A Randomized Controlled Trial Comparing Subcutaneous Preservation of Bone Flaps with Cryogenic Preservation of Bone Flaps for Cranioplasty in Cases of Traumatic Brain Injury
Abstract
1. Introduction
2. Materials and Methods
2.1. Procedure
2.2. Cranioplasty
3. Results
3.1. Descriptives
3.2. Analysis
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DC | decompressive craniectomy |
GOS | Glasgow Outcome Scale |
ICP | intracranial pressure |
TBI | traumatic brain injury |
LMIC | lower- and middle-income country |
NCCT | non-contrast computed tomography |
SSI | surgical site infection |
PEEK | Polyetheretherketone |
References
- Gururaj, G. Epidemiology of traumatic brain injuries: Indian scenario. Neurol. Res. 2002, 24, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.M.; Kochanek, P.M.; Simard, J.M. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2019, 145 Pt B, 230–246. [Google Scholar] [CrossRef]
- Janjua, T.; Narvaez, A.R.; Florez-Perdomo, W.A.; Guevara-Moriones, N.; Moscote-Salazar, L.R. A review on decompressive craniectomy for traumatic brain injury: The mainstay method for neurotrauma patients. Egypt. J. Neurosurg. 2023, 38, 75. [Google Scholar] [CrossRef]
- Meyer, H.; Khalid, S.I.; Dorafshar, A.H.; Byrne, R.W. The Materials Utilized in Cranial Reconstruction: Past, Current, and Future. Plast. Surg. 2021, 29, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Jung, H.; Skirboll, S. Materials used in cranioplasty: A history and analysis. Neurosurg. Focus 2014, 36, E19. [Google Scholar] [CrossRef]
- Corliss, B.; Gooldy, T.; Vaziri, S.; Kubilis, P.; Murad, G.; Fargen, K. Complications After In Vivo and Ex Vivo Autologous Bone Flap Storage for Cranioplasty: A Comparative Analysis of the Literature. World Neurosurg. 2016, 96, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, I.P.; Yusheng, L.; Zheng, M.; Lee, G.Y.F. Autogenous skull flaps stored frozen for more than 6 months: Do they remain viable? J. Clin. Neurosci. 2011, 18, 1690–1693. [Google Scholar] [CrossRef]
- Robles, L.A.; Morell, A. Autologous Cranioplasty with Bone Flap Preserved in Conventional Freezers: An Adequate Option in Low Resource Settings. World Neurosurg. 2024, 182, 116–123. [Google Scholar] [CrossRef]
- Bhaskar, I.P.; Inglis, T.J.J.; Bowman, J.; Lee, G.Y.F. Microbial contamination assessment of cryostored autogenous cranial bone flaps: Should bone biopsies or swabs be performed? Acta Neurochir. 2013, 155, 367–371. [Google Scholar] [CrossRef]
- Wui, S.-H.; Kim, K.M.; Ryu, Y.-J.; Kim, I.; Lee, S.J.; Kim, J.; Kim, C.; Park, S. The Autoclaving of Autologous Bone is a Risk Factor for Surgical Site Infection After Cranioplasty. World Neurosurg. 2016, 91, 43–49. [Google Scholar] [CrossRef]
- Mahapure, K.S.; Murray, D.J. “The historical timeline of cranioplasty”. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 632–633. [Google Scholar] [CrossRef] [PubMed]
- Inamasu, J.; Kuramae, T.; Nakatsukasa, M. Does difference in the storage method of bone flaps after decompressive craniectomy affect the incidence of surgical site infection after cranioplasty? Comparison between subcutaneous pocket and cryopreservation. J. Trauma Inj. Infect. Crit. Care 2010, 68, 183–187, discussion 187. [Google Scholar] [CrossRef]
- Shafiei, M.; Sourani, A.; Saboori, M.; Aminmansour, B.; Mahram, S. Comparison of subcutaneous pocket with cryopreservation method for storing autologous bone flaps in developing surgical wound infection after Cranioplasty: A randomized clinical trial. J. Clin. Neurosci. 2021, 91, 136–143. [Google Scholar] [CrossRef]
- Koroglu, M.; Irwin, B.R.; Grépin, K.A. Effect of power outages on the use of maternal health services: Evidence from Maharashtra, India. BMJ Glob. Health 2019, 4, e001372. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Lee, T.-C.; Lee, T.-H.; Liao, C.-C.; Sheehan, J.; Kwan, A.-L. Thirty-day mortality in traumatically brain-injured patients undergoing decompressive craniectomy. J. Neurosurg. 2013, 118, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Safi, S.; Ali, A.; Abdelhafez, I.; Salam, A.; Alrabayah, T.; Alyafei, A.; Belkhair, S. Predictors of Clinical Outcomes in Autologous Cranioplasty. World Neurosurg. 2022, 167, e561–e566. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.-H.; Lee, H.-C.; Chen, C.-C.; Cho, D.-Y.; Lin, H.-L. Cryopreservation versus subcutaneous preservation of autologous bone flaps for cranioplasty: Comparison of the surgical site infection and bone resorption rates. Clin. Neurol. Neurosurg. 2014, 124, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Cheong, J.H.; Ryu, J.I.; Kim, J.M.; Kim, C.H. Bone Flap Resorption Following Cranioplasty after Decompressive Craniectomy: Preliminary Report. Korean J. Neurotrauma 2015, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.J.; Rosenfeld, J.V.; Murray, L.; Arabi, Y.M.; Davies, A.R.; D’Urso, P.; Kossmann, T.; Ponsford, J.; Seppelt, I.; Reilly, P.; et al. Decompressive craniectomy in diffuse traumatic brain injury. N. Engl. J. Med. 2011, 364, 1493–1502. [Google Scholar] [CrossRef]
- Al-Salihi, M.M.; Ayyad, A.; Al-Jebur, M.S.; Al-Salihi, Y.; Hammadi, F.; Bowman, K.; Baskaya, M.K. Subcutaneous preservation versus cryopreservation of autologous bone grafts for cranioplasty: A systematic review and meta-analysis. J. Clin. Neurosci. 2024, 122, 1–9. [Google Scholar] [CrossRef]
- Rosinski, C.L.; Chaker, A.N.; Zakrzewski, J.; Geever, B.; Patel, S.; Chiu, R.G.; Rosenberg, D.M.; Parola, R.; Shah, K.; Behbahani, M.; et al. Autologous Bone Cranioplasty: A Retrospective Comparative Analysis of Frozen and Subcutaneous Bone Flap Storage Methods. World Neurosurg. 2019, 131, e312–e320. [Google Scholar] [CrossRef] [PubMed]
- Torimitsu, S.; Nishida, Y.; Takano, T.; Koizumi, Y.; Hayakawa, M.; Yajima, D.; Inokuchi, G.; Makino, Y.; Motomura, A.; Chiba, F.; et al. Effects of the freezing and thawing process on biomechanical properties of the human skull. Leg. Med. 2014, 16, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Jho, D.H.; Neckrysh, S.; Hardman, J.; Charbel, F.T.; Amin-Hanjani, S. Ethylene oxide gas sterilization: A simple technique for storing explanted skull bone. Technical note. J. Neurosurg. 2007, 107, 440–445. [Google Scholar] [CrossRef]
- Chiang, H.-Y.; Steelman, V.M.; Pottinger, J.M.; Schlueter, A.J.; Diekema, D.J.; Greenlee, J.D.; Howard, M.A.; Herwaldt, L.A. Clinical significance of positive cranial bone flap cultures and associated risk of surgical site infection after craniotomies or craniectomies. J. Neurosurg. 2011, 114, 1746–1754. [Google Scholar] [CrossRef]
- Alkhaibary, A.; Alharbi, A.; Abbas, M.; Algarni, A.; Abdullah, J.M.; Almadani, W.H.; Khairy, I.; Alkhani, A.; Aloraidi, A.; Khairy, S. Predictors of Surgical Site Infection in Autologous Cranioplasty: A Retrospective Analysis of Subcutaneously Preserved Bone Flaps in Abdominal Pockets. World Neurosurg. 2020, 133, e627–e632. [Google Scholar] [CrossRef]
- Riordan, M.A.; Simpson, V.M.; Hall, W.A. Analysis of Factors Contributing to Infections After Cranioplasty: A Single-Institution Retrospective Chart Review. World Neurosurg. 2016, 87, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, R.; Jain, K.; Walia, B. Cranioplasty following decompressive craniectomy—Analysis of complication rates and neurological outcomes: A single center study. Surg. Neurol. Int. 2019, 10, 142. [Google Scholar] [CrossRef]
- Guo, J.; Hou, X.; Zeng, J.; Chen, X.; Zheng, S.; Xu, B.; Zheng, S.; Liu, Z.; Ling, G. A Retrospective Study on Subgaleal Fluid Collection After Titanium Mesh and Polyetheretherketone Cranioplasty. World Neurosurg. 2025, 194, 123538. [Google Scholar] [CrossRef]
- Mannella, F.C.; Faedo, F.; Fumagalli, M.; Norata, G.D.; Zaed, I.; Servadei, F. Long-Term Follow-Up of Custom-Made Porous Hydroxyapatite Cranioplasties: Analysis of Infections in Adult and Pediatric Patients. J. Clin. Med. 2024, 13, 1133. [Google Scholar] [CrossRef]
- Cerveau, T.; Rossmann, T.; Clusmann, H.; Veldeman, M. Infection-related failure of autologous versus allogenic cranioplasty after decompressive hemicraniectomy—A systematic review and meta-analysis. Brain Spine 2023, 3, 101760. [Google Scholar] [CrossRef]
- Kim, H.; Sung, S.O.; Kim, S.J.; Kim, S.-R.; Park, I.-S.; Jo, K.W. Analysis of the factors affecting graft infection after cranioplasty. Acta Neurochir. 2013, 155, 2171–2176. [Google Scholar] [CrossRef] [PubMed]
- Birgersson, U.; Wettervik, T.S.; Sundblom, J.; Linder, L.K.B. The role of autologous bone in cranioplasty. A systematic review of complications and risk factors by using stored bone. Acta Neurochir. 2024, 166, 438. [Google Scholar] [CrossRef] [PubMed]
- Spake, C.S.L.; Beqiri, D.; Rao, V.; Crozier, J.W.; Svokos, K.A.; Woo, A.S. Subgaleal drains may be associated with decreased infection following autologous cranioplasty: A retrospective analysis. Br. J. Neurosurg. 2024, 38, 877–883. [Google Scholar] [CrossRef]
- Sahoo, N.K.; Tomar, K.; Thakral, A.; Rangan, N.M. Complications of Cranioplasty. J. Craniofacial Surg. 2018, 29, 1344. [Google Scholar] [CrossRef]
- Posti, J.P.; Yli-Olli, M.; Heiskanen, L.; Aitasalo, K.M.J.; Rinne, J.; Vuorinen, V.; Serlo, W.; Tenovuo, O.; Vallittu, P.K.; Piitulainen, J.M. Cranioplasty After Severe Traumatic Brain Injury: Effects of Trauma and Patient Recovery on Cranioplasty Outcome. Front. Neurol. 2018, 9, 223. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.-J.; Yi, H.-J. Efficacy and safety of early cranioplasty, at least within 1 month. J. Craniofacial Surg. 2011, 22, 203–207. [Google Scholar] [CrossRef]
- Li, A.; Azad, T.D.; Veeravagu, A.; Bhatti, I.; Long, C.; Ratliff, J.K.; Li, G. Cranioplasty Complications and Costs: A National Population-Level Analysis Using the MarketScan Longitudinal Database. World Neurosurg. 2017, 102, 209–220. [Google Scholar] [CrossRef]
- Di Rienzo, A.; Colasanti, R.; Dobran, M.; Carrassi, E.; Herber, N.; Paracino, R.; Raggi, A.; Iacoangeli, M. Bone Flap Resorption After Cranioplasty: Risk Factors and Proposal of the Flap Integrity Score. World Neurosurg. 2024, 181, e758–e775. [Google Scholar] [CrossRef]
- Korhonen, T.K.; Posti, J.P.; Niinimäki, J.; Serlo, W.; Salokorpi, N.; Tetri, S. Two-center validation of the Oulu resorption score for bone flap resorption after autologous cranioplasty. Clin. Neurol. Neurosurg. 2022, 212, 107083. [Google Scholar] [CrossRef]
- Sanker, V.; Kundu, M.; El Kassem, S.; El Nouiri, A.; Emara, M.; Maaz, Z.A.; Nazir, A.; Bekele, B.K.; Uwishema, O. Posttraumatic hydrocephalus: Recent advances and new therapeutic strategies. Health Sci. Rep. 2023, 6, e1713. [Google Scholar] [CrossRef]
- Iaccarino, C.; Chibbaro, S.; Sauvigny, T.; Timofeev, I.; Zaed, I.; Franchetti, S.; Mee, H.; Belli, A.; Buki, A.; De Bonis, P.; et al. Consensus-based recommendations for diagnosis and surgical management of cranioplasty and post-traumatic hydrocephalus from a European panel. Brain Spine 2024, 4, 102761. [Google Scholar] [CrossRef] [PubMed]
Variable | Cryopreserved Flap (n = 51) | Subcutaneously Preserved Flap (n = 53) | Overall (n = 104) |
---|---|---|---|
Mean age in years (SD) | 34.4 (12.8) | 36.8 (14.8) | 35.6 (13.8) |
Gender (male:female) | 36:15 | 37:16 | 73:31 |
Laterality (left:right) | 24:27 | 23:30 | 47:57 |
Median interval from craniectomy to cranioplasty in days (IQR) | 93 (4.5) | 92 (4.0) | 92 (5.0) |
Mean length of cranial defect in cm (SD) | 14.1 (0.878) | 14.1 (0.978) | 14.1 (0.925) |
Mean breadth of cranial defect in cm (SD) | 11.2 (1.13) | 11.3 (0.984) | 11.2 (1.05) |
Outcomes (N) | Frequency—N (%) | p-Value (RR) | ||
---|---|---|---|---|
CP + | SC * | |||
Seroma (104) | Present | 18 (17.3%) | 4 (3.8%) | <0.001 (4.68) |
Absent | 33 (31.7%) | 49 (47.1%) | ||
Surgical site infection (104) | Present | 16 (15.3%) | 3 (2.8%) | <0.001 (5.54) |
Absent | 35 (33.6%) | 50 (48.0%) | ||
Drain output on post-operative day 1 (104) | Less than 50 mL | 33 (31.7%) | 40 (38.4%) | 0.23 |
More than 50 mL | 18 (17.3%) | 13 (12.5%) | ||
Requirement for repeat surgery (104) | Absent | 50 (48.2%) | 52 (50%) | 0.978 |
Present | 1 (0.9%) | 1 (0.9%) | ||
Improvement in GOS (87) | Present | 31 (35.6%) | 24 (27.5%) | 0.157 |
Absent | 13 (14.9%) | 19 (21.8%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sridhar, R.; Kumar, A.; Kumar, H.; Khan, A.V.; Hakeem, A.; Kumar, D.; Kumar, A.; Anwer, M. A Randomized Controlled Trial Comparing Subcutaneous Preservation of Bone Flaps with Cryogenic Preservation of Bone Flaps for Cranioplasty in Cases of Traumatic Brain Injury. Brain Sci. 2025, 15, 514. https://doi.org/10.3390/brainsci15050514
Sridhar R, Kumar A, Kumar H, Khan AV, Hakeem A, Kumar D, Kumar A, Anwer M. A Randomized Controlled Trial Comparing Subcutaneous Preservation of Bone Flaps with Cryogenic Preservation of Bone Flaps for Cranioplasty in Cases of Traumatic Brain Injury. Brain Sciences. 2025; 15(5):514. https://doi.org/10.3390/brainsci15050514
Chicago/Turabian StyleSridhar, Rachith, Anil Kumar, Harendra Kumar, Abdul Vakil Khan, Abdul Hakeem, Deepak Kumar, Anurag Kumar, and Majid Anwer. 2025. "A Randomized Controlled Trial Comparing Subcutaneous Preservation of Bone Flaps with Cryogenic Preservation of Bone Flaps for Cranioplasty in Cases of Traumatic Brain Injury" Brain Sciences 15, no. 5: 514. https://doi.org/10.3390/brainsci15050514
APA StyleSridhar, R., Kumar, A., Kumar, H., Khan, A. V., Hakeem, A., Kumar, D., Kumar, A., & Anwer, M. (2025). A Randomized Controlled Trial Comparing Subcutaneous Preservation of Bone Flaps with Cryogenic Preservation of Bone Flaps for Cranioplasty in Cases of Traumatic Brain Injury. Brain Sciences, 15(5), 514. https://doi.org/10.3390/brainsci15050514