J.R. Measuring Multisensory Integration in Clinical Settings: Comparing an Established Laboratory Method with a Novel Digital Health App. Brain Sci. 2025, 15, 653. https://doi.org/10.3390/brainsci15060653
Nunez V, Gordon J, Oh-Park M, Silvers J, Verghese T, Zemon V, Mahoney JR. Measuring Multisensory Integration in Clinical Settings: Comparing an Established Laboratory Method with a Novel Digital Health App. Brain Sciences. 2025; 15(6):653. https://doi.org/10.3390/brainsci15060653
Chicago/Turabian StyleNunez, Valerie, James Gordon, Mooyeon Oh-Park, Jessica Silvers, Tanya Verghese, Vance Zemon, and Jeannette R. Mahoney. 2025. "Measuring Multisensory Integration in Clinical Settings: Comparing an Established Laboratory Method with a Novel Digital Health App" Brain Sciences 15, no. 6: 653. https://doi.org/10.3390/brainsci15060653
APA StyleNunez, V., Gordon, J., Oh-Park, M., Silvers, J., Verghese, T., Zemon, V., & Mahoney, J. R. (2025). Measuring Multisensory Integration in Clinical Settings: Comparing an Established Laboratory Method with a Novel Digital Health App. Brain Sciences, 15(6), 653. https://doi.org/10.3390/brainsci15060653