AI-Driven Advances in Parkinson’s Disease Neurosurgery: Enhancing Patient Selection, Trial Efficiency, and Therapeutic Outcomes
Abstract
:1. Introduction
2. Methods
3. Pathomechanisms Leading to Parkinson’s Disease: An AI-Driven Perspective
4. AI and Anatomical and Structural Changes
5. AI and Utilization of Plasma Proteomics on Predicting Parkinson’s Onset
6. AI and Other Mutations Related to PD Pathogenesis
7. Disease Progression Patterns
8. Current Treatment
9. AI and Clinical Trials
10. Neurosurgical Interventions and Their Significance in the Context of PD Subtypes
11. DBS in Comparison with FUS and GK Therapy for Parkinson’s Disease
12. The Role of AI in Improving Deep Brain Stimulation
13. Algorithms for Reviewing MRI
14. Ethical and Regulatory Considerations in AI-Driven Trials
14.1. Data Privacy and Security
14.2. Informed Consent
14.3. Algorithmic Fairness and Bias
14.4. Transparency and Accountability
14.5. Regulatory Oversight
15. Challenges and Future Research Directions
16. Examples of Artificial Intelligence Architecture
17. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
ML | Machine Learning |
PD | Parkinson’s Disease |
DBS | Deep Brain Stimulation |
FUS/MRgFUS | (Magnetic Resonance-guided) Focused Ultrasound |
SVM | Support Vector Machine |
CNN | Convolutional Neural Network |
EEG | Electroencephalography |
ERP | Event-Related Potential |
CSF | Cerebrospinal Fluid |
MRI | Magnetic Resonance Imaging |
PET/18F-FDG PET | Positron Emission Tomography/18F-fluorodeoxyglucose PET |
GWAS | Genome-Wide Association Studies |
BDNF | Brain-Derived Neurotrophic Factor |
UPDRS/MDS-UPDRS | Unified Parkinson’s Disease Rating Scale/Movement Disorder Society-UPDRS |
GBD | Global Burden of Disease |
DALY | Disability-Adjusted Life Years |
WHO | World Health Organization |
GPi | Globus Pallidus Internus |
STN | Subthalamic Nucleus |
VIM | Ventral Intermediate Nucleus (of the Thalamus) |
FDA | U.S. Food and Drug Administration |
GDPR | General Data Protection Regulation |
HIPAA | Health Insurance Portability and Accountability Act |
LRRK2 | Leucine-Rich Repeat Kinase 2 |
PLV | Phase-Locked Value |
PSD | Power Spectral Density |
AUC | Area Under the Curve (ROC) |
ROC | Receiver Operating Characteristic |
ICA | Independent Component Analysis |
PCA | Principal Component Analysis |
NB | Naive Bayes |
KNN | K-Nearest Neighbors |
GLRLM | Gray-Level Run Length Matrix |
GLCM | Gray-Level Co-Occurrence Matrix |
WST | Wavelet Scattering Transform |
TFR | Time-Frequency Representation |
EMR | Electronic Medical Record |
ANCOVA | Analysis of Covariance |
TMEM175 | Transmembrane Protein 175 (Gene) |
RAB32 | Member RAS Oncogene Family 32 (Gene) |
References
- GBD 2015 Neurological Disorders Collaborator Group. Global, regional, and national burden of neurological disorders during 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol. 2017, 16, 877–897. [Google Scholar] [CrossRef] [PubMed]
- Hayes, M.T. Parkinson’s Disease and Parkinsonism. Am. J. Med. 2019, 132, 802–807. [Google Scholar] [CrossRef]
- World Health Organization. Parkinson Disease. World Health Organization: Geneva, Switzerland. 9 August 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/parkinson-disease#:~:text=The%20prevalence%20of%20PD%20has,of%20over%20100%25%20since%202000 (accessed on 12 October 2024).
- Rajan, S.; Kaas, B. Parkinson’s Disease: Risk Factor Modification and Prevention. Semin. Neurol. 2022, 42, 626–638. [Google Scholar] [CrossRef]
- Bohnen, N.I.; Yarnall, A.J.; Weil, R.S.; Moro, E.; Moehle, M.S.; Borghammer, P.; Bedard, M.-A.; Albin, R.L. Cholinergic system changes in Parkinson’s disease: Emerging therapeutic approaches. Lancet Neurol. 2022, 21, 381–392. [Google Scholar] [CrossRef]
- Tekin, U.; Dener, M. A bibliometric analysis of studies on artificial intelligence in neuroscience. Front. Neurol. 2025, 16, 1474484. [Google Scholar] [CrossRef] [PubMed]
- Kogan, M.; McGuire, M.; Riley, J. Deep Brain Stimulation for Parkinson Disease. Neurosurg. Clin. N. Am. 2019, 30, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Habets, J.G.; Heijmans, M.; Kuijf, M.L.; Janssen, M.L.; Temel, Y.; Kubben, P.L. An update on adaptive deep brain stimulation in Parkinson’s disease. Mov. Disord. 2018, 33, 1834–1843. [Google Scholar] [CrossRef]
- Deuschl, G.; Schade-Brittinger, C.; Krack, P.; Volkmann, J.; Schäfer, H.; Bötzel, K.; Daniels, C.; Deutschländer, A.; Dillmann, U.; Eisner, W.; et al. A Randomized Trial of Deep-Brain Stimulation for Parkinson’s Disease. N. Engl. J. Med. 2006, 355, 896–908. [Google Scholar] [CrossRef]
- Hosseini, M.M.; Hosseini, S.T.M.; Qayumi, K.; Ahmady, S.; Koohestani, H.R. The Aspects of Running Artificial Intelligence in Emer-gency Care; a Scoping Review. Arch. Acad. Emerg. Med. 2023, 11, e38. [Google Scholar] [CrossRef]
- Kang, D.-Y.; Cho, K.-J.; Kwon, O.; Kwon, J.-M.; Jeon, K.-H.; Park, H.; Lee, Y.; Park, J.; Oh, B.-H. Artificial intelligence algorithm to predict the need for critical care in prehospital emergency medical services. Scand. J. Trauma Resusc. Emerg. Med. 2020, 28, 17. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, Y.; Zhang, G.; Wang, H.; Chen, Y.-C.; Liu, Y.; Tarolli, C.G.; Crepeau, D.; Bukartyk, J.; Junna, M.R.; et al. Artificial intelligence-enabled detection and assessment of Parkinson’s disease using nocturnal breathing signals. Nat. Med. 2022, 28, 2207–2215. [Google Scholar] [CrossRef] [PubMed]
- Landers, M.; Saria, S.; Espay, A.J. Will Artificial Intelligence Replace the Movement Disorders Specialist for Diagnosing and Managing Parkinson’s Disease? J. Park. Dis. 2021, 11, S117–S122. [Google Scholar] [CrossRef]
- Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022, 22, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Mao, K.; Yu, H.; Chen, J. Neuroinflammatory Responses and Parkinson’ Disease: Pathogenic Mechanisms and Therapeutic Targets. J. Neuroimmune Pharmacol. 2020, 15, 830–837. [Google Scholar] [CrossRef]
- Soraci, L.; Gambuzza, M.E.; Biscetti, L.; Laganà, P.; Russo, C.L.; Buda, A.; Barresi, G.; Corsonello, A.; Lattanzio, F.; Lorello, G.; et al. Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson’s disease: Mechanisms and therapeutic implications. J. Neurol. 2022, 270, 1346–1360. [Google Scholar] [CrossRef]
- Martins, A.C.; Lima, I.S.; Pêgo, A.C.; Pereira, I.S.; Martins, G.; Kapitão, A.; Gozzelino, R. Pro-Inflammatory Priming of the Brain: The Underlying Cause of Parkinson’s Disease. Int. J. Mol. Sci. 2023, 24, 7949. [Google Scholar] [CrossRef] [PubMed]
- Kline, E.M.; Houser, M.C.; Herrick, M.K.; Seibler, P.; Klein, C.; West, A.; Tansey, M.G. Genetic and Environmental Factors in Parkinson’s Disease Converge on Immune Function and Inflammation. Mov. Disord. 2021, 36, 25–36. [Google Scholar] [CrossRef]
- Gao, A.; McCoy, H.M.; Zaman, V.; Shields, D.C.; Banik, N.L.; Haque, A. Calpain activation and progression of inflammatory cycles in Parkinson’s disease. Front. Biosci. 2022, 27, 20. [Google Scholar] [CrossRef]
- Alster, P.; Madetko-Alster, N.; Otto-Ślusarczyk, D.; Migda, A.; Migda, B.; Struga, M.; Friedman, A. Role of orexin in pathogenesis of neurodegenerative parkinsonisms. Neurol. Neurochir. Polska 2023, 57, 335–343. [Google Scholar] [CrossRef]
- Tolosa, E.; Wenning, G.; Poewe, W. The diagnosis of Parkinson’s disease. Lancet Neurol. 2006, 5, 75–86. [Google Scholar] [CrossRef]
- Olanow, C.W.; Hauser, R.A.; Jankovic, J.; Langston, W.; Lang, A.; Poewe, W.; Tolosa, E.; Stocchi, F.; Melamed, E.; Eyal, E.; et al. A randomized, double-blind, placebo-controlled, delayed start study to assess rasagiline as a disease modifying therapy in Parkinson’s disease (the ADAGIO study): Rationale, design, and baseline characteristics. Mov. Disord. 2008, 23, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Pellicano, C.; Assogna, F.; Cellupica, N.; Piras, F.; Pierantozzi, M.; Stefani, A.; Cerroni, R.; Mercuri, B.; Caltagirone, C.; Pontieri, F.E.; et al. Neuropsychiatric and cognitive profile of early Richardson’s syndrome, Progressive Supranuclear Palsy-parkinsonism and Parkinson’s disease. Park. Relat. Disord. 2017, 45, 50–56. [Google Scholar] [CrossRef]
- Picillo, M.; Tepedino, M.F.; Abate, F.; Ponticorvo, S.; Erro, R.; Cuoco, S.; Oksuz, N.; Di Salle, G.; Di Salle, F.; Esposito, F.; et al. Uncovering clinical and radiological asymmetry in progressive supranuclear palsy—Richardson’s syndrome. Neurol. Sci. 2022, 43, 3677–3682. [Google Scholar] [CrossRef] [PubMed]
- Correia, M.M.; Rittman, T.; Barnes, C.L.; Coyle-Gilchrist, I.T.; Ghosh, B.; Hughes, L.E.; Rowe, J.B. Towards accurate and unbiased imaging-based differentiation of Parkinson’s disease, progressive supranuclear palsy and corticobasal syndrome. Brain Commun. 2020, 2, fcaa051. [Google Scholar] [CrossRef] [PubMed]
- Talai, A.S.; Ismail, Z.; Sedlacik, J.; Boelmans, K.; Forkert, N.D. Improved Automatic Morphology-Based Classification of Parkinson’s Disease and Progressive Supranuclear Palsy. Clin. Neuroradiol. 2019, 29, 605–614. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, G.; Liu, D.; Liu, Y.; Yuan, T.; Zhang, X.; Jiang, Y.; Du, T.; Zhang, J. The morphology of thalamic subnuclei in Parkinson’s disease and the effects of machine learning on disease diagnosis and clinical evaluation. J. Neurol. Sci. 2020, 411, 116721. [Google Scholar] [CrossRef]
- Michell, A.W.; Lewis, S.J.G.; Foltynie, T.; Barker, R.A. Biomarkers and Parkinson’s disease. Brain 2004, 127, 1693–1705. [Google Scholar] [CrossRef]
- Kieburtz, K.; Katz, R.; McGarry, A.; Olanow, C.W. A New Approach to the Development ofDisease-ModifyingTherapies forPD.; Fighting Another Pandemic. Mov. Disord. 2021, 36, 59–63. [Google Scholar] [CrossRef]
- Parnetti, L.; Gaetani, L.; Eusebi, P.; Paciotti, S.; Hansson, O.; El-Agnaf, O.; Mollenhauer, B.; Blennow, K.; Calabresi, P. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 2019, 18, 573–586. [Google Scholar] [CrossRef]
- Hällqvist, J.; Bartl, M.; Dakna, M.; Schade, S.; Garagnani, P.; Bacalini, M.-G.; Pirazzini, C.; Bhatia, K.; Schreglmann, S.; Xylaki, M.; et al. Plasma proteomics identify biomarkers predicting Parkinson’s disease up to 7 years before symptom onset. Nat. Commun. 2024, 15, 4759. [Google Scholar] [CrossRef]
- Foltynie, T.; Brayne, C.E.G.; Robbins, T.W.; Barker, R.A. The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 2004, 127, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Muslimović, D.; Post, B.; Speelman, J.D.; Schmand, B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 2005, 65, 1239–1245. [Google Scholar] [CrossRef]
- Biundo, R.; Weis, L.; Antonini, A. Cognitive decline in Parkinson’s disease: The complex picture. Npj Park. Dis. 2016, 2, 16018. [Google Scholar] [CrossRef] [PubMed]
- Kehagia, A.A.; Barker, R.A.; Robbins, T.W. Cognitive Impairment in Parkinson’s Disease: The Dual Syndrome Hypothesis. Neurodegener. Dis. 2013, 11, 79–92. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.J.; O’Reilly, R.C. A mechanistic account of striatal dopamine function in human cognition: Psychopharmacological studies with cabergoline and haloperidol. Behav. Neurosci. 2006, 120, 497–517. [Google Scholar] [CrossRef]
- McGregor, M.M.; Nelson, A.B. Circuit Mechanisms of Parkinson’s Disease. Neuron 2019, 101, 1042–1056. [Google Scholar] [CrossRef]
- Seer, C.; Lange, F.; Georgiev, D.; Jahanshahi, M.; Kopp, B. Event-related potentials and cognition in Parkinson’s disease: An integrative review. Neurosci. Biobehav. Rev. 2016, 71, 691–714. [Google Scholar] [CrossRef]
- Yavuz, B.; Rusen, E.; Duman, T.; Bas, B. Developments of possible clinical diagnostic methods for parkinson’s disease: Event-related potentials. Neurocase 2023, 29, 67–74. [Google Scholar] [CrossRef]
- Reches, A.; Kutcher, J.; Elbin, R.J.; Or-Ly, H.; Sadeh, B.; Greer, J.; McAllister, D.J.; Geva, A.; Kontos, A.P. Preliminary investigation of Brain Network Activation (BNA) and its clinical utility in sport-related concussion. Brain Inj. 2017, 31, 237–246. [Google Scholar] [CrossRef]
- Hassin-Baer, S.; Cohen, O.S.; Israeli-Korn, S.; Yahalom, G.; Benizri, S.; Sand, D.; Issachar, G.; Geva, A.B.; Shani-Hershkovich, R.; Peremen, Z. Identification of an early-stage Parkinson’s disease neuromarker using event-related potentials, brain network analytics and machine-learning. PLoS ONE 2022, 17, e0261947. [Google Scholar] [CrossRef]
- Maass, F.; Michalke, B.; Willkommen, D.; Canaslan, S.; Schmitz, M.; Bähr, M.; Zerr, I.; Lingor, P. Cerebrospinal Fluid Iron-Ferritin Ratio as a Potential Progression Marker for Parkinson’s Disease. Mov. Disord. 2021, 36, 2967–2969. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Westenberger, A. Genetics of Parkinson’s Disease. Cold Spring Harb. Perspect. Med. 2012, 2, a008888. [Google Scholar] [CrossRef]
- West, A.B. Ten Years and Counting: Moving Leucine-Rich RepeatKinase 2 Inhibitors to the Clinic. Mov. Disord. 2015, 30, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Taymans, J.-M.; Greggio, E. LRRK2 Kinase Inhibition as a Therapeutic Strategy for Parkinson’s Disease, Where Do We Stand? Curr. Neuropharmacol. 2016, 14, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, E.; Vila, M.; Klein, C.; Rascol, O. LRRK2 in Parkinson disease: Challenges of clinical trials. Nat. Rev. Neurol. 2020, 16, 97–107. [Google Scholar] [CrossRef]
- Geyer, P.E.; Kulak, N.A.; Pichler, G.; Holdt, L.M.; Teupser, D.; Mann, M. Plasma Proteome Profiling to Assess Human Health and Disease. Cell Syst. 2016, 2, 185–195. [Google Scholar] [CrossRef]
- Geyer, P.E.; Holdt, L.M.; Teupser, D.; Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 2017, 13, 942. [Google Scholar] [CrossRef]
- Holewinski, R.J.; Jin, Z.; Powell, M.J.; Maust, M.D.; Van Eyk, J.E. A fast and reproducible method for albumin isolation and depletion from serum and cerebrospinal fluid. Proteomics 2013, 13, 743–750. [Google Scholar] [CrossRef]
- Torun, F.M.; Winter, S.V.; Doll, S.; Riese, F.M.; Vorobyev, A.; Mueller-Reif, J.B.; Geyer, P.E.; Strauss, M.T. Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data. J. Proteome Res. 2023, 22, 359–367. [Google Scholar] [CrossRef]
- Karayel, O.; Winter, S.V.; Padmanabhan, S.; Kuras, Y.I.; Vu, D.T.; Tuncali, I.; Merchant, K.; Wills, A.-M.; Scherzer, C.R.; Mann, M. Proteome profiling of cerebrospinal fluid reveals biomarker candidates for Parkinson’s disease. Cell Rep. Med. 2022, 3, 100661. [Google Scholar] [CrossRef]
- Maass, F.; Michalke, B.; Willkommen, D.; Leha, A.; Schulte, C.; Tönges, L.; Mollenhauer, B.; Trenkwalder, C.; Rückamp, D.; Börger, M.; et al. Elemental fingerprint: Reassessment of a cerebrospinal fluid biomarker for Parkinson’s disease. Neurobiol. Dis. 2020, 134, 104677. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wu, X.; Song, Y. Recent advances in novel mutation genes of Parkinson’s disease. J. Neurol. 2023, 270, 3723–3732. [Google Scholar] [CrossRef]
- Palomba, N.P.; Fortunato, G.; Pepe, G.; Modugno, N.; Pietracupa, S.; Damiano, I.; Mascio, G.; Carrillo, F.; Di Giovannantonio, L.G.; Ianiro, L.; et al. Common and Rare Variants in TMEM175 Gene Concur to the Pathogenesis of Parkinson’s Disease in Italian Patients. Mol. Neurobiol. 2023, 60, 2150–2173. [Google Scholar] [CrossRef] [PubMed]
- Hop, P.J.; Lai, D.; Keagle, P.J.; Baron, D.M.; Kenna, B.J.; Kooyman, M.; Shankaracharya; Halter, C.; Straniero, L.; Asselta, R.; et al. Systematic rare variant analyses identify RAB32 as a susceptibility gene for familial Parkinson’s disease. Nat. Genet. 2024, 56, 1371–1376. [Google Scholar] [CrossRef]
- Turski, P.; Chaberska, I.; Szukało, P.; Pyska, P.; Milanowski, Ł.; Szlufik, S.; Figura, M.; Hoffman-Zacharska, D.; Siuda, J.; Koziorowski, D. Review of the epidemiology and variability of LRRK2 non-p.Gly2019Ser pathogenic mutations in Parkinson’s disease. Front. Neurosci. 2022, 16, 971270. [Google Scholar] [CrossRef] [PubMed]
- Post, B.; Heuvel, L.v.D.; van Prooije, T.; van Ruissen, X.; van de Warrenburg, B.; Nonnekes, J. Young Onset Parkinson’s Disease: A Modern and Tailored Approach. J. Park. Dis. 2020, 10, S29–S36. [Google Scholar] [CrossRef]
- Pramanik, M.; Pradhan, R.; Nandy, P.; Qaisar, S.M.; Bhoi, A.K. Assessment of Acoustic Features and Machine Learning for Parkinson’s Detection. J. Health Eng. 2021, 2021, 9957132. [Google Scholar] [CrossRef]
- Fereshtehnejad, S.-M.; Postuma, R.B. Subtypes of Parkinson’s Disease: What Do They Tell Us About Disease Progression? Curr. Neurol. Neurosci. Rep. 2017, 17, 34. [Google Scholar] [CrossRef]
- Chahine, L.M.; Initiative, T.P.P.M.; Siderowf, A.; Barnes, J.; Seedorff, N.; Caspell-Garcia, C.; Simuni, T.; Coffey, C.S.; Galasko, D.; Mollenhauer, B.; et al. Predicting Progression in Parkinson’s Disease Using Baseline and 1-Year Change Measures. J. Park. Dis. 2019, 9, 665–679. [Google Scholar] [CrossRef]
- Pirker, W.; Katzenschlager, R.; Hallett, M.; Poewe, W. Pharmacological Treatment of Tremor in Parkinson’s Disease Revisited. J. Park. Dis. 2023, 13, 127–144. [Google Scholar] [CrossRef]
- Tambasco, N.; Romoli, M.; Calabresi, P. Levodopa in Parkinson’s Disease: Current Status and Future Developments. Curr. Neuropharmacol. 2018, 16, 1239–1252. [Google Scholar] [CrossRef] [PubMed]
- Mahlknecht, P.; Foltynie, T.; Limousin, P.; Poewe, W. How Does Deep Brain Stimulation Change the Course of Parkinson’s Disease? Mov. Disord. 2022, 37, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Gill, S.; Varma, T.; Jenkinson, C.; Quinn, N.; Mitchell, R.; Scott, R.; Ives, N.; Rick, C.; Daniels, J.; et al. Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): A randomised, open-label trial. Lancet Neurol. 2010, 9, 581–591. [Google Scholar] [CrossRef]
- Krack, P.; Benazzouz, A.; Pollak, P.; Limousin, P.; Piallat, B.; Hoffmann, D.; Xie, J.; Benabid, A. Treatment of tremor in Parkinson’s disease by subthalamic nucleus stimulation. Mov. Disord. 1998, 13, 907–914. [Google Scholar] [CrossRef]
- Fan, S.; Liu, D.; Shi, L.; Meng, F.; Fang, H.; Liu, H.; Zhang, H.; Yang, A.; Zhang, J. Differential Effects of Subthalamic Nucleus and Globus Pallidus Internus Deep Brain Stimulation on Motor Subtypes in Parkinson’s Disease. World Neurosurg. 2022, 164, e245–e255. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.; Luciano, M.S.; Carlson, K.; Luo, P.; Marks, W.J.; Larson, P.S.; Starr, P.A.; Follett, K.A.; Weaver, F.M.; Stern, M.B.; et al. Differential effects of deep brain stimulation target on motor subtypes in Parkinson’s disease. Ann. Neurol. 2015, 77, 710–719. [Google Scholar] [CrossRef]
- Xu, C.; Zhuang, P.; Hallett, M.; Zhang, Y.; Li, J.; Li, Y. Parkinson’s Disease Motor Subtypes Show Different Responses to Long-Term Subthalamic Nucleus Stimulation. Front. Hum. Neurosci. 2018, 12, 365. [Google Scholar] [CrossRef]
- Fröling, E.; Rajaeean, N.; Hinrichsmeyer, K.S.; Domrös-Zoungrana, D.; Urban, J.N.; Lenz, C. Artificial Intelligence in Medical Affairs: A New Paradigm with Novel Opportunities. Pharmaceut. Med. 2024, 38, 331–342. [Google Scholar] [CrossRef]
- Ostrem, J.; Luo, P.; Weaver, F.; Follett, K.; Galifianakis, N.; Lai, E.; Bronstein, J.; Duda, J.; Holloway, K.; Sarwar, A.; et al. 10 Year Clinical Outcomes of Subthalamic Nucleus versus Pallidal Deep Brain Stimulation for Parkinson’s Disease: VA/NINDS CSP #468F (4312). Neurology 2021, 96, 127–144. [Google Scholar] [CrossRef]
- Wong, J.K.; Viswanathan, V.T.; Nozile-Firth, K.S.; Eisinger, R.S.; Leone, E.L.; Desai, A.M.; Foote, K.D.; Ramirez-Zamora, A.; Okun, M.S.; Shukla, A.W. STN Versus GPi Deep Brain Stimulation for Action and Rest Tremor in Parkinson’s Disease. Front. Hum. Neurosci. 2020, 14, 578615. [Google Scholar] [CrossRef]
- Cury, R.G.; Fraix, V.; Castrioto, A.; Fernández, M.A.P.; Krack, P.; Chabardes, S.; Seigneuret, E.; Alho, E.J.L.; Benabid, A.-L.; Moro, E. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia. Neurology 2017, 89, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Chandra, V.; Hilliard, J.D.; Foote, K.D. Deep brain stimulation for the treatment of tremor. J. Neurol. Sci. 2022, 435, 120190. [Google Scholar] [CrossRef] [PubMed]
- Binder, D.K.; Shah, B.B.; Elias, W.J. Focused ultrasound and other lesioning in the treatment of tremor. J. Neurol. Sci. 2022, 435, 120193. [Google Scholar] [CrossRef]
- Hariz, M.; Blomstedt, P. Deep brain stimulation for Parkinson’s disease. J. Intern. Med. 2022, 292, 764–778. [Google Scholar] [CrossRef]
- Fernandez-Garcia, C.; Alonso-Frech, F.; Monje, M.; Matias-Guiu, J. Role of deep brain stimulation therapy in the magnetic resonance-guided high-frequency focused ultrasound era: Current situation and future prospects. Expert Rev. Neurother. 2020, 20, 7–21. [Google Scholar] [CrossRef]
- Ko, T.-H.; Lee, Y.-H.; Chan, L.; Tsai, K.W.-K.; Hong, C.-T.; Lo, W.-L. Magnetic Resonance–Guided focused ultrasound surgery for Parkinson’s disease: A mini-review and comparison between deep brain stimulation. Park. Relat. Disord. 2023, 111, 105431. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Fernández, R.; Máñez-Miró, J.U.; Rodríguez-Rojas, R.; del Álamo, M.; Shah, B.B.; Hernández-Fernández, F.; Pineda-Pardo, J.A.; Monje, M.H.; Fernández-Rodríguez, B.; Sperling, S.A.; et al. Randomized Trial of Focused Ultrasound Subthalamotomy for Parkinson’s Disease. N. Engl. J. Med. 2020, 383, 2501–2513. [Google Scholar] [CrossRef]
- Lin, F.; Wu, D.; Yu, J.; Weng, H.; Chen, L.; Meng, F.; Chen, Y.; Ye, Q.; Cai, G. Comparison of efficacy of deep brain stimulation and focused ultrasound in parkinsonian tremor: A systematic review and network meta-analysis. J. Neurol. Neurosurg. Psychiatry 2021, 92, 434–443. [Google Scholar] [CrossRef]
- Witjas, T.; Carron, R.; Krack, P.; Eusebio, A.; Vaugoyeau, M.; Hariz, M.; Azulay, J.P.; Régis, J. A prospective single-blind study of Gamma Knife thalamotomy for tremor. Neurology 2015, 85, 1562–1568. [Google Scholar] [CrossRef]
- Raju, S.S.; Niranjan, A.; Monaco, E.A.; Flickinger, J.C.; Lunsford, L.D. Stereotactic Radiosurgery for Intractable Tremor-Dominant Parkinson Disease: A Retrospective Analysis. Ster. Funct. Neurosurg. 2017, 95, 291–297. [Google Scholar] [CrossRef]
- Campbell, A.M.; Glover, J.; Chiang, V.L.; Gerrard, J.; Yu, J.B. Gamma knife stereotactic radiosurgical thalamotomy for intractable tremor: A systematic review of the literature. Radiother. Oncol. 2015, 114, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef]
- Maurano, M.T.; Humbert, R.; Rynes, E.; Thurman, R.E.; Haugen, E.; Wang, H.; Reynolds, A.P.; Sandstrom, R.; Qu, H.; Brody, J.; et al. Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. Science 2012, 337, 1190–1195. [Google Scholar] [CrossRef] [PubMed]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef]
- Yu, E.; Larivière, R.; Thomas, R.A.; Liu, L.; Senkevich, K.; Rahayel, S.; Trempe, J.-F.; Fon, E.A.; Gan-Or, Z. Machine learning nominates the inositol pathway and novel genes in Parkinson’s disease. Brain 2024, 147, 887–899. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Kang, X.; Xiong, Y.; Zhang, D.; Zong, R.; Yu, X.; Pan, L.; Lou, X. Convergent structural network and gene signatures for MRgFUS thalamotomy in patients with Parkinson’s disease. NeuroImage 2021, 243, 118550. [Google Scholar] [CrossRef]
- Fornito, A.; Zalesky, A.; Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 2015, 16, 159–172. [Google Scholar] [CrossRef]
- Hutchinson, E.B.; Schwerin, S.C.; Avram, A.V.; Juliano, S.L.; Pierpaoli, C. Diffusion MRI and the detection of alterations following traumatic brain injury. J. Neurosci. Res. 2018, 96, 612–625. [Google Scholar] [CrossRef]
- Chassagnon, G.; Vakalopoulou, M.; Paragios, N.; Revel, M.-P. Artificial intelligence applications for thoracic imaging. Eur. J. Radiol. 2020, 123, 108774. [Google Scholar] [CrossRef]
- Cao, L.-L.; Peng, M.; Xie, X.; Chen, G.-Q.; Huang, S.-Y.; Wang, J.-Y.; Jiang, F.; Cui, X.-W.; Dietrich, C.F. Artificial intelligence in liver ultrasound. World J. Gastroenterol. 2022, 28, 3398–3409. [Google Scholar] [CrossRef]
- Berbís, M.A.; Godino, F.P.; del Val, J.R.; Mata, L.A.; Luna, A. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver. World J. Gastroenterol. 2023, 29, 1427–1445. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Yu, H.; Xu, T.; Xing, X.; Cao, X.; Yan, K.; Chen, J. Deep Learning in Medical Hyperspectral Images: A Review. Sensors 2022, 22, 9790. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Available online: http://code.google.com/p/cuda-convnet/ (accessed on 3 May 2025).
- Yasaka, K.; Kamagata, K.; Ogawa, T.; Hatano, T.; Takeshige-Amano, H.; Ogaki, K.; Andica, C.; Akai, H.; Kunimatsu, A.; Uchida, W.; et al. Parkinson’s disease: Deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation. Neuroradiology 2021, 63, 1451–1462. [Google Scholar] [CrossRef]
- Boutet, A.; Madhavan, R.; Elias, G.J.B.; Joel, S.E.; Gramer, R.; Ranjan, M.; Paramanandam, V.; Xu, D.; Germann, J.; Loh, A.; et al. Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nat. Commun. 2021, 12, 3043. [Google Scholar] [CrossRef]
- Johnson, K.A.; Dosenbach, N.U.F.; Gordon, E.M.; Welle, C.G.; Wilkins, K.B.; Bronte-Stewart, H.M.; Voon, V.; Morishita, T.; Sakai, Y.; Merner, A.R.; et al. Proceedings of the 11th Annual Deep Brain Stimulation Think Tank: Pushing the forefront of neuromodulation with functional network mapping, biomarkers for adaptive DBS, bioethical dilemmas, AI-guided neuromodulation, and translational advancements. Front. Hum. Neurosci. 2024, 18, 1320806. [Google Scholar] [CrossRef]
- Qiu, J.; Ajala, A.; Karigiannis, J.; Germann, J.; Santyr, B.; Loh, A.; Marinelli, L.; Foo, T.; Madhavan, R.; Yeo, D.; et al. Deep Learning and fMRI-Based Pipeline for Optimization of Deep Brain Stimulation During Parkinson’s Disease Treatment: Toward Rapid Semi-Automated Stimulation Optimization. IEEE J. Transl. Eng. Health Med. 2024, 12, 589–599. [Google Scholar] [CrossRef]
- Chen, W.; Wang, M.; Wang, N.; Du, C.; Ma, X.; Li, Q. The Impacts of Subthalamic Nucleus-Deep Brain Stimulation (STN-DBS) on the Neuropsychiatric Function of Patients with Parkinson’s Disease Using Image Features of Magnetic Resonance Imaging under the Artificial Intelligence Algorithms. Contrast Media Mol. Imaging 2021, 2021, 9915206. [Google Scholar] [CrossRef] [PubMed]
- Picillo, M.; Lozano, A.M.; Kou, N.; Munhoz, R.P.; Fasano, A. Programming Deep Brain Stimulation for Parkinson’s Disease: The Toronto Western Hospital Algorithms. Brain Stimul. 2016, 9, 425–437. [Google Scholar] [CrossRef]
- Weaver, F.M.; Stroupe, K.T.; Cao, L.; Holloway, R.G.; Vickrey, B.G.; Simuni, T.; Hendricks, A.; Ippolito, D. Parkinson’s disease medication use and costs following deep brain stimulation. Mov. Disord. 2012, 27, 1398–1403. [Google Scholar] [CrossRef]
- Eross, L.; Riley, J.; Levy, E.I.; Vakharia, K. Neuroimaging of Deep Brain Stimulation. Neurol. Clin. 2020, 38, 201–214. [Google Scholar] [CrossRef]
- Purrer, V.; Pohl, E.; Lueckel, J.M.; Borger, V.; Sauer, M.; Radbruch, A.; Wüllner, U.; Schmeel, F.C. Artificial-intelligence-based MRI brain volumetry in patients with essential tremor and tremor-dominant Parkinson’s disease. Brain Commun. 2023, 5, fcad271. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Wang, B.; Liang, W.; Cheng, S.; Wang, B.; Cui, M.; Shou, J. Accuracy of 18F-FDG PET Imaging in Differentiating Parkinson’s Disease from Atypical Parkinsonian Syndromes: A Systematic Review and Meta-Analysis. Acad. Radiol. 2024, 31, 4575–4594. [Google Scholar] [CrossRef] [PubMed]
- Haliasos, N.; Giakoumettis, D.; Gnanaratnasingham, P.; Low, H.L.; Misbahuddin, A.; Zikos, P.; Sakkalis, V.; Cleo, S.; Vakis, A.; Bisdas, S. Personalizing Deep Brain Stimulation Therapy for Parkinson’s Disease With Whole-Brain MRI Radiomics and Machine Learning. Cureus 2024, 16, e59915. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.T.; Frings, L.; Rücker, G.; Hellwig, S. 18F-FDG PET in Parkinsonism: Differential Diagnosis and Evaluation of Cognitive Impairment. J. Nucl. Med. 2017, 58, 1888–1898. [Google Scholar] [CrossRef]
- Hlavnička, J.; Čmejla, R.; Tykalová, T.; Šonka, K.; Růžička, E.; Rusz, J. Automated analysis of connected speech reveals early biomarkers of Parkinson’s disease in patients with rapid eye movement sleep behaviour disorder. Sci. Rep. 2017, 7, 12. [Google Scholar] [CrossRef]
- Dashtipour, K.; Tafreshi, A.; Lee, J.; Crawley, B. Speech Disorders in Parkinson’s Disease: Pathophysiology, Medical Management and Surgical Approaches. Neurodegener. Dis. Manag. 2018, 8, 337–348. [Google Scholar] [CrossRef]
- Ma, A.; Lau, K.K.; Thyagarajan, D. Voice changes in Parkinson’s disease: What are they telling us? J. Clin. Neurosci. 2020, 72, 1–7. [Google Scholar] [CrossRef]
- Mei, J.; Desrosiers, C.; Frasnelli, J. Machine Learning for the Diagnosis of Parkinson’s Disease: A Review of Literature. Front. Aging Neurosci. 2021, 13, 633752. [Google Scholar] [CrossRef]
- Costantini, G.; Cesarini, V.; Di Leo, P.; Amato, F.; Suppa, A.; Asci, F.; Pisani, A.; Calculli, A.; Saggio, G. Artificial Intelligence-Based Voice Assessment of Patients with Parkinson’s Disease Off and On Treatment: Machine vs. Deep-Learning Comparison. Sensors 2023, 23, 2293. [Google Scholar] [CrossRef]
- Morley, J.; Machado, C.C.; Burr, C.; Cowls, J.; Joshi, I.; Taddeo, M.; Floridi, L. The ethics of AI in health care: A mapping review. Soc. Sci. Med. 2020, 260, 113172. [Google Scholar] [CrossRef]
- Willis, A.W.; Schootman, M.; Evanoff, B.A.; Perlmutter, J.S.; Racette, B.A. Neurologist care in Parkinson disease: A utilization, outcomes, and survival study. Neurology 2011, 77, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jiang, J.-H.; Chen, L.; Lu, J.-Y.; Ge, J.-J.; Liu, F.-T.; Yu, J.-T.; Lin, W.; Zuo, C.-T.; Wang, J. Use of radiomic features and support vector machine to distinguish Parkinson’s disease cases from normal controls. Ann. Transl. Med. 2019, 7, 773. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Li, J.; Pan, J. Parkinson’s disease detection based on multi-pattern analysis and multi-scale convolutional neural networks. Front. Neurosci. 2022, 16, 957181. [Google Scholar] [CrossRef] [PubMed]
- Siuly, S.; Khare, S.K.; Kabir, E.; Sadiq, M.T.; Wang, H. An efficient Parkinson’s disease detection framework: Leveraging time-frequency representation and AlexNet convolutional neural network. Comput. Biol. Med. 2024, 174, 108462. [Google Scholar] [CrossRef]
- Rizzo, M. AI in Neurology: Everything, Everywhere, All at Once Part 3: Surveillance, Synthesis, Simulation, and Systems. Ann. Neurol. 2025. [Google Scholar] [CrossRef]
Article | Article Description | Conclusion | Recommendations |
---|---|---|---|
Johnson, KA et al. [74] | This article provides an overview of the key findings from the Deep Brain Stimulation Think Tank XI. The focus is on the latest technologies in neuromodulation and new hypotheses regarding the integrative networks that support DBS treatment. The discussions also covered cutting-edge advances in other areas including physiology, translational neuromodulation, neuroethical dilemmas, algorithmic modeling, and artificial intelligence. | The meeting highlighted significant advancements in neuromodulation, particularly in understanding the mechanisms of Deep Brain Stimulation through animal models and human studies. It emphasized the importance of utilizing AI and large data-driven approaches to advance DBS as a widely used therapy. | The article recommends a continued emphasis on translational neuromodulation to gain a deeper understanding of this approach. It also suggests leveraging neurophysiological markers and machine learning algorithms to develop individualized treatments tailored to each patient, considering factors such as physiological changes, circadian rhythms, and sleep. |
Purrer, V et al. [80] | The article discusses the issue of misdiagnosing patients with Parkinson’s disease and Essential tremor due to overlapping tremor features. The study examines if different tremor types have distinct brain characteristics. The researchers reviewed MRI scans of 61 patients with essential tremor and 29 with tremor-dominant Parkinson’s disease. They used Artificial Intelligence brain volumetry to compare various cortical and subcortical regions. | The study results indicate that essential tremor and tremor-dominant Parkinson’s disease share structural changes and show neurodegenerative mechanisms, particularly in the basal ganglia-thalamocortical. The study also found possible specific involvement of the thalamus in essential tremors. | The study suggests that AI-powered brain volumetry is a quick, reliable, and independent method to analyze brain volume. It helps understand specific patterns of brain atrophy in both discussed pathologies. The study underscores the need for further research to comprehend disease progression and to develop new treatment strategies. |
Haliasos N et al. [82] | was to develop a machine learning-based predictive model for selecting patients for deep brain stimulation (DBS) using whole-brain white matter quantitative data from medical imaging and clinical variables. The study utilized machine learning methods such as logistic regression, support vector machine, naive Bayes, k-nearest neighbors, and random forest. | The study concluded that machine learning models can effectively predict the extent and progression of deterioration tailored to individual patients. It demonstrated high accuracy, particularly with the state-of-the-art Random Forest model, achieving up to 95% accuracy. | The article suggests further research into the potential of machine learning algorithms as auxiliary tools for clinicians in diagnostics and, importantly, for accurately predicting the progression of each patient’s illness and potential treatment responses, thus enabling personalized medicine. |
Zhao, T et al. [81] | The study aimed to assess the effectiveness of 18F-FDG PET imaging in distinguishing between Parkinson’s Disease (PD) and Atypical Parkinsonian Syndromes (APSs). | The study found that 18F-FDG PET is highly accurate in differentiating PD from APSs. It also highlighted the significance of AI techniques, particularly deep learning, as powerful tools that can provide diagnostic performance comparable to traditional radiologist assessments. | The article acknowledges the potential impact of this differentiation in diagnosing PD from APDs. Additionally, it noted good accuracy for multiple system atrophy and progressive supranuclear palsy, suggesting potential for treatment response and disease monitoring. |
Chahine, LM et al. [49] | The objective of this study was to investigate the key indicators that predict changes in motor and total MDS-UPDRS and DAT imaging within the first five years after being diagnosed with PD. This large-scale multicenter prospective cohort study was conducted internationally. | The results of the article demonstrate that initial and temporary changes in evaluations of motor disability (MDS-UPRRS) are the strongest predictors of long-term changes in the metrics used in the article. CSF and imaging measures in the early stages of PD indicated changes in MDS-UPDRS and dopamine transporter binding. | The main finding of this study is the potential for applying machine learning to Parkinson’s progression markers. This supports future efforts to establish reproducible and replicable models that utilize machine learning techniques applicable in clinical settings. |
Talai, AS et al. [19] | The study aimed to address the challenge that clinicians encounter in distinguishing between Parkinson’s disease (PD) and progressive supranuclear palsy (PSP) due to their similar symptoms. The researchers evaluated the benefit of including additional morphological characteristics, in addition to clinical features, for the automated classification of PD and PSP-RS patients. | The study concluded that incorporating morphological features, along with clinical features, could be valuable for future computer-aided diagnostic protocols to differentiate between PD and PSP-RS patients. | The study also found that Support Vector Machines, a type of machine learning model, effectively achieved its purpose. It suggests that exploring other machine learning models such as random forests or neural networks could provide even better results when performing the classification process. |
Lin, J et al. [64] | The article discusses the impact of magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy on the exploration of brain structure. It investigates the long-term changes in brain networks and identifies genetic changes related. | The study concludes that MRgFUS thalamotomy effectively reduces tremors in PD patients. However, it induces dynamic changes in the network topology of the brain. Making correlations with gene signatures | The authors recommend future studies to focus on the correlation between the structural network changes induced by MRgFUS thalamotomy and dopaminergic pathways. They also emphasize the importance of genetic mechanisms in the alteration of dopaminergic pathways. |
Yasaka, K et al. [72] | The study aimed to determine if Parkinson’s disease can be distinguished from healthy controls by identifying neural circuit disorders using deep learning techniques and parameters. | The study found that PD can be differentiated from healthy controls by using a deep learning technique to analyze parameter-weighted connectome matrices. | It is recommended that further research be conducted on the distribution of dopamine before and after MRgFUS thalamotomy to gain a deeper understanding of the overall changes induced by this therapy. Additionally, the study suggests exploring sex-specific differences and considering variations in morphology between genders to reduce bias. |
Michell, AW et al. [21] | This study used mass spectrometry proteomics to identify a panel of blood biomarkers for early Parkinson’s Disease. The researchers applied a machine learning model to identify PD patients. | The study concludes that clinicians must detect Parkinson’s Disease at early stages. It also highlights the potential of machine learning models to identify the disease up to 7 before motor symptoms arise. | The study advocates for a multivariate approach using state-of-the-art machine learning models and proteomics to validate and potentially apply these findings in future clinical settings. |
Hassin-Baer, S et al. [34] | The aim of this study is to explore the potential of biomarkers to differentiate between early-stage Parkinson’s disease and healthy brain function using electroencephalography, event-related potentials, and Brain Network Analytics, with the help of machine learning for data analysis. | The study found that Brain Network Analytics is an effective tool for distinguishing patients with Parkinson’s Disease. The use of machine learning to incorporate event-related potentials was also highlighted. | The article recommends further research with larger and more diverse groups of participants to reduce bias. Additionally, it suggests specific studies focusing on the premotor prodromal phase of Parkinson’s disease in patients. |
Maass, F et al. [45] | The manuscript aims to validate the use of a model that can classify Parkinson’s disease patients and age-matched controls based on the levels of specific bio-elements in cerebrospinal fluid. Mass spectrometry and a Support Vector Machine model were used to differentiate between PD and control groups. | The study found that the Support Vector Machine model could successfully distinguish Parkinson’s Disease from control patients within a local cohort. However, its performance was lacking when applied to external cohorts, which attributed to center-specific biases. Nevertheless, the study suggests that bioelemental patterns in CSF could serve as potential biomarkers for Parkinson’s Disease. | The study recommends further research that adheres to more rigorous protocols for pre-clinical and clinical analysis standards, in order to reduce variability and enhance the reliability of bioelemental biomarkers. Additionally, it suggests using mimics in future research to strengthen the model predictions. |
Yu, E. et al. [63] | The aim of this study is to identify potential genes associated with Parkinson’s disease through Genome-wide association studies loci. Firstly, all the genes and Single nucleotide polymorphisms are defined. Then, machine learning is used to select genes from different loci. | The study utilized Parkinson’s Disease relevant transcriptomics, epigenomics, and other genetic data sets to develop a boosting model. This model nominated causal genes from Parkinson’s Disease Genome-wide association studies loci, identifying novel genes potentially involved, such as those in the inositol phosphate biosynthetic pathway. | The study recommends further research that addresses the limitations of this study’s development. Specifically, it suggests including a more diverse population, as the study was conducted only in Europeans. It also suggests a broader analysis that includes chromosome X and a wider gene set, not limited to the established Parkinson’s Disease genes. |
Costantini G et al. [88] | This article delves into the use of machine learning (ML) and deep learning (DL) models for evaluating vocal characteristics in individuals with Parkinson’s Disease. The study compares both models to determine which approach is the most effective. | The study concluded that both models achieved similar results in classifying Parkinson’s Disease patients based on vocal analysis. K-nearest neighbors slightly outperformed the other models. | This study supports the use of AI as a non-invasive, cost-effective tool for early detection and tracking of Parkinson’s Disease. It emphasizes the importance of collecting high-quality voice data and suggests further research into models that integrate complex neural network architectures. |
AI Architecture | Input Modality | Diagnostic Output | Performance Metrics | Metrics Reference |
---|---|---|---|---|
CNN with Attention Mechanism | Nocturnal Breathing Signals | PD Detection and Severity Estimation | AUC: 0.90 (held-out), 0.85 (external) | Yang et al., 2022 [12] |
SVM Classifier | 18F-FDG PET Radiomic Features | PD vs. Healthy Classification | Accuracy: 90.97%, 88.08% | Wu et al., 2019 [114] |
Multi-scale CNN (MCNN) | EEG Signals (PSD & PLV Features) | PD Classification | Accuracy: >99% | Qiu et al., 2022 [115] |
AlexNet CNN with TFR | EEG Signals | PD Diagnosis | High Accuracy (Specific metrics not provided) | Li et al., 2024 [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valerio, J.E.; Aguirre Vera, G.d.J.; Fernandez Gomez, M.P.; Zumaeta, J.; Alvarez-Pinzon, A.M. AI-Driven Advances in Parkinson’s Disease Neurosurgery: Enhancing Patient Selection, Trial Efficiency, and Therapeutic Outcomes. Brain Sci. 2025, 15, 494. https://doi.org/10.3390/brainsci15050494
Valerio JE, Aguirre Vera GdJ, Fernandez Gomez MP, Zumaeta J, Alvarez-Pinzon AM. AI-Driven Advances in Parkinson’s Disease Neurosurgery: Enhancing Patient Selection, Trial Efficiency, and Therapeutic Outcomes. Brain Sciences. 2025; 15(5):494. https://doi.org/10.3390/brainsci15050494
Chicago/Turabian StyleValerio, José E., Guillermo de Jesús Aguirre Vera, Maria P. Fernandez Gomez, Jorge Zumaeta, and Andrés M. Alvarez-Pinzon. 2025. "AI-Driven Advances in Parkinson’s Disease Neurosurgery: Enhancing Patient Selection, Trial Efficiency, and Therapeutic Outcomes" Brain Sciences 15, no. 5: 494. https://doi.org/10.3390/brainsci15050494
APA StyleValerio, J. E., Aguirre Vera, G. d. J., Fernandez Gomez, M. P., Zumaeta, J., & Alvarez-Pinzon, A. M. (2025). AI-Driven Advances in Parkinson’s Disease Neurosurgery: Enhancing Patient Selection, Trial Efficiency, and Therapeutic Outcomes. Brain Sciences, 15(5), 494. https://doi.org/10.3390/brainsci15050494