Uncomfortable Paresthesia and Dysesthesia Following Tonic Spinal Cord Stimulator Implantation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Demographics
3.2. Effectiveness of SCS Therapy
3.3. Summary of Complications
3.3.1. Need for Revision
3.3.2. Uncomfortable Paresthesia/Dysesthesia
3.3.3. Explantation and Failure of Treatment
3.3.4. Lead Migration
3.3.5. Infection/Seroma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SCS | Spinal cord stimulator |
CRPS | Complex regional pain syndrome |
PSPS | Persistent spinal pain syndrome |
NRS | Numerical Rating Scale |
LBP | Low back pain |
References
- Harmsen, I.E.; Hasanova, D.; Elias, G.J.; Boutet, A.; Neudorfer, C.; Loh, A.; Germann, J.; Lozano, A.M. Trends in clinical trials for spinal cord stimulation. Ster. Funct. Neurosurg. 2021, 99, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Francio, V.; Barndt, B.S.; Davani, S.; Towery, C.; Allen, T.R. Poster 118: Clinical Indications and Guidelines for the Implantation of Spinal Cord Stimulators (SCS) in Pain Management: A Narrative Review for Clinicians. PM&R 2018, 10, S43. [Google Scholar] [CrossRef]
- Kumar, K.; Nath, R.; Wyant, G.M. Treatment of chronic pain by epidural spinal cord stimulation: A 10-year experience. J. Neurosurg. 1991, 75, 402–407. [Google Scholar] [CrossRef]
- Shealy, C.N.; Mortimer, J.T.; Reswick, J.B. Electrical inhibition of pain by stimulation of the dorsal columns: Preliminary clinical report. Anesth. Analg. 1967, 46, 489–491. [Google Scholar] [CrossRef]
- Willis, W.D. The pain system. The neural basis of nociceptive transmission in the mammalian nervous system. Pain Headache 1985, 8, 1–346. [Google Scholar]
- Sdrulla, A.D.; Guan, Y.; Raja, S.N. Spinal cord stimulation: Clinical efficacy and potential mechanisms. Pain. Pract. 2018, 18, 1048–1067. [Google Scholar] [CrossRef]
- Leung, N.; Tsourmas, N.F.; Yuspeh, L.; Kalia, N.; Lavin, R.A.; Tao, X.; Bernacki, E.J. Increased Spinal Cord Stimulator Use and Continued Opioid Treatment Among Injured Workers. J. Occup. Environ. Med. 2020, 62, e436–e441. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, T.; Aner, M.; Sharma, S.; Ghosh, P.; Gill, J.S. Explantation of percutaneous spinal cord stimulator devices: A retrospective descriptive analysis of a single-center 15-year experience. Pain. Med. 2019, 20, 1355–1361. [Google Scholar] [CrossRef]
- Pope, J.E.; Deer, T.R.; Falowski, S.; Provenzano, D.; Hanes, M.; Hayek, S.M.; Amrani, J.; Carlson, J.; Skaribas, I.; Parchuri, K.; et al. Multicenter retrospective study of neurostimulation with exit of therapy by explant. Neuromodulation Technol. Neural Interface 2017, 20, 543–552. [Google Scholar] [CrossRef]
- Negoita, S.; Duy, P.Q.; Mahajan, U.V.; Anderson, W.S. Timing and prevalence of revision and removal surgeries after spinal cord stimulator implantation. J. Clin. Neurosci. 2019, 62, 80–82. [Google Scholar] [CrossRef]
- Papadopoulos, D.V.; Suk, M.S.; Andreychik, D.; Nikolaou, V.; Haak, M. Rates and Causes of Reoperations Following Spinal Cord Stimulation Within a 2–12 year Period. Glob. Spine J. 2023, 15, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Leplus, A.; Voirin, J.; Cuny, E.; Onno, M.; Billot, M.; Rigoard, P.; Fontaine, D. Is Spinal Cord Stimulation Still Effective After One or More Surgical Revisions? Neuromodulation Technol. Neural Interface 2023, 26, 1102–1108. [Google Scholar] [CrossRef]
- Peeters, J.-B.; Raftopoulos, C. Tonic, burst, high-density, and 10-kHz high-frequency spinal cord stimulation: Efficiency and patients’ preferences in a failed back surgery syndrome predominant population. Review of literature. World Neurosurg. 2020, 144, e331–e340. [Google Scholar] [CrossRef]
- Piedade, G.S.; Gillner, S.; Slotty, P.J.; Vesper, J. Combination of waveforms in modern spinal cord stimulation. Acta Neurochir. 2022, 164, 1187–1191. [Google Scholar] [CrossRef]
- Sinclair, C.; Verrills, P.; Barnard, A. A review of spinal cord stimulation systems for chronic pain. J. Pain. Res. 2016, 9, 481–492. [Google Scholar] [CrossRef]
- Luecke, T.; Edgar, D.; Huse, D. 10 kHz spinal cord stimulation for the treatment of chronic back and/or leg pain: Summary of clinical studies. SAGE Open Med. 2020, 8, 1–10. [Google Scholar] [CrossRef]
- Kapural, L.; Yu, C.; Doust, M.W.; Gliner, B.E.; Vallejo, R.; Sitzman, B.T.; Amirdelfan, K.; Morgan, D.M.; Yearwood, T.L.; Bundschu, R.; et al. Comparison of 10-kHz high-frequency and traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain: 24-month results from a multicenter, randomized, controlled pivotal trial. Neurosurgery 2016, 79, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.S.; Chan, C.; Cheung, C. Spinal cord stimulation for chronic non-cancer pain: A review of current evidence and practice. Hong Kong Med. J. 2017, 23, 517–523. [Google Scholar] [CrossRef]
- Gill, J.S.; Kohan, L.R.; Hasoon, J.; Urits, I.; Viswanath, O.; Cai, V.L.; Yazdi, C.; Aner, M.M.; Kaye, A.D.; Simopoulos, T.T. A survey on the choice of spinal cord stimulation parameters and implantable pulse generators and on reasons for explantation. Orthop. Rev. 2022, 14, 39648. [Google Scholar] [CrossRef]
- Al-Kaisy, A.; Royds, J.; Al-Kaisy, O.; Palmisani, S.; Pang, D.; Smith, T.; Padfield, N.; Harris, S.; Wesley, S.; Yearwood, T.L.; et al. Explant rates of electrical neuromodulation devices in 1177 patients in a single center over an 11-year period. Reg. Anesth. Pain. Med. 2020, 45, 883–890. [Google Scholar] [CrossRef]
- Deer, T.; Slavin, K.V.; Amirdelfan, K.; North, R.B.; Burton, A.W.; Yearwood, T.L.; Tavel, E.; Staats, P.; Falowski, S.; Pope, J.; et al. Success using neu-romodulation with BURST (SUNBURST) study: Results from a prospective, randomized controlled trial using a novel burst waveform. Neuromodulation Technol. Neural Interface 2018, 21, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Hoelzer, B.C.; Bendel, M.A.; Deer, T.R.; Eldrige, J.S.; Walega, D.R.; Wang, Z.; Costandi, S.; Azer, G.; Qu, W.; Falowski, S.M.; et al. Spinal Cord Stimulator Implant Infection Rates and Risk Factors: A Multicenter Retrospective Study. Neuromodulation Technol. Neural Interface 2017, 20, 558–562. [Google Scholar] [CrossRef]
- Mekhail, N.; Azer, G.; Saweris, Y.; Mehanny, D.S.; Costandi, S.; Mao, G. The Impact of Tobacco Cigarette Smoking on Spinal Cord Stimulation Effectiveness in Chronic Spine–Related Pain Patients. Reg. Anesth. Pain. Med. 2018, 43, 768–775. [Google Scholar] [CrossRef]
- Mekhail, N.; Costandi, S.; Mehanny, D.S.; Armanyous, S.; Saied, O.; Taco-Vasquez, E.; Saweris, Y. The Impact of Tobacco Smoking on Spinal Cord Stimulation Effectiveness in Complex Regional Pain Syndrome Patients. Neuromodulation Technol. Neural Interface 2020, 23, 133–139. [Google Scholar] [CrossRef]
- Choi, H.; Gaiha, R.; Moeschler, S.M.; Bendel, M.A.; McCormick, Z.L.; Teramoto, M.; Rosenow, J.M.; Kielb, S.; Avram, M.J.; Walega, D.R. Factors Associated with Implantable Pulse Generator Site Pain: A Multicenter Cross-Sectional Study. Neuromodulation Technol. Neural Interface 2021, 24, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- Salokangas, R.K.; Vilkman, H.; Ilonen, T.; Taiminen, T.; Bergman, J.; Haaparanta, M.; Solin, O.; Alanen, A.; Syvã«¡Hti, E.; Hietala, J. High levels of dopamine activity in the basal ganglia of cigarette smokers. Am. J. Psychiatry 2000, 157, 632–634. [Google Scholar] [CrossRef]
- Tracy, L.M.; Ioannou, L.; Baker, K.S.; Gibson, S.J.; Georgiou-Karistianis, N.; Giummarra, M.J. Meta-analytic evidence for decreased heart rate variability in chronic pain implicating parasympathetic nervous system dysregulation. Pain 2016, 157, 7–29. [Google Scholar] [CrossRef]
- Ditre, J.W.; Brandon, T.H.; Zale, E.L.; Meagher, M.M. Pain, nicotine, and smoking: Research findings and mechanistic considerations. Psychol. Bull. 2011, 137, 1065–1093. [Google Scholar] [CrossRef] [PubMed]
- Herbsleb, M.; Schulz, S.; Ostermann, S.; Donath, L.; Eisenträger, D.; Puta, C.; Voss, A.; Gabriel, H.W.; Bär, K.-J. The relation of autonomic function to physical fitness in patients suffering from alcohol dependence. Drug Alcohol. Depend. 2013, 132, 505–512. [Google Scholar] [CrossRef]
- De Vita, M.J.; Maisto, S.A.; Ansell, E.B.; Zale, E.L.; Ditre, J.W. Pack-years of tobacco cigarette smoking as a predictor of spontaneous pain reporting and experimental pain reactivity. Exp. Clin. Psychopharmacol. 2019, 27, 552–560. [Google Scholar] [CrossRef]
- Oura, P.; Hautala, A.; Kiviniemi, A.; Auvinen, J.; Puukka, K.; Tulppo, M.; Huikuri, H.; Seppänen, T.; Karppinen, J. Musculoskeletal pains and cardiovascular autonomic function in the general Northern Finnish population. BMC Musculoskelet. Disord. 2019, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Goudman, L.; Brouns, R.; Linderoth, B.; Moens, M. Effects of Spinal Cord Stimulation on Heart Rate Variability in Patients with Failed Back Surgery Syndrome: Comparison Between a 2-lead ECG and a Wearable Device. Neuromodulation Technol. Neural Interface 2021, 24, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.P.; Eldabe, S.; Buchser, E.; Johanek, L.M.; Guan, Y.; Linderoth, B. Parameters of Spinal Cord Stimulation and Their Role in Electrical Charge Delivery: A Review. Neuromodulation Technol. Neural Interface 2016, 19, 373–384. [Google Scholar] [CrossRef]
- Butler, B.; Acosta, G.; Shi, R. Exogenous Acrolein intensifies sensory hypersensitivity after spinal cord injury in rat. J. Neurol. Sci. 2017, 379, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Lalkhen, A.G.; Chincholkar, M.; Patel, J. Microbiological Evaluation of the Extension Wire and Percutaneous Epidural Lead Anchor Site Following a “2-Stage Cut-Down” Spinal Cord Stimulator Procedure. Pain Pract. 2017, 17, 886–891. [Google Scholar] [CrossRef]
- Falowski, S.M.; Provenzano, D.A.; Xia, Y.; Doth, A.H. Spinal Cord Stimulation Infection Rate and Risk Factors: Results From a United States Payer Database. Neuromodulation Technol. Neural Interface 2019, 22, 279–289. [Google Scholar] [CrossRef]
- Mekhail, N. Where does the balance lie between doing what’s right for our patients and patients’ rights? Spinal cord stimulation in chronic pain smokers. Reg. Anesth. Pain. Med. 2019, 44, 421–422. [Google Scholar] [CrossRef]
- Knezevic, N.N.; Candido, K.D. Should spinal cord stimulation be abandoned in smoking patients with chronic pain? Reg. Anesth. Pain. Med. 2019, 44, 420–421. [Google Scholar] [CrossRef]
Population Characteristics (n = 103) | |
---|---|
Age (years) | |
(Mean, SD) | 55.48 ± 13.08 |
Sex | |
Male | 34 (33%) |
Female | 69 (67%) |
Occupation | |
Working | 36 (34.95%) |
Disability | 23 (22.33%) |
Modified Duty | 6 (5.83%) |
Retired | 23 (22.33%) |
Unemployed | 15 (14.56%) |
Indication of SCS | |
PSPS | 39 (37.86%) |
CRPS | 14 (13.60%) |
LBP | 35 (34%) |
Other | 15 (14.54%) |
SCS implantation region | |
Cervical | 9 (8.74%) |
Upper thoracic | 4 (3.88%) |
Lower thoracic | 80 (77.67%) |
Other | 10 (9.71%) |
Months of follow up | |
(Median, IQR) | 20 (28) |
Complications | Active Tobacco Users (n = 30) | Never Tobacco Users (n = 61) | Former Tobacco Users (n = 12) | Total (n =103) | p Value |
---|---|---|---|---|---|
Infection | 1 (3.33%) | 2 (3.27%) | 1 (8.33%) | 6 (5.82%) | 0.69 |
Lead Migration | 5 (16.67%) | 3 (4.91%) | 1 (8.33%) | 9 (8.73%) | 0.17 |
Revision | 16 (53.33%) | 16 (26.22%) | 4 (33.33%) | 36 (34.95%) | 0.03 |
Explantation | 6 (20%) | 2 (3.27%) | 5 (41.67%) | 13 (12.62%) | 0.09 |
Dysesthesia/Paresthesia | 10 (33.33%) | 4 (6.55%) | 3 (25%) | 17 (27.86%) | 0.04 |
Loss of Effect | 2 (6.66%) | 0 | 2 (16.67%) | 4 (3.88%) | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sethi, Z.; Aijaz, T.; Ortega-Camacho, A.; Nasr, N.F.; Knezevic, N.N. Uncomfortable Paresthesia and Dysesthesia Following Tonic Spinal Cord Stimulator Implantation. Brain Sci. 2025, 15, 616. https://doi.org/10.3390/brainsci15060616
Sethi Z, Aijaz T, Ortega-Camacho A, Nasr NF, Knezevic NN. Uncomfortable Paresthesia and Dysesthesia Following Tonic Spinal Cord Stimulator Implantation. Brain Sciences. 2025; 15(6):616. https://doi.org/10.3390/brainsci15060616
Chicago/Turabian StyleSethi, Zubin, Tabish Aijaz, Alvaro Ortega-Camacho, Ned F. Nasr, and Nebojsa Nick Knezevic. 2025. "Uncomfortable Paresthesia and Dysesthesia Following Tonic Spinal Cord Stimulator Implantation" Brain Sciences 15, no. 6: 616. https://doi.org/10.3390/brainsci15060616
APA StyleSethi, Z., Aijaz, T., Ortega-Camacho, A., Nasr, N. F., & Knezevic, N. N. (2025). Uncomfortable Paresthesia and Dysesthesia Following Tonic Spinal Cord Stimulator Implantation. Brain Sciences, 15(6), 616. https://doi.org/10.3390/brainsci15060616