Natural Source of Drugs Targeting Central Nervous System Tumors—Focus on NAD(P)H Oxidoreductase 1 (NQO1) Activity
Abstract
:1. Introduction
2. Epidemiology
3. General Taxonomy
4. Gliomas
5. Brain Metastases
6. Brain Tumor Histopathology
7. NAD(P)H NQO1 in Brain Tumors
8. Plant-Based Therapy Targeting CNS Tumors
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marenco-Hillembrand, L.; Wijesekera, O.; Suarez-Meade, P.; Mampre, D.; Jackson, C.; Peterson, J.; Trifiletti, D.; Hammack, J.; Ortiz, K.; Lesser, E.; et al. Trends in glioblastoma: Outcomes over time and type of intervention: A systematic evidence based analysis. J. Neuro-Oncol. 2020, 147, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Thorbinson, C.; Kilday, J.P. Childhood Malignant Brain Tumors: Balancing the Bench and Bedside. Cancers 2021, 13, 6099. [Google Scholar] [CrossRef] [PubMed]
- Aldape, K.; Brindle, K.M.; Chesler, L.; Chopra, R.; Gajjar, A.; Gilbert, M.R.; Gottardo, N.; Gutmann, D.H.; Hargrave, D.; Holland, E.C.; et al. Challenges to curing primary brain tumours. Nat. Rev. Clin. Onco. 2019, 16, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Francis, S.S.; Barnholtz-Sloan, J.S. Epidemiology of Brain and Other CNS Tumors. Curr. Neurol. Neurosci. Rep. 2021, 21, 68. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Adel Fahmideh, M.; Cote, D.J.; Muskens, I.S.; Schraw, J.M.; Scheurer, M.E.; Bondy, M.L. Risk factors for childhood and adult primary brain tumors. Neuro. Oncol. 2019, 21, 1357–1375. [Google Scholar] [CrossRef]
- Grochans, S.; Cybulska, A.M.; Simińska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of Glioblastoma Multiforme–Literature Review. Cancers 2022, 14, 2412. [Google Scholar] [CrossRef]
- Fabbro-Peray, P.; Zouaoui, S.; Darlix, A.; Fabbro, M.; Pallud, J.; Rigau, V.; Mathieu-Daude, H.; Bessaoud, F.; Bauchet, F.; Riondel, A.; et al. Association of patterns of care, prognostic factors, and use of radiotherapy–temozolomide therapy with survival in patients with newly diagnosed glioblastoma: A French national population-based study. J. Neurooncol. 2019, 142, 91–101. [Google Scholar] [CrossRef]
- Komori, T. The 2021 WHO classification of tumors, 5th edition, central nervous system tumors: The 10 basic principles. Brain Tumor. Pathol. 2022, 39, 47–50. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Pfister, S.M.; Reifenberger, G.; Soffietti, R.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Am. J. Neuroradiol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. Central Nervous System Tumours [Internet], 5th ed.; WHO Classification of Tumours Series; International Agency for Research on Cancer: Lyon, France, 2021; Volume 6, Available online: https://tumourclassification.iarc.who.int/chapters/45 (accessed on 1 September 2024).
- Toader, C.; Eva, L.; Costea, D.; Corlatescu, A.D.; Covache-Busuioc, R.-A.; Bratu, B.-G.; Glavan, L.A.; Costin, H.P.; Popa, A.A.; Ciurea, A.V. Low-Grade Gliomas: Histological Subtypes, Molecular Mechanisms, and Treatment Strategies. Brain Sci. 2023, 13, 1700. [Google Scholar] [CrossRef]
- Belykh, E.; Shaffer, K.V.; Lin, C.; Byvaltsev, V.A.; Preul, M.C.; Chen, L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front. Oncol. 2020, 10, 739. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Poliani, P.L. Adult type diffuse gliomas in the new 2021 WHO Classification. Pathologica 2022, 114, 397–409. [Google Scholar] [CrossRef]
- Hervey-Jumper, S.L.; Berger, M.S. Evidence for improving outcome through extent of resection. Neurosurg. Clin. N. Am. 2019, 30, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Lu, V.M.; Goyal, A.; Graffeo, C.S.; Perry, A.; Burns, T.C.; Parney, I.F.; Quinones-Hinojosa, A.; Chaichana, K.L. Survival benefit of maximal resection for glioblastoma reoperation in the temozolomide era: A meta-analysis. World Neurosurg. 2019, 127, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Ius, T.; Mazzucchi, E.; Tomasino, B.; Pauletto, G.; Sabatino, G.; Della Pepa, G.M.; La Rocca, G.; Battistella, C.; Olivi, A.; Skrap, M. Multimodal integrated approaches in low grade glioma surgery. Sci. Rep. 2021, 11, 9964. [Google Scholar] [CrossRef] [PubMed]
- Mazzucchi, E.; La Rocca, G.; Ius, T.; Sabatino, G.; Della Pepa, G.M. Multimodality imaging techniques to assist surgery in low-grade gliomas. World Neurosurg. 2020, 133, 423–425. [Google Scholar] [CrossRef]
- Duffau, H. Awake mapping is not an additional surgical technique but an alternative philosophy in the management of low-grade glioma patients. Neurosurg. Rev. 2018, 41, 689–691. [Google Scholar] [CrossRef]
- Yoo, J.; Park, H.H.; Kang, S.G.; Chang, J.H. Recent Update on Neurosurgical Management of Brain Metastasis. Brain Tumor. Res. Treat. 2022, 10, 164–171. [Google Scholar] [CrossRef]
- Hatiboglu, M.A.; Akdur, K.; Sawaya, R. Neurosurgical management of patients with brain metastasis. Neurosurg. Rev. 2020, 43, 483–495. [Google Scholar] [CrossRef]
- Cardinal, T.; Pangal, D.; Strickland, B.A.; Newton, P.; Mahmoodifar, S.; Mason, J.; Craig, D.; Simon, T.; Yi Tew, B.; Yu, M.; et al. Anatomical and topographical variations in the distribution of brain metastases based on primary cancer origin and molecular subtypes: A systematic review. Neuro-Oncol. Adv. 2022, 4, vdab170. [Google Scholar] [CrossRef]
- Freeman, M.; Ennis, M.; Jerzak, K.J. Karnofsky Performance Status (KPS)≤ 60 is strongly Associated with shorter brain-specific progression-free survival among patients with metastatic Breast Cancer with Brain metastases. Front. Oncol. 2022, 12, 867462. [Google Scholar] [CrossRef] [PubMed]
- Carapella, C.M.; Gorgoglione, N.; Oppido, P.A. The role of surgical resection in patients with brain metastases. Curr. Opin. Oncol. 2018, 30, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Costabile, J.D.; Alaswad, E.; D’Souza, S.; Thompson, J.A.; Ormond, D.R. Current Applications of Diffusion Tensor Imaging and Tractography in Intracranial Tumor Resection. Front. Oncol. 2019, 9, 426. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, B.W.; Priesterbach-Ackley, L.P.; Petersen, J.K.; Wesseling, P. Molecular pathology of tumors of the central nervous system. Ann. Oncol. 2019, 30, 1265–1278. [Google Scholar] [CrossRef]
- Satgunaseelan, L.; Sy, J.; Shivalingam, B.; Sim, H.W.; Alexander, K.L.; Buckland, M.E. Prognostic and predictive biomarkers in central nervous system tumours: The molecular state of play. Pathology 2023, 56, 158–169. [Google Scholar] [CrossRef]
- Becker, A.P.; Sells, B.E.; Haque, S.J.; Chakravarti, A. Tumor Heterogeneity in Glioblastomas: From Light Microscopy to Molecular Pathology. Cancers 2021, 13, 761. [Google Scholar] [CrossRef]
- Perus, L.J.M.; Walsh, L.A. Microenviroment Heterogeneity in Brain Malignancies. Front. Immunol. 2019, 10, 2294. [Google Scholar] [CrossRef]
- Bienkowski, M.; Furtner, J.; Hainfellner, J.A. Clinical neuropathology of brain tumors. Hand Clin. Neurol. 2017, 145, 477–534. [Google Scholar] [CrossRef]
- Smith, H.L.; Wadhwani, N.; Horbinski, C. Major Features of the 2021 WHO Classification of CNS tumors. Neurotherapeutics 2022, 19, 1691–1704. [Google Scholar] [CrossRef]
- DeWitt, J. Astrocytoma, IDH Mutant. Available online: https://www.pathologyoutlines.com/topic/CNStumorgliomasastrocytomasIDHmutant.html (accessed on 4 August 2022).
- Winkler, F.; Venkatesh, H.S.; Amit, M.; Batchelor, T.; Demir, I.E.; Deneen, B.; Gutmann, D.H.; Hervey-Jumper, S.; Kuner, T.; Mabbott, D.; et al. Cancer neuroscience: State of the field, emerging directions. Cell 2023, 186, 1689–1707. [Google Scholar] [CrossRef]
- Yang, Y.C.; Zhu, Y.; Sun, S.J.; Zhao, C.J.; Bai, Y.; Wang, J.; Ma, L.T. ROS regulation in gliomas: Implications for treatment strategies. Front. Immunol. 2023, 7, 1259797. [Google Scholar] [CrossRef] [PubMed]
- Barthel, L.; Hadamitzky, M.; Dammann, P.; Schedlowski, M.; Sure, U.; Thakur, B.K.; Hetze, S. Glioma: Molecular signature and crossroads with tumor microenvironment. Cancer Metastasis Rev. 2022, 41, 53–75. [Google Scholar] [CrossRef] [PubMed]
- Erices, J.I.; Bizama, C.; Niechi, I.; Uribe, D.; Rosales, A.; Fabres, K.; Navarro-Martínez, G.; Torres, Á.; San Martín, R.; Roa, J.C.; et al. Glioblastoma Microenvironment and Invasiveness: New Insights and Therapeutic Targets. Int. J. Mol. Sci. 2023, 24, 7047. [Google Scholar] [CrossRef] [PubMed]
- Preethi, S.; Arthiga, K.; Patil, A.B.; Spandana, A.; Jain, V. Review on NAD(P)H dehydrogenase quinone 1 (NQO1) pathway. Mol. Biol. Rep. 2022, 49, 8907–8924. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.; Yan, C.; Ross, D. NAD(P)H: Quinone oxidoreductase 1 (NQO1) in the sensitivity and resistance to antitumor quinones. Biochem. Pharmacol. 2012, 83, 1033–1040. [Google Scholar] [CrossRef]
- Atiaa, A.; Abdullah, A. NQO1 enzyme and its role in cellular protection; an insight. Iberoam. J. Med. 2020, 2, 306–313. [Google Scholar] [CrossRef]
- Jaber, S.; Polster, B.M. Idebenone and neuroprotection: Antioxidant, pro-oxidant, or electron carrier? J. Bioenerg. Biomembr. 2015, 47, 111–118. [Google Scholar] [CrossRef]
- Oh, E.T.; Park, H.J. Implications of NQO1 in cancer therapy. BMB Rep. 2015, 48, 609–617. [Google Scholar] [CrossRef]
- Shin, W.S.; Han, J.; Verwilst, P.; Kumar, R.; Kim, J.H.; Kim, J.S. Cancer Targeted Enzymatic Theranostic Prodrug: Precise Diagnosis and Chemotherapy. Bioconjug. Chem. 2016, 27, 1419–1426. [Google Scholar] [CrossRef]
- Ling, Y.; Yang, Q.X.; Teng, Y.N.; Chen, S.; Gao, W.J.; Guo, J.; Hsu, P.L.; Liu, Y.; Morris-Natschke, S.L.; Hung, C.C.; et al. Development of novel amino quinoline-5,8-dione derivates as NAD(P)H: Quinone oxidoreductase 1 (NQO1) inhibitors with potent antiproliferative activities. Eur. J. Med. Chem. 2018, 154, 199–209. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Talalay, P. NAD(P)H: Quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch. Biochem. Biophys. 2010, 501, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Beaver, S.K.; Mesa-Torres, N.; Pey, A.L.; Timson, D.J. NQO1: A target for the treatment of cancer and neurologocal diseases and a model to understand loss of function disease mechanisms. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Chen, D.; Ma, K.; Wu, X.; Hao, H.; Jiang, S. NAD(P)H: Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. J. Med. Chem. 2018, 61, 6983–7003. [Google Scholar] [CrossRef] [PubMed]
- Yuhan, L.; Ghadiri, M.K.; Gorji, A. Impact of NQO1 dysregulation in CNS disorders. J. Transl. Med. 2024, 22, 4. [Google Scholar] [CrossRef]
- Lei, K.; Xia, Y.; Wang, X.C.; Ahn, E.H.; Jin, L.; Ye, K. C/EBPβ mediates NQO1 and GSTP1 anti-oxidative reductases expression in glioblastoma, promoting brain tumor proliferation. Redox Biol. 2020, 34, 101578. [Google Scholar] [CrossRef]
- Zhong, B.; Yu, J.; Hou, Y.; Ai, N.; Ge, W.; Lu, J.J.; Chen, X. A novel strategy for glioblastoma treatment by induction of noptosis an NQO1-dependent necrosis. Free Radic. Biol. Med. 2021, 166, 104–115. [Google Scholar] [CrossRef]
- Wang, Y.F.; Hu, J.Y. Natural and synthetic compounds for glioma treatment based on ROS-mediated strategy. Eur. J. Pharmacol. 2023, 953, 175537. [Google Scholar] [CrossRef]
- Roussot, N.; Ghiringhelli, F.; Rébé, C. Tumor Immunogenic Cell Death as a Mediator of Intratumor CD8 T-Cell Recruitment. Cells 2022, 11, 3672. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Q.; He, S.; Liu, S.; Lei, R.; Kong, Q.; Wang, R.; Liu, X.; Wu, J. Berberine sensitizes immune checkpoint blockade therapy in melanoma by NQO1 inhibition and ROS activation. Int. Immunopharmacol. 2024, 142 Pt A, 113031. [Google Scholar] [CrossRef]
- Stojanović, N.M.; Ranđelović, P.J.; Simonović, M.; Radić, M.; Todorović, S.; Corrigan, M.; Harkin, A.; Boylan, F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int. J. Mol. Sci. 2024, 25, 5168. [Google Scholar] [CrossRef]
- Dong, G.Z.; Oh, E.T.; Lee, H.; Park, M.T.; Song, C.W.; Park, H.J. Beta-lapachone suppresses radiation-induced activation of nuclear factor-kappaB. Exp. Mol. Med. 2010, 42, 327–334. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Zhou, F.; Su, A.; Zhang, Y.; Xing, Z.; Mi, L.; Li, Z.; Wu, W. Brusatol: A potential sensitizing agent for cancer therapy from Brucea javanica. Biomed. Pharmacother. 2023, 158, 114134. [Google Scholar] [CrossRef] [PubMed]
- Xiu, Z.; Zhu, Y.; Han, J.; Li, Y.; Yang, X.; Yang, G.; Song, G.; Li, S.; Li, Y.; Cheng, C.; et al. Caryophyllene oxide induces ferritinophagy by regulating the ncoa4/fth1/lc3 pathway in hepatocellular carcinoma. Front. Pharmacol. 2022, 13, 930958. [Google Scholar] [CrossRef] [PubMed]
- Samec, M.; Mazurakova, A.; Lucansky, V.; Koklesova, L.; Pecova, R.; Pec, M.; Golubnitschaja, O.; Al-Ishaq, R.K.; Caprnda, M.; Gaspar, L.; et al. Flavonoids attenuate cancer metabolism by modulating Lipid metabolism, amino acids, ketone bodies and redox state mediated by Nrf2. Eur. J. Pharmacol. 2023, 949, 175655. [Google Scholar] [CrossRef]
- Patra, S.; Nayak, R.; Patro, S.; Pradhan, B.; Sahu, B.; Behera, C.; Bhutia, S.K.; Jena, M. Chemical diversity of dietary phytochemicals and their mode of chemoprevention. Biotechnol. Rep. 2021, 30, e00633. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Zhang, J.; Yu, B.; Wang, W.; Jia, B.; Chang, J.; Liu, J. Neferine Exerts Ferroptosis-Inducing Effect and Antitumor Effect on Thyroid Cancer through Nrf2/HO-1/NQO1 Inhibition. J. Oncol. 2022, 2022, 7933775. [Google Scholar] [CrossRef]
- Minaei, A.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Co-delivery with nano-quercetin enhances doxorubicin-mediated cytotoxicity against MCF-7 cells. Mol. Biol. Rep. 2016, 43, 99–105. [Google Scholar] [CrossRef]
- Zhan, S.; Lu, L.; Pan, S.S.; Wei, X.Q.; Miao, R.R.; Liu, X.H.; Xue, M.; Lin, X.K.; Xu, H.L. Targeting NQO1/GPX4-mediated ferroptosis by plumbagin suppresses in vitro and in vivo glioma growth. Br. J. Cancer. 2022, 127, 364–376. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Gao, D.; Zhang, Y.; Chen, X.; Xia, Q.; Jin, M.; Sun, C.; He, Q.; Wang, R.; et al. Developmental toxicity caused by sanguinarine in zebrafish embryos via regulating oxidative stress, apoptosis and wnt pathways. Toxicol. Lett. 2021, 350, 71–80. [Google Scholar] [CrossRef]
- Krajka-Kuźniak, V.; Baer-Dubowska, W. The effects of tannic acid on cytochrome P450 and phase II enzymes in mouse liver and kidney. Toxicol. Lett. 2003, 143, 209–216. [Google Scholar] [CrossRef]
- Gao, J.; Chen, N.; Li, N.; Xu, F.; Wang, W.; Lei, Y.; Shi, J.; Gong, Q. Neuroprotective Effects of Trilobatin, a Novel Naturally Occurring Sirt3 Agonist from Lithocarpus polystachyus Rehd., Mitigate Cerebral Ischemia/Reperfusion Injury: Involvement of TLR4/NF-κB and Nrf2/Keap-1 Signaling. Antioxid. Redox. Signal. 2020, 33, 117–143. [Google Scholar] [CrossRef] [PubMed]
- Pirpour Tazehkand, A.; Salehi, R.; Velaei, K.; Samadi, N. The potential impact of trigonelline loaded micelles on Nrf2 suppression to overcome oxaliplatin resistance in colon cancer cells. Mol. Biol. Rep. 2020, 47, 5817–5829. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Bai, X.; Gou, X.; Zeng, H.; Xia, C.; Zhuang, W.; Chen, X.; Zhao, Z.; Huang, M.; Jin, J. 3′,4′,5′,5,7-pentamethoxyflavone sensitizes Cisplatin-resistant A549 cells to Cisplatin by inhibition of Nrf2 pathway. Mol. Cells 2015, 38, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Tabrez, S. Exploring natural resources: Plumbagin as a potent anticancer agent. S. Afr. J. Bot. 2024, 174, 167–179. [Google Scholar] [CrossRef]
- Wang, H.; Cheng, Y.; Mao, C.; Liu, S.; Xiao, D.; Huang, J.; Tao, Y. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol. Ther. 2021, 29, 2185–2208. [Google Scholar] [CrossRef]
- Homayoonfal, M.; Gilasi, H.; Asemi, Z.; Khaksary, M.M.; Asemi, R.; Yousefi, B. Quercetin modulates signal transductions and targets non-coding RNAs against cancer development. Cell Signal. 2023, 107, 110667. [Google Scholar] [CrossRef]
- Hajirahimkhan, A.; Simmler, C.; Dong, H.; Lantvit, D.D.; Li, G.; Chen, S.N.; Nikolić, D.; Pauli, G.F.; van Breemen, R.B.; Dietz, B.M.; et al. Induction of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) by Glycyrrhiza Species Used for Women’s Health: Differential Effects of the Michael Acceptors Isoliquiritigenin and Licochalcone A. Chem. Res. Toxicol. 2015, 28, 2130–2141. [Google Scholar] [CrossRef]
- Kadry, H.; Noorani, B.; Cucullo, L. A blood-brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS. 2020, 17, 69. [Google Scholar] [CrossRef]
- Liebner, S.; Fischmann, A.; Rascher, G.; Duffner, F.; Grote, E.H.; Kalbacher, H.; Wolburg, H. Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000, 100, 323–331. [Google Scholar] [CrossRef]
- Dinkova-Kostova, A.T.; Fahey, J.W.; Talalay, P. Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1). Methods Enzymol. 2004, 382, 423–448. [Google Scholar] [CrossRef]
Gliomas, Glioneuronal and Neuronal Tumors |
---|
Choroid plexus tumors |
Embryonal tumors |
Pineal tumors |
Cranial and paraspinal nerve tumors |
Meningiomas |
Mesenchymal, non-meningothelial tumors involving the CNS |
Melanocytic tumors |
Haematolymphoid tumors involving the CNS |
Germ cell tumors |
Tumors of the sellar region |
Metastases to the CNS |
Genetic tumor syndromes involving the CNS |
Tumor Group | Tumor Types |
---|---|
Adult-type diffuse gliomas | Astrocytoma, IDH-mutant |
Oligodendroglioma, IDH-mutant, and 1p/19q-codeleted | |
Glioblastoma, IDH-wild-type | |
Pediatric-type diffuse low-grade gliomas | Diffuse astrocytoma, MYB- or MYBL1-altered |
Angiocentric glioma | |
Polymorphous low-grade neuroepithelial tumor of the young | |
Diffuse low-grade glioma, MAPK pathway-altered | |
Pediatric-type diffuse high-grade gliomas | Diffuse midline glioma, H3 K27-altered |
Diffuse hemispheric glioma, H3 G34-mutant | |
Diffuse pediatric-type high-grade glioma, H3-wild-type and IDH-wild-type | |
Infant-type hemispheric glioma | |
Circumscribed astrocytic gliomas | Pilocytic astrocytoma |
High-grade astrocytoma with piloid features | |
Pleomorphic xanthoastrocytoma | |
Subependymal giant cell astrocytoma | |
Chordoid glioma | |
Astroblastoma, MN1-altered | |
Glioneuronal and neuronal tumors | Ganglioglioma |
Desmoplastic infantile ganglioglioma/desmoplastic infantile astrocytoma | |
Dysembryoplastic neuroepithelial tumor | |
Diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters | |
Papillary glioneuronal tumor | |
Rosette-forming glioneuronal tumor | |
Myxoid glioneuronal tumor | |
Diffuse leptomeningeal glioneuronal tumor | |
Gangliocytoma | |
Multinodular and vacuolating neuronal tumor | |
Dysplastic cerebellar gangliocytoma (Lhermitte-Duclos disease) | |
Central neurocytoma | |
Extraventricular neurocytoma | |
Cerebellar liponeurocytoma |
Compound (Reference) | Class | Model | Effects |
---|---|---|---|
Berberine [51] | Alkaloid | B16F10 and A375 melanoma cells | Inhibits NQO1 activity |
Beta-lapachone [53] | Quinone | Radiosensitized lung cancer A549 cells | Inhibits NF-kB activation mediated by NQO1 |
Brusatol [54] | Quassinoid | Myeloid leukemia, MCF-7 and MDA-MB-231, PANC-1 cells | Inhibits the expression of Nrf2-downstream genes—HO-1, NQO1, VEGF, and AKR1C |
Caryophyllene oxide [55] | Sesquiterpenoid epoxide | HCCLM3 and HUH7 liver cancer cells | Downregulation of NRF2, FTH1, HO-1, NQO1, and GPX4 |
Chrysin [56] | Flavonoid | Breast MCF-7 cancer cells | Decreased Nrf2, NQO1, multidrug resistance-associated protein 1 (MRP1), and HO-1 mRNA |
Gallic acid [57] | Phenolic acid | Cal33 and FaDu—head and neck carcinoma cells | Induction of apoptosis through upregulation of Bax and caspase-3 and downregulation of Bcl-2, NRF2, NQO1, and GCLC |
Luteolin [56] | Flavonoid | NSCLC A549 cells | Decreases heme oxygenase 1 (HO-1), aldo-keto reductase 1C (AKR1C), and glutathione S-transferase Mu 1 (GSTm1) and glutathione levels |
Neferine [58] | Bisbenzylisoqui-noline alkaloids | Human thyroid cancer cell lines IHH-4(JCRB1079) and CAL-62 (CL-0618) | Decreased relative protein expression of SLC7A11, GPX4, Nrf2, HO-1,and NQO1 |
Quercetin [59] | Glycoside | MCF-7 breast cancer cells | Decreases NQO1 and MRP1 |
Quercetin and vitamin C [56] | Glycoside, hydro soluble vitamin | Prostate PC3 cancer cells | mRNA and proteins of Nrf2, HO-1, and NQO1 |
Plumbagin [60] | Naphthoquinone | In vitro—human glioma cell lines (U251 and U87), rat glioma cell line (C6), mouse glioma cell line (GL261) In vivo—rat and mouse implantation model | Downregulates protein and mRNA levels of xCT and GPX4, interacts with NQO1 |
Sanguinarine [61] | Benzophenanthridine alkaloid | Zebra fish embryotoxicity | Oxidative stress and apoptosis-related genes with a decrease in genes of nrf2 and NQO1 |
Tannic acid [62] | Polyphenol | Mouse liver and kidneys | Decrease enzyme activity |
Trilobatin [63] | Aryl beta-D-glucoside | In vitro: isolated rat astrocytes and cortical neurons, in vivo: focal cerebral ischemia | Decreases expression of TLR4, Nrf2, NQO1, and Sirt3 |
Trigonelline [64] | Alkaloid | In vitro model of oxaliplatin-induced colon cancer cell apoptosis | Enhances suppression of Nrf2 and major downstream target genes HO-1, NQO1, and MRP1 |
3′,4′,5′,5,7-Pentamethoxyflavone [65] | Flavonoid | Lung cancer A549 cells | Decreased Nrf2 expression and the translation of HO1 and NQO1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanovic, N.M.; Mitić, M.; Ilić, J.; Radić, M.; Radisavljević, M.; Baralić, M.; Krstić, M. Natural Source of Drugs Targeting Central Nervous System Tumors—Focus on NAD(P)H Oxidoreductase 1 (NQO1) Activity. Brain Sci. 2025, 15, 132. https://doi.org/10.3390/brainsci15020132
Stojanovic NM, Mitić M, Ilić J, Radić M, Radisavljević M, Baralić M, Krstić M. Natural Source of Drugs Targeting Central Nervous System Tumors—Focus on NAD(P)H Oxidoreductase 1 (NQO1) Activity. Brain Sciences. 2025; 15(2):132. https://doi.org/10.3390/brainsci15020132
Chicago/Turabian StyleStojanovic, Nikola M., Milica Mitić, Jovan Ilić, Milica Radić, Miša Radisavljević, Marko Baralić, and Miljan Krstić. 2025. "Natural Source of Drugs Targeting Central Nervous System Tumors—Focus on NAD(P)H Oxidoreductase 1 (NQO1) Activity" Brain Sciences 15, no. 2: 132. https://doi.org/10.3390/brainsci15020132
APA StyleStojanovic, N. M., Mitić, M., Ilić, J., Radić, M., Radisavljević, M., Baralić, M., & Krstić, M. (2025). Natural Source of Drugs Targeting Central Nervous System Tumors—Focus on NAD(P)H Oxidoreductase 1 (NQO1) Activity. Brain Sciences, 15(2), 132. https://doi.org/10.3390/brainsci15020132