Does Lumbar Puncture Still Have Clinical Value for Patients with Amyotrophic Lateral Sclerosis?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Cerebrospinal Fluid Biochemical Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palmer, A.M. The Role of the blood brain barrierin neurodegenerative disorders and their treatment. J. Alzheimers Dis. 2011, 24, 643–656. [Google Scholar] [CrossRef] [PubMed]
- Erdő, F.; Denes, L.; de Lange, E. Age-associated physiological and pathological changes at the blood–brain barrier: A review. J. Cereb. Blood Flow Metab. 2017, 37, 4–24. [Google Scholar] [CrossRef]
- Mirian, A.; Moszczynski, A.; Soleimani, S.; Aubert, I.; Zinman, L.; Abrahao, A. Breached Barriers: A Scoping Review of Blood-Central Nervous System Barrier Pathology in Amyotrophic Lateral Sclerosis. Front. Cell. Neurosci. 2022, 16, 851563. [Google Scholar] [CrossRef]
- Garbuzova-Davis, S.; Saporta, S.; Haller, E.; Kolomey, I.; Bennett, S.P.; Potter, H.; Sanberg, P.R. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS ONE 2007, 21, e1205. [Google Scholar] [CrossRef] [PubMed]
- Steinruecke, M.; Lonergan, R.M.; Selvaraj, B.T.; Chandran, S.; Diaz-Castro, B.; Stavrou, M. Blood-CNS barrier dysfunction in amyotrophic lateral sclerosis: Proposed mechanisms and clinical implications. J. Cereb. Blood Flow Metab. 2023, 43, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, A.; Abbruzzese, G.; Arata, L.; Cocito, L.; Vische, M. Cerebrospinal fluid (CSF) findings in amyotrophic lateral sclerosis. J. Neurol. 1984, 231, 75–78. [Google Scholar] [CrossRef]
- Norris, F.H.; Burns, W.; Mukai, E.; Norris, H. Spinal fluid cells and protein in amyotrophic lateral sclerosis. Arch. Neurol. 1993, 50, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Assialioui, A.; Domínguez, R.; Ferrer, I.; Andrés-Benito, P.; Povedano, M. Elevated cerebrospinal fluid proteins and albumin determine a poor prognosis for spinal amyotrophic lateral sclerosis. Int. J. Mol. Sci. 2022, 23, 11063. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Lai, X.; Wei, Q.; Chen, X.; Shang, H. Associations of cerebrospinal fluid profiles with severity and mortality risk of amyotrophic lateral sclerosis. Front. Neurosci. 2024, 18, 1375892. [Google Scholar] [CrossRef] [PubMed]
- Vacchiano, V.; Mastrangelo, A.; Zenesini, C.; Masullo, M.; Quadalti, C.; Avoni, P.; Polischi, B.; Cherici, A.; Capellari, S.; Salvi, F.; et al. Plasma and CSF Neurofilament Light Chain in Amyotrophic Lateral Sclerosis: A Cross- Sectional and Longitudinal Study. Front. Aging Neurosci. 2021, 13, 753242. [Google Scholar] [CrossRef]
- Thapa, S.; Bhattarai, A.; Shah, S.; Chand, S.; Bagherieh, S.; Mirmosayyeb, O.; Mishra, S.K. Diagnostic Role of Tau Proteins in Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. Acta Neurol. Scand. 2023, 2023, 2791622. [Google Scholar] [CrossRef]
- Donini, L.; Tanel, R.; Zuccarino, R.; Basso, M. Protein biomarkers for the diagnosis and prognosis of Amyotrophic Lateral Sclerosis. Neurosci. Res. 2023, 197, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Agah, E.; Mojtabavi, H.; Behkar, A.; Heidari, A.; Ajdari, A.; Shaka, Z.; Mousavi, S.V.; Firoozeh, N.; Tafakhori, A.; Rezaei, N. CSF and blood levels of Neurofilaments, T-Tau, P-Tau, and Abeta-42 in amyotrophic lateral sclerosis: A systematic review and meta-analysis. J. Transl. Med. 2024, 22, 953. [Google Scholar] [CrossRef]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L. World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Cedarbaum, J.; Stambler, N.; Malt, A.E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Kimura, F.; Fujimura, C.; Ishida, S.; Nakajima, H.; Furutama, D.; Uehara, H.; Shinoda, K.; Sugino, M.; Hanafusa, T. Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 2006, 66, 265–267. [Google Scholar] [CrossRef] [PubMed]
- Chiò, A.; Calvo, A.; Moglia, C.; Mazzini, L.; Mora, G.; PARALS study group. Phenotypic heterogeneity of amyotrophic lateral sclerosis: A population based study. J. Neurol. Neurosurg. Psychiatry 2011, 82, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- née Buch, K.B.; Padberg, F.; Nolde, T.; Teipel, S.J.; Stübner, S.; Haslinger, A.; Schwarz, M.J.; Sunderland, T.; Arai, H.; Rapoport, S.I.; et al. Cerebrospinal fluid tau protein shows a better discrimination in young old (<70 years) than in old old patients with Alzheimer’s disease compared with controls. Neurosci. Lett. 1999, 277, 21–24. [Google Scholar]
- Sjögren, M.; Vanderstichele, H.; Agren, H.; Zachrisson, O.; Edsbagge, M.; Wikkelsø, C.; Skoog, I.; Wallin, A.; Wahlund, L.O.; Marcusson, J.; et al. Tau and Abeta42 in cerebrospinal fluid from healthy adults 21–93 years of age: Establishment of reference values. Clin. Chem. 2001, 47, 1776–1781. [Google Scholar] [CrossRef] [PubMed]
- Scheurich, A.; Urban, P.P.; Koch-Khoury, N.; Fellgiebel, A. CSF phospho-tau is independent of age, cognitive status and gender of neurological patients. J. Neurol. 2010, 257, 609–614. [Google Scholar] [CrossRef] [PubMed]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef]
- Ranganathan, P.; Pramesh, C.S.; Aggarwal, R. Common pitfalls in statistical analysis: Logistic regression. Perspect. Clin. Res. 2017, 8, 148–151. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Garbuzova-Davis, S.; Rodrigues, M.C.O.; Hernandez-Ontiveros, D.G.; Louis, M.K.; Willing, A.E.; Borlongan, C.V.; Sanberg, P.R. Amyotrophic lateral sclerosis: A neurovascular disease. Brain Res. 2011, 1398, 113–125. [Google Scholar] [CrossRef]
- Winkler, E.A.; Sengillo, J.D.; Sagare, A.P.; Zhao, Z.; Ma, Q.; Zuniga, E.; Wang, Y.; Zhong, Z.; Sullivan, J.S.; Griffin, J.H.; et al. Blood–spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc. Natl. Acad. Sci. USA 2014, 111, 3912. [Google Scholar] [CrossRef] [PubMed]
- Argaw, A.T.; Asp, L.; Zhang, J.; Navrazhina, K.; Pham, T.; Mariani, J.N.; Mahase, S.; Dutta, D.J.; Seto, J.; Kramer, E.G.; et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Investig. 2012, 122, 2454–2468. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, F.; Wang, H.; Cui, F.; Li, M.; Sun, B.; Li, Y.; Sun, Q.; He, Z.; Li, Y.; et al. The increase in CSF total protein and immunoglobulins in Chinese patients with sporadic amyotrophic lateral sclerosis: A retrospective study. J. Neurol. Sci. 2020, 414, 116840. [Google Scholar] [CrossRef] [PubMed]
- Prell, T.; Vlad, B.; Gaur, N.; Stubendorff, B.; Grosskreutz, J. Blood-Brain Barrier Disruption Is Not Associated With Disease Aggressiveness in Amyotrophic Lateral Sclerosis. Front. Neurosci. 2021, 15. [Google Scholar] [CrossRef]
- Verde, F.; Ferrari, I.; Maranzano, A.; Ciusani, E.; Torre, S.; Milone, I.; Colombo, E.; Doretti, A.; Peverelli, S.; Ratti, A.; et al. Relationship between cerebrospinal fluid/serum albumin quotient and phenotype in amyotrophic lateral sclerosis: A retrospective study on 328 patients. Neurol. Sci. 2023, 44, 1679–1685. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Sonninen, T.M.; Peltonen, S.; Koistinaho, J.; Lehtonen, Š. Blood-Brain Barrier and Neurodegenerative Diseases-Modeling with iPSC-Derived Brain Cells. Int. J. Mol. Sci. 2021, 22, 7710. [Google Scholar] [CrossRef] [PubMed]
- Agnello, L.; Colletti, T.; Lo Sasso, B.; Vidali, M.; Spataro, R.; Gambino, C.M.; Giglio, R.V.; Piccoli, T.; Bivona, G.; La Bella, V.; et al. Tau protein as a diagnostic and prognostic biomarker in amyotrophic lateral sclerosis. Eur. J. Neurol. 2021, 28, 1868–1875. [Google Scholar] [CrossRef] [PubMed]
- Cousins, K.A.Q.; Shaw, L.M.; Shellikeri, S.; Dratch, L.; Rosario, L.; Elman, L.B.; Quinn, C.; Amado, D.A.; Wolk, D.A.; Tropea, T.F.; et al. Elevated plasma phosphorylated tau 181 in amyotrophic lateral sclerosis. Ann. Neurol. 2022, 92, 807–818. [Google Scholar] [CrossRef]
- Rusina, R.; Ridzon, P.; Kulist’ak, P.; Keller, O.; Bartos, A.; Buncova, M.; Fialova, L.; Koukolik, F.; Matej, R. Relationship between ALS and the degree of cognitive impairment, markers of neurodegeneration and predictors for poor outcome. A prospective study. Eur. J. Neurol. 2010, 17, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Petrozziello, T.; Amaral, A.C.; Dujardin, S.; Farhan, S.M.K.; Chan, J.; Trombetta, B.A.; Kivisäkk, P.; Mills, A.N.; Bordt, E.A.; Kim, S.E.; et al. Novel genetic variants in MAPT and alterations in tau phosphorylation in amyotrophic lateral sclerosis post-mortem motor cortex and cerebrospinal fluid. Brain Pathol. 2022, 32, e13035. [Google Scholar] [CrossRef] [PubMed]
- Falzone, Y.M.; Domi, T.; Mandelli, A.; Pozzi, L.; Schito, P.; Russo, T.; Barbieri, A.; Fazio, R.; Volontè, M.A.; Magnani, G.; et al. Integrated evaluation of a panel of neurochemical biomarkers to optimize diagnosis and prognosis in amyotrophic lateral sclerosis. Eur. J. Neurol. 2022, 29, 1930–1939. [Google Scholar] [CrossRef] [PubMed]
- Lanznaster, D.; Bejan-Angoulvant, T.; Patin, F.; Andres, C.R.; Vourc’h, P.; Corcia, P.; Blasco, H. Plasma Creatinine and Amyotrophic Lateral Sclerosis Prognosis: A Systematic Review and Meta-Analysis. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 199–206. [Google Scholar] [CrossRef]
- Matrone, C. The paradigm of amyloid precursor protein in amyotrophic lateral sclerosis: The potential role of the 682YENPTY687 motif. Comput. Struct. Biotechnol. J. 2023, 21, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.X.; Mok, S.S.; Laughton, K.M.; McLean, C.A.; Volitakis, I.; Cherny, R.A.; Cheung, N.S.; White, A.R.; Masters, C.L. Overexpression of Abeta is associated with acceleration of onset of motor impairment and superoxide dismutase 1 aggregation in an amyotrophic lateral sclerosis mouse model. Aging Cell 2006, 5, 153–165. [Google Scholar] [CrossRef]
- Calingasan, N.Y.; Chen, J.; Kiaei, M.; Beal, M.F. Beta-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients. Neurobiol. Dis. 2005, 19, 340–347. [Google Scholar] [CrossRef]
- Sasaki, S.; Iwata, M. Immunoreactivity of beta-amyloid precursor protein in amyotrophic lateral sclerosis. Acta Neuropathol. 1999, 97, 463–468. [Google Scholar] [CrossRef]
- Colletti, T.; Agnello, L.; Spataro, R.; Guccione, L.; Notaro, A.; Lo Sasso, B.; Blandino, V.; Graziano, F.; Gambino, C.M.; Giglio, R.V.; et al. Prognostic Role of CSF β-amyloid 1-42/1-40 Ratio in Patients Affected by Amyotrophic Lateral Sclerosis. Brain Sci. 2021, 11, 302. [Google Scholar] [CrossRef] [PubMed]
- Steinacker, P.; Fang, L.; Kuhle, J.; Petzold, A.; Tumani, H.; Ludolph, A.C.; Otto, M.; Brettschneider, J. Soluble beta-amyloid precursor protein is related to disease progression in amyotrophic lateral sclerosis. PLoS ONE 2011, 6, e23600. [Google Scholar] [CrossRef] [PubMed]
Demographic/Clinical Features at Diagnosis | Cases (n. 140) |
---|---|
Gender M vs. F (n., %) | 83 [59.3%] vs. 57 (40.7%) |
Age onset, median [10th–90th] | 67 [48.7–77.3] |
Diagnosis delay in months, median [10th–90th] | 11 [6–21.5] |
DeltaFS, median [10th–90th] | 0.58 [0.2–1.88] |
Bulbar onset vs. Spinal onset (n., %) | 40 (28.6%) vs. 100 (71.4%) |
ALS-FRSr score, median [10th–90th] | 41 [31.3–45] |
FVC %, median [10th–90th] | 85 [43.3–110] |
Survival in months, median [10th–90th] | 36 [17–64.5] |
Biochemical Parameters | Cases (n. 140) |
---|---|
Protein (mg/dL), median [10th–90th] | 40 [25–72.2] |
Normal | 74.6% |
Elevated | 25.4% |
above 70 mg/dL | 10% |
above 100 mg/dL | 4.3% |
Albumin (mg/dL), median [10th–90th] | 24 [15–51.2] |
Normal | 73.7% |
Elevated | 26.3% |
QAlb, median [10th–90th] | 0.0066 [0.0043–0.014] |
Normal | 70.1% |
Elevated | 29.9% |
IgG (mg/dL), median [10th–90th] | 2.6 [1.6–6] |
Normal | 79.6% |
Elevated | 20.4% |
t-tau (pg/mL), median [10th–90th] | 294 [126–573] |
Normal | 64.6% |
Elevated | 35.4% |
p-tau (pg/mL), median [10th–90th] | 40 [22.3–72] |
Normal | 73.7% |
Elevated | 26.3% |
Abeta-42 (pg/mL), median [10th–90th] | 635 [308–1078] |
Normal | 70.7% |
Low | 29.3% |
Bulbar Onset (n. 40) | Spinal Onset (n. 100) | p-Value | |
---|---|---|---|
Age onset, median [10th–90th] | 68 [45.7–81] | 66.5 [50.8–77] | n.s. |
Gender (M/F, n.) | 16/22 | 65/33 | 0.0098 |
DeltaFS, median [10th–90th] | 0.75 [0.33–2.1] | 0.54 [0.17–1.8] | 0.037 |
ALS-FRSr score, median [10th–90th] | 40.5 [22.9–45] | 41 [32–45.5] | n.s. |
Protein (mg/dL), median [10th–90th] | 37.7 [23.7–87.2] | 40 [28.1–72.3] | n.s. |
Albumin (mg/dL), median [10th–90th] | 21.8 [13.5–41] | 24.8 [15.8–56.7] | n.s. |
IgG (mg/dL), median [10th–90th] | 2.6 [1.6–10.9] | 2.6 [1.7–5.3] | n.s. |
t-TAU (pg/mL), median [10th–90th] | 324.5 [102–680] | 277.5 [126–510] | n.s. |
p-TAU (pg/mL), median [10th–90th] | 39.5 [16.7–75.7] | 40.5 [21.9–68] | n.s. |
Abeta-42 (pg/mL), median [10th–90th] | 583 [271–1069] | 621 [314–1064] | n.s. |
Spearman’s Rho | Age Onset | DeltaFS | ALS-FRSr | Survival | t-tau | p-tau | Abeta-42 | p-tau/t-tau |
---|---|---|---|---|---|---|---|---|
CSF protein | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
CSF IgG | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Qalb | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
t-tau | r = 0.34 p = 0.0003 | n.s. | n.s. | r = −0.23 p = 0.016 | r = 0.75 p < 0.0001 | n.s. | r = −0.51 p < 0.0001 | |
p-tau | r = 0.338 p = 0.0004 | n.s. | n.s. | n.s. | r = 0.75 p < 0.0001 | r = −0.314 p = 0.009 | n.s. | |
Abeta-42 | n.s. | r = −0.23 p = 0.016 | r = 0.23 p = 0.016 | r = 0.22 p = 0.02 | n.s. | r = 0.314 p = 0.0009 | n.s. | |
p-tau/t-tau | n.s. | r = 0.22 p = 0.02 | n.s. | r = 0.26 p = 0.006 | r = −0.51 p < 0.001 | r = 0.31 p = 0.0009 | n.s. |
A | |||||
t-tau | Impaired (35.4%) | Normal (64.6%) | p-Value | ||
Age onset, median [10th–90th] | 68 [55.7–81] | 66.5 [43.9–76] | 0.02 | ||
Gender (M/F, %) | 53.7/46.3 | 56.6/43.4 | 0.8 | ||
DeltaFS, median [10th–90th] | 0.61 [0.2–2.2] | 0.56 [0.18–1.99] | 0.65 | ||
Survival, median [10th–90th] | 28 [12.6–62] | 36 [17.6–64.8] | 0.04 | ||
Diagnosis delay (Mth), median [10th–90th] | 9 [6–19.1] | 12 [6–22.5] | 0.027 | ||
Bulbar/Spinal (%) | 33.3/66.7 | 26/74 | 0.5 | ||
ALS-FRSr score, median [10th–90th] | 41 [30.2–45] | 39.5 [32.9–46] | 0.84 | ||
B | |||||
Variables | β values | SE | OR | 95% CI | p-Value |
Age onset | 0.021 | 0.020 | 0.304 | 0.981–1.062 | 0.304 |
Survival | 0.002 | 0.010 | 1.002 | 0.982–1.022 | 0.86 |
Diagnosis delay | −0.045 | 0.035 | 0.956 | 0.892–1.025 | 0.95 |
A | |||||
Abeta-42 | Impaired (29.3%) | Normal (70.7%) | p-Value | ||
Age onset, median [10th–90th] | 71.5 [47–77] | 67 [56–81.5] | 0.0475 | ||
Gender (M/F, %) | 41.8/58.82 | 63.1/36.9 | 0.04 | ||
DeltaFS, median [10th–90th] | 0.97 [0.29–2.67] | 0.42 [0.2–1.68] | 0.0013 | ||
Survival, median [10th–90th] | 25 [14.4–52.6] | 39 [17.5–72] | 0.0020 | ||
Diagnosis delay (Mth), median [10th–90th] | 10 [6.5–20] | 10 [6–24] | 0.94 | ||
Bulbar/Spinal (%) | 32.3/67.7 | 26.6/73.4 | 0.62 | ||
ALS-FRSr score, median [10th–90th] | 41 [23–45] | 37 [33.7–46] | 0.001 | ||
B | |||||
Variables | β Values | SE | OR | 95% CI | p-Value |
Age onset | 0.044 | 0.026 | 1.045 | 0.992–1.100 | 0.098 |
Gender | −0.996 | 0.498 | 0.369 | 0.139–0.980 | 0.053 |
DeltaFS | −0.553 | 0.481 | 0.575 | 0.224–1.477 | 0.251 |
Survival | −0.042 | 0.021 | 0.959 | 0.921–0.998 | 0.04 |
ALS-FRSr score | −0.127 | 0.059 | 0.881 | 0.784–0.990 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginanneschi, F.; Casali, S.; Cioni, C.; Righi, D.; Emmanuello, E.; Toccaceli, C.; Plantone, D.; De Stefano, N. Does Lumbar Puncture Still Have Clinical Value for Patients with Amyotrophic Lateral Sclerosis? Brain Sci. 2025, 15, 258. https://doi.org/10.3390/brainsci15030258
Ginanneschi F, Casali S, Cioni C, Righi D, Emmanuello E, Toccaceli C, Plantone D, De Stefano N. Does Lumbar Puncture Still Have Clinical Value for Patients with Amyotrophic Lateral Sclerosis? Brain Sciences. 2025; 15(3):258. https://doi.org/10.3390/brainsci15030258
Chicago/Turabian StyleGinanneschi, Federica, Stefania Casali, Chiara Cioni, Delia Righi, Emanuele Emmanuello, Cecilia Toccaceli, Domenico Plantone, and Nicola De Stefano. 2025. "Does Lumbar Puncture Still Have Clinical Value for Patients with Amyotrophic Lateral Sclerosis?" Brain Sciences 15, no. 3: 258. https://doi.org/10.3390/brainsci15030258
APA StyleGinanneschi, F., Casali, S., Cioni, C., Righi, D., Emmanuello, E., Toccaceli, C., Plantone, D., & De Stefano, N. (2025). Does Lumbar Puncture Still Have Clinical Value for Patients with Amyotrophic Lateral Sclerosis? Brain Sciences, 15(3), 258. https://doi.org/10.3390/brainsci15030258