Physical Symptoms and Neurocognitive Complaints in Long COVID: Associations with Gender, Age, Education, and Clinical Factors
Abstract
1. Introduction
1.1. Demographic Influences: Gender, Age, and Education
1.2. Physical Symptom Profile and Cognitive Outcomes
1.3. Impact of Infection History: Number of Infections and Olfactory/Gustatory Dysfunction
1.4. Research Gaps and the Six-Month Post-Infection Focus
1.5. Objectives and Significance of This Study
2. Materials and Methods
2.1. Study Design
2.2. Instrument and Procedure
- Demographic and Infection History Questionnaire: A structured questionnaire captured participants’ age, gender, education level (categorized as under diploma, undergraduate, BA/BS, MA/MSC, PhD), marital status, number of COVID-19 infections, and presence/absence of olfactory and gustatory dysfunction (including duration in days). This self-reported tool was validated against medical records where available to ensure accuracy.
- Physical and Neurocognitive Symptom Checklist: A comprehensive checklist, adapted from prior Long COVID studies [2], was used to assess the presence and severity of physical symptoms (e.g., shortness of breath, severe fatigue, headache) and neurocognitive symptoms (e.g., difficulty concentrating, memory lapses) experienced during the past six months. Participants indicated symptom presence on a binary scale (yes/no), with additional items confirming symptom chronicity since infection. To ensure internal consistency within our context, the checklist’s reliability was examined in a pilot test (n = 30) conducted by the research team prior to the main data collection, yielding a Cronbach’s alpha of 0.85, indicating good internal consistency. Details of this reliability analysis are provided in Appendix A (Table A1).From the original Long COVID Symptom Inventory, which reports over 200 symptoms across multiple organ systems [2], and given that previous studies (e.g., Graham et al. [20]; Ferrucci et al. [22]) have highlighted a range of persistent neurologic and cognitive complaints, we selected symptoms that were both frequently reported and theoretically related to cognitive functioning. Accordingly, symptoms reflecting fatigue, respiratory difficulty, and pain—known to interfere with attention and memory processes—were prioritized along with core neurocognitive complaints such as concentration, memory, confusion, and decision-making difficulties. This targeted approach ensured interpretability, avoided redundancy, and maintained theoretical and clinical relevance to neurocognitive outcomes in Long COVID.
- Cognitive Assessment Tools: Cognitive function was evaluated using the Post-COVID Cognitive Impairment Scale, a validated patient-reported outcome measure specifically designed to assess cognitive deficits in individuals with Long COVID, focusing on the key domains of memory and attention [41]. This scale consists of 14 items divided into two subscales: seven items assessing memory (e.g., difficulty remembering tasks, recalling past events, or recognizing familiar individuals) and seven items assessing attention (e.g., difficulty maintaining focus, distinguishing priorities, or concentrating on tasks). Participants rated each item on a five-point Likert scale (1 = Very Little, 5 = Very Much), reflecting the extent of impairment in daily cognitive functioning over the past six months. Total scores range from 14 to 70, with higher scores indicating greater cognitive impairment. The scale’s ecological validity stems from its basis in real-world experiences, and its psychometric properties—established through exploratory and confirmatory factor analyses—demonstrate strong internal consistency (Cronbach’s alpha: memory = 0.81, attention = 0.80) and construct validity, making it suitable for this study’s population [41].
2.3. Data Analysis
- Independent t-tests: Used to compare mean cognitive scores (memory, attention, total cognitive complaints) between groups defined by binary variables, such as presence/absence of specific physical symptoms (e.g., shortness of breath) or gender. Levene’s test assessed equality of variances, adjusting t-test assumptions as needed.
- One-way Analysis of Variance (ANOVA): Applied to assess differences in cognitive scores across education levels, followed by Scheffe post hoc tests to identify specific group differences when ANOVA yielded significant results.
- Pearson Correlation: Conducted to explore associations between continuous variables, such as age, number of COVID-19 infections, duration of olfactory/gustatory dysfunction, and cognitive scores.
- Chi-squared Tests: Associations between categorical variables were examined using Pearson’s χ2. Gender (binary) and education (five levels: under diploma, undergraduate, BA/BS, MA, PhD; not dichotomized) were each tested against the presence (yes/no) of neurocognitive complaints. Degrees of freedom for education tests were df = 4. Two-tailed α = 0.05.
- Multiple Linear Regression: Conducted to evaluate the combined predictive contribution of demographic variables (gender, age, education) and clinical factors (number of physical symptoms, duration of olfactory/gustatory dysfunction, and number of COVID-19 infections) to total cognitive complaints. Regression assumptions (normality, linearity, multicollinearity, and homoscedasticity) were checked and met. Statistical significance for all models was set at p < 0.05.
3. Results
3.1. Sample Characteristics
3.2. Prevalence of Symptoms at Six Months
3.3. Associations with Cognitive Complaints
3.3.1. Physical Symptoms and Cognitive Subdomains
3.3.2. Neurocognitive Symptoms and Demographic Factors
| Neurocognitive Symptom | Prevalence, n (%) | Female, n (%) | Male, n (%) | Chi-Square | p-Value | 
|---|---|---|---|---|---|
| Difficulty retaining new information | 122 (57.8%) | 90 (62.5%) | 32 (47.1%) | 4.51 | 0.034 * | 
| Difficulty concentrating | 110 (52.1%) | 73 (50.7%) | 37 (54.4%) | 0.66 | 0.613 | 
| Memory lapse | 101 (47.9%) | 69 (47.9%) | 32 (47.1%) | 0.01 | 0.907 | 
| Slowed thinking | 73 (34.6%) | 52 (36.1%) | 21 (30.9%) | 0.26 | 0.455 | 
| Difficulty making decisions | 59 (28.05) | 32 (22.2%) | 27 (39.7%) | 7.03 | 0.008 * | 
| Confusion | 44 (20.9%) | 26 (18.1%) | 18 (26.5%) | 1.99 | 0.158 | 
| Feeling disoriented | 41 (19.4%) | 28 (19.4%) | 13 (19.1%) | 0.01 | 0.955 | 
| Neurocognitive Symptom | Prevalence, n (%) | Mean Age (SD), No | Mean Age (SD), Yes | t-Value | df | p-Value | Mean Difference | Cohen’s d | 
|---|---|---|---|---|---|---|---|---|
| Difficulty retaining new information | 122 (57.8) | 38.5 (9.6) | 40.6 (11.1) | −1.44 | 210 | 0.151 | −2.09 | — | 
| Difficulty concentrating | 110 (52.1) | 41.1 (10.3) | 38.4 (10.5) | 1.90 | 210 | 0.058 | 2.73 | 0.26 | 
| Memory lapse | 101 (47.9) | 40.5 (11.2) | 38.9 (9.6) | 1.11 | 209.08 | 0.268 | 1.59 | — | 
| Slowed thinking | 73 (34.6) | 39.6 (10.5) | 40 (10.4) | −0.27 | 210 | 0.790 | −0.40 | — | 
| Difficulty making decisions | 59 (28.0) | 40.7 (11) | 37.0 (8.6) | 2.32 | 210 | 0.021 * | 3.68 | 0.36 | 
| Confusion | 44 (20.9) | 40.8 (10.9) | 35.6 (7.4) | 3.66 | 97.68 | 0.001 * | 5.12 | 0.50 | 
| Feeling disoriented | 41 (19.4) | 40.2 (10.4) | 37.7 (10.5) | 1.34 | 210 | 0.183 | 2.43 | — | 
| Neurocognitive Symptom | Under Diploma (n = 25) | Under Graduate (n = 35) | BA/BS (n = 60) | MA (n = 75) | PhD (n = 17) | Chi-Square | p-Value | |
|---|---|---|---|---|---|---|---|---|
| Difficulty Retaining New Information | No | 11 (44.0%) | 12 (34.3%) | 26 (43.3%) | 36 (48.0%) | 5 (29.4%) | 3.1 | 0.5 | 
| Yes | 14 (56.0%) | 23 (65.7%) | 34 (56.7%) | 39 (52.0%) | 12 (70.6%) | |||
| Difficulty Concentrating | No | 10 (40.0%) | 9 (25.7%) | 43 (71.7%) | 34 (45.3%) | 6 (35.3%) | 22.4 | 0.0 * | 
| Yes | 15 (60.0%) | 26 (74.3%) | 17 (28.3%) | 41 (54.7%) | 11 (64.7%) | |||
| Memory lapse | No | 10 (40.0%) | 15 (42.9%) | 37 (61.7%) | 39 (52.0%) | 10 (4.7%) | 5.2 | 0.3 | 
| Yes | 15 (60.0%) | 20 (57.1%) | 23 (38.3%) | 36 (48.0%) | 7 (3.3%) | |||
| Slowed Thinking | No | 14 (56.0%) | 24 (68.6%) | 41 (68.3%) | 51 (68.0%) | 9 (52.9%) | 2.8 | 0.6 | 
| Yes | 11 (44.0%) | 11 (31.4%) | 19 (31.7%) | 24 (32.0%) | 8 (47.1%) | |||
| Difficulty Making Decisions | No | 19 (76.0%) | 21 (60.0%) | 43 (71.7%) | 58 (77.3%) | 12 (70.6%) | 3.8 | 0.4 | 
| Yes | 6 (24.0%) | 14 (40.0%) | 17 (28.3%) | 17 (22.7) | 5 (29.4%) | |||
| Confusion | No | 17 (68.0%) | 27 (77.1%) | 48 (80.0%) | 63 (84.0%) | 13 (76.5%) | 3.2 | 0.5 | 
| Yes | 8 (32.0%) | 8 (22.9%) | 12 (20.0%) | 12 (16.0%) | 4 (23.5%) | |||
| Feeling Disoriented | No | 17 (68.0%) | 27 (77.1%) | 51 (85.0%) | 64 (85.3%) | 12 (70.6%) | 5.7 | 0.2 | 
| Yes | 8 (32.0%) | 8 (22.9%) | 9 (15.0%) | 11 (14.7%) | 5 (29.4%) | 
3.3.3. Infection History and Cognitive Outcomes
3.3.4. Multivariable Regression Analysis
4. Discussion
4.1. Main Findings and Contextualization
4.2. Physical Symptoms and Cognitive Complaints
4.3. Neurocognitive Symptoms and Demographic Correlates
4.4. Clinical and Research Implications
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Subscale | Example Items | Number of Items | Cronbach’s α | 
|---|---|---|---|
| Physical symptoms | shortness of breath, severe infection, high fever, abdominal pain, headache, dizziness, chronic pain, chronic fatigue, headache, sleep disturbance, muscle weakness, sleep problems, severe fatigue after mild activity | 10 | 0.83 | 
| Neurocognitive symptoms | difficulty concentrating, slowed thinking, confusion, memory lapses, feeling disoriented, difficulty making decisions, difficulty retaining new information | 7 | 0.86 | 
| Total scale | — | 17 | 0.85 | 
References
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 2021, 8, 416–427. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Hampshire, A.; Trender, W.; Chamberlain, S.R.; Jolly, A.E.; Grant, J.E.; Patrick, F.; Mazibuko, N.; Williams, S.C.; Barnby, J.M.; Hellyer, P.; et al. Cognitive deficits in people who have recovered from COVID-19. eClinicalMedicine 2021, 39, 101044. [Google Scholar] [CrossRef]
- Jaunmuktane, Z.; Mahadeva, U.; Green, A.; Sekhawat, V.; Barrett, N.A.; Childs, L.; Shankar-Hari, M.; Thom, M.; Jager, H.R.; Brandner, S. Microvascular injury and hypoxic damage: Emerging neuropathological signatures in COVID-19. Acta Neuropathol. 2020, 140, 397–400. [Google Scholar] [CrossRef]
- Heneka, M.T.; Golenbock, D.; Latz, E.; Morgan, D.; Brown, R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimer’s Res. Ther. 2020, 12, 69. [Google Scholar] [CrossRef]
- Gorenshtein, A.; Leibovitch, L.; Liba, T.; Stern, S.; Stern, Y. Gender Disparities in Neurological Symptoms of Long COVID: A Systematic Review and Meta-Analysis. Neuroepidemiology 2024, 59, 426–440. [Google Scholar] [CrossRef]
- Michelutti, M.; Furlanis, G.; Buoite Stella, A.; Bellavita, G.; Frezza, N.; Torresin, G.; Ajcevic, M.; Manganotti, P. Sex-dependent characteristics of Neuro-Long-COVID: Data from a dedicated neurology ambulatory service. J. Neurol. Sci. 2022, 441, 120355. [Google Scholar] [CrossRef]
- Toepffer, A.; Früh, M.; Rocktäschel, T.; Ballez, J.; Troll, M.; Güllmar, D.; Finke, K.; Reuken, P.A.; Stallmach, A.; Vonderlind, S.; et al. Cognition-associated gray matter volume alterations in long-COVID show sex-specific patterns. Front. Psychiatry 2025, 16, 1653295. [Google Scholar] [CrossRef]
- Naidu, S.B.; Shah, A.J.; Saigal, A.; Smith, C.; Brill, S.E.; Goldring, J.; Hurst, J.R.; Javis, H.; Lipman, M.; Mandal, S. The high mental health burden of “Long COVID” and its association with on-going physical and respiratory symptoms in all adults discharged from hospital. Eur.-Respir. J. 2021, 57, 2004364. [Google Scholar] [CrossRef]
- Palladini, M.; Mazza, M.G.; Bravi, B.; Bessi, M.; Lorenzi, M.C.; Spadini, S.; Lorenzo, R.D.; Rovere-querini, P.; Furlan, R.; Benedetti, F. Sex-Specific Inflammatory Profiles Affect Neuropsychiatric Issues in COVID-19 Survivors. Biomolecules 2025, 15, 600. [Google Scholar] [CrossRef]
- Ferrucci, R.; Dini, M.; Rosci, C.; Capozza, A.; Groppo, E.; Reitano, M.R.; Alloco, E.; Poletti, B.; Brugnera, A.; Bai, F.; et al. One-year cognitive follow-up of COVID-19 hospitalized patients. Eur. J. Neurol. 2022, 29, 2006–2014. [Google Scholar] [CrossRef]
- Zhou, H.; Lu, S.; Chen, J.; Wei, N.; Wang, D.; Lyu, H.; Shi, C.; Hu, S. The landscape of cognitive function in recovered COVID-19 pa-tients. J. Psychiatr. Res. 2020, 129, 98–102. [Google Scholar] [CrossRef]
- Shah, D.P.; Thaweethai, T.; Karlson, E.W.; Bonilla, H.; Horne, B.D.; Mullington, J.M.; Wisnivesky, J.P.; Hornig, M.; Shinnick, D.L.; Klein, J.D.; et al. Sex Differences in Long COVID. JAMA Netw. Open 2025, 8, e2455430. [Google Scholar] [CrossRef]
- Goldstein, F.C.; Hajjar, I.; Summers, A.; Truong, A.D.; Lee, F.F.E.H.; Han, J.E.; Walker, T.A. Frequency and correlates of subjective cog-nitive complaints and objective cognitive screening results in African American adults following COVID-19 infection. Brain Behav. Immun.—Health 2023, 34, 100691. [Google Scholar] [CrossRef]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Owens, C.D.; Bonin Pinto, C.; Detwiler, S.; Olay, L.; Pinaffi-Langley, A.C.d.C.; Mukli, P.; Peterfi, A.; Szarvas, Z.; James, J.A.; Galvan, V.; et al. Neurovascular coupling im-pairment as a mechanism for cognitive deficits in COVID-19. Brain Commun. 2024, 6, fcae080. [Google Scholar] [CrossRef]
- Tsampasian, V.; Elghazaly, H.; Chattopadhyay, R.; Debski, M.; Naing, T.K.P.; Garg, P.; Clark, A.; Ntatsaki, E.; Vassiliou, V.S. Risk Factors Associated with Post−COVID-19 Condition. JAMA Intern. Med. 2023, 183, 566. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- Graham, E.L.; Clark, J.R.; Orban, Z.S.; Lim, P.H.; Szymanski, A.L.; Taylor, C.; Dibiase, R.M.; Jia, D.T.; Balabanov, R.; Ho, S.U.; et al. Persistent neurologic symptoms and cognitive dysfunction in non-hospitalized Covid-19 “long haulers”. Ann. Clin. Transl. Neurol. 2021, 8, 1073–1085. [Google Scholar] [CrossRef]
- Blomberg, B.; Mohn, K.G.I.; Brokstad, K.A.; Zhou, F.; Linchausen, D.W.; Hansen, B.A.; Latery, S.; Onyango, T.B.; Kuwelker, K.; Saevik, M.; et al. Long COVID in a prospective cohort of home-isolated patients. Nat. Med. 2021, 27, 1607–1613. [Google Scholar] [CrossRef]
- Ferrucci, R.; Dini, M.; Groppo, E.; Rosci, C.; Reitano, M.R.; Bai, F.; Poletti, B.; Brugnera, A.; Silani, V.; Monforte, A.A.; et al. Long-Lasting Cognitive Abnormalities after COVID-19. Brain Sci. 2021, 11, 235. [Google Scholar] [CrossRef]
- Ceban, F.; Ling, S.; Lui, L.M.W.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef]
- Bertuccelli, M.; Ciringione, L.; Rubega, M.; Bisiacchi, P.; Masiero, S.; Del Felice, A. Cognitive impairment in people with previous COVID-19 infection: A scoping review. Cortex 2022, 154, 212–230. [Google Scholar] [CrossRef]
- Appelman, B.; Charlton, B.T.; Goulding, R.P.; Kerkhoff, T.J.; Breedveld, E.A.; Noort, W.; Offringa, C.; Bloemers, F.W.; Weeghel, M.V.; Schomakers, B.V.; et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat. Commun. 2024, 15, 17. [Google Scholar] [CrossRef]
- De Luca, R.; Bonanno, M.; Calabrò, R.S. Psychological and Cognitive Effects of Long COVID: A Narrative Review Focusing on the Assessment and Rehabilitative Approach. J. Clin. Med. 2022, 11, 6554. [Google Scholar] [CrossRef]
- Fernández-de-las-Peñas, C.; Palacios-Ceña, D.; Gómez-Mayordomo, V.; Cuadrado, M.L.; Florencio, L.L. Defining Post-COVID Symptoms (Post-Acute COVID, Long COVID, Persistent Post-COVID): An Integrative Classification. Int. J. Environ. Res. Public Health 2021, 18, 2621. [Google Scholar] [CrossRef]
- Ji, Y.; Fei, S.; Ji, H.; OuYang, F.; Ding, R.; Sun, L.; Chen, H.; Ju, X.; Tao, J.; Han, Z.; et al. A cohort study of the long-term influences of SARS-CoV-2 on kidney allograft outcomes in Chinese recipients: 1-year follow-up experience. Kidney Dis. 2025, 11, 128–142. [Google Scholar] [CrossRef]
- Hosp, J.A.; Reisert, M.; Dressing, A.; Götz, V.; Kellner, E.; Mast, H.; Arndt, S.; Waller, C.F.; Wagner, D.; Rieg, S.; et al. Cerebral microstructural alterations in Post-COVID-condition are related to cognitive impairment, olfactory dysfunction and fatigue. Nat. Commun. 2024, 15, 4256. [Google Scholar] [CrossRef]
- Azcue, N.; Del Pino, R.; Saenz de Argandoña, O.; Ortiz de Echevarría, A.; Acera, M.; Fernández-Valle, T.; Ayo-Mentazakatorre, N.; Lafuente, J.V.; Ruiz-lopez, M.; Lopez de Munain, A.; et al. Understanding the olfactory role in post-COVID cognitive and neuropsychiatric manifestations. Front. Psychol. 2024, 15, 1407887. [Google Scholar] [CrossRef]
- Almeria, M.; Cejudo, J.C.; Sotoca, J.; Deus, J.; Krupinski, J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment. Brain Behav. Immun.—Health 2020, 9, 100163. [Google Scholar] [CrossRef]
- Moghimi, N.; Di Napoli, M.; Biller, J.; Siegler, J.E.; Shekhar, R.; McCullough, L.D.; Harkins, S.; Hong, E.; Alaouieh, D.A.; Mansueto, G.; et al. The Neurological Manifestations of Post-Acute Sequelae of SARS-CoV-2 Infection. Curr. Neurol. Neurosci. Rep. 2021, 21, 44. [Google Scholar] [CrossRef]
- Melkumyan, K.; Simonyan, S.; Shingala, D.; Torossian, H.; Mkrtumyan, K.; Tulbenjyan, M.; Hovhannisyan, Y.; Yenkoyan, K. Three-year assessment of cognitive and olfactory disturbances among COVID-19 convalescent patients grouped by olfactory hallucination status in Armenia: A qualitative and quantitative study. Clin. Med. 2025, 25, 100489. [Google Scholar] [CrossRef]
- Sharetts, R.; Moein, S.T.; Khan, R.; Doty, R.L. Long-Term Taste and Smell Outcomes After COVID-19. JAMA Netw. Open 2024, 7, e247818. [Google Scholar] [CrossRef]
- Premraj, L.; Kannapadi, N.V.; Briggs, J.; Seal, S.M.; Battaglini, D.; Fanning, J.; Suen, J.; Robba, C.; Fraser, J.; Cho, S.M. Mid and long-term neurological and neu-ropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J. Neurol. Sci. 2022, 434, 120162. [Google Scholar] [CrossRef]
- Rolin, S.; Chakales, A.; Verduzco-Gutierrez, M. Rehabilitation Strategies for Cognitive and Neuropsychiatric Manifestations of COVID-19 [Internet]. Curr. Phys. Med. Rehabil. Rep. 2022, 10, 182–187. [Google Scholar] [CrossRef]
- Stefanou, M.I.; Palaiodimou, L.; Bakola, E.; Smyrnis, N.; Papadopoulou, M.; Paraskevas, G.P.; Rizos, E.; Boutati, E.; Grigoriadis, N.; Krogias, C.; et al. Neurological manifestations of long-COVID syndrome: A narrative review. Ther. Adv. Chronic Dis. 2022, 13, 20406223221076890. [Google Scholar] [CrossRef]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Benito Ballesteros, A.; Yeung, S.P.; Liu, R.; Saha, A.; Curtis, L.; Kaser, M.; Haggard, M.P.; Cheke, L.G. COVCOG 2: Cognitive and Memory Deficits in Long COVID: A Second Publication From the COVID and Cognition Study. Front. Aging Neurosci. 2022, 14, 804937. [Google Scholar] [CrossRef]
- Bahmer, T.; Borzikowsky, C.; Lieb, W.; Horn, A.; Krist, L.; Fricke, J.; Scheibenbogen, C.; Rabe, K.F.; Maetzler, W.; Maetzler, C.; et al. Severity, predictors and clinical correlates of Post-COVID syndrome (PCS) in Germany: A prospective, multi-centre, population-based cohort study. eClinicalMedicine 2022, 51, 101549. [Google Scholar] [CrossRef]
- Pour Mohammadi, S.; Etesamipour, R.; Mercado Romero, F.; Peláez, I. A Step Forward in Long COVID Research: Validating the Post-COVID Cognitive Impairment Scale. Eur. J. Investig. Health Psychol. Educ. 2024, 14, 3001–3018. [Google Scholar] [CrossRef] [PubMed]
- Online Assessment Platform Porsline. Available online: https://porsline.ir/ (accessed on 25 February 2025).
- Carfì, A.; Bernabei, R.; Landi, F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603. [Google Scholar] [CrossRef]
- Goërtz, Y.M.J.; Van Herck, M.; Delbressine, J.M.; Vaes, A.W.; Meys, R.; Machado, F.V.C.; Houben-Wilke, S.; Burtin, C.; Posthuma, R.; Franssen, F.M.E.; et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: The post-COVID-19 syndrome? ERJ Open Res. 2020, 6, 00542–02020. [Google Scholar] [CrossRef]
- Chopra, V.; Flanders, S.A.; O’Malley, M.; Malani, A.N.; Prescott, H.C. Sixty-Day Outcomes Among Patients Hospitalized with COVID-19. Ann. Intern. Med. 2021, 174, 576–578. [Google Scholar] [CrossRef]
- Petersen, M.S.; Kristiansen, M.F.; Hanusson, K.D.; Danielsen, M.E.; á Steig, B.; Gaini, S.; Storm, M.; Pal, W. Long COVID in the Faroe Islands: A Longitudinal Study Among Nonhospitalized Patients. Clin. Infect. Dis. 2020, 73, e4058–e4063. [Google Scholar] [CrossRef]
- Ong, I.Z.; Kolson, D.L.; Schindler, M.K. Mechanisms, Effects, and Management of Neurological Complications of Post-Acute Sequelae of COVID-19 (NC-PASC). Biomedicines 2023, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Hampshire, A.; Chatfield, D.A.; MPhil, A.M.; Jolly, A.; Trender, W.; Hellyer, P.J.; Giovane, M.D.; Newcombe, V.F.J.; Outtrim, J.G.; Warne, B.; et al. Multivariate profile and acute-phase correlates of cognitive deficits in a COVID-19 hospitalised cohort. eClinicalMedicine 2022, 47, 101417. [Google Scholar] [CrossRef] [PubMed]
- Scardua-Silva, L.; Amorim da Costa, B.; Karmann Aventurato, Í.; Batista Joao, R.; Machado de Campos, B.; Rabelo de Brito, M.; Bechelli, J.F.; Santos Silvas, L.C.; Ferreira dos Santos, A.; Machado Alvim, M.K.; et al. Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19. Sci. Rep. 2024, 14, 1758. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, G.; Zhang, X.; Zhang, M.; Lu, J.; Li, H. Altered intrinsic brain activity and functional connectivity in COVID-19 hospitalized patients at 6-month follow-up. BMC Infect. Dis. 2023, 23, 521. [Google Scholar] [CrossRef]
- Groff, D.; Sun, A.; Ssentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Lekoubou, A.; Oh, J.S.; Ericson, M.E.; Ssentongo, P.; et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection. JAMA Netw. Open 2021, 4, e2128568. [Google Scholar] [CrossRef]
- Patrucco, F.; Zeppegno, P.; Baricich, A.; Gramaglia, C.M.; Balbo, P.E.; Falaschi, Z.; Carriero, A.; Cuneo, d.; Pirisi, M.; Bellan, M. Long-lasting con-sequences of coronavirus disease 19 pneumonia: A systematic review. Minerva Medica 2022, 113, 158–171. [Google Scholar] [CrossRef]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; Hillman, T.E.; Jacob, J.; Jarvis, H.C.; et al. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2020, 76, 396–398. [Google Scholar] [CrossRef]
- Garrigues, E.; Janvier, P.; Kherabi, Y.; Le Bot, A.; Hamon, A.; Gouze, H.; Doucet, L.; Berkani, S.; Oliosi, E.; Mallart, E.; et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 2020, 81, e4–e6. [Google Scholar] [CrossRef]
- Pilotto, A.; Cristillo, V.; Cotti Piccinelli, S.; Zoppi, N.; Bonzi, G.; Sattin, D.; Schiavolin, S.; Raggi, A.; Canale, A.; Gipponi, S.; et al. Long-term neurological manifestations of COVID-19: Prevalence and predictive factors. Neurol. Sci. 2021, 42, 4903–4907. [Google Scholar] [CrossRef]
- Leonel Tavares-Júnior, J.W.; Ciurleo, G.C.V.; Formiga, A.M.; de Maria Frota Vasconcelos, T.; de Andrade, M.H.; Feitosa, W.L.Q.; Soberina-Neto, A.A.; Portugal, C.G.; Morais, L.M.; Marinho, S.C.; et al. Long COVID: Neurological manifestations—An updated narrative review. Dement. Neuropsychol. 2024, 18, e20230076. [Google Scholar] [CrossRef]
- Nordvig, A.S.; Fong, K.T.; Willey, J.Z.; Thakur, K.T.; Boehme, A.K.; Vargas, W.S.; Smith, C.J.; Elkind, M.S.V. Potential Neurologic Manifestations of COVID-19. Neurol. Clin. Pract. 2021, 11, e135–e146. [Google Scholar] [CrossRef]
- Cha, C.; Baek, G. Symptoms and management of long COVID: A scoping review. J. Clin. Nurs. 2021, 33, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Bisaccia, G.; Ricci, F.; Recce, V.; Serio, A.; Iannetti, G.; Chahal, A.A.; Stahlberg, M.; Khanji, M.Y.; Fedorowski, A.; Gallina, S. Post-Acute Sequelae of COVID-19 and Cardiovas-cular Autonomic Dysfunction: What Do We Know? J. Cardiovasc. Dev. Dis. 2021, 8, 156. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2020, 19, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.W.; Shah, A.S.; Johnston, J.C.; Carlsten, C.; Ryerson, C.J. Patient-reported outcome measures after COVID-19: A pro-spective cohort study. Eur. Respir. J. 2020, 56, 2003276. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhang, F.; Wei, C.; Jia, Y.; Shang, Z.; Sun, L.; Wu, L.; Sun, Z.; Zhou, Y.; Wang, Y.; et al. Prevalence and predictors of PTSS during COVID-19 outbreak in China hardest-hit areas: Gender differences matter. Psychiatry Res. 2020, 287, 112921. [Google Scholar] [CrossRef]
- Schild, A.K.; Goereci, Y.; Scharfenberg, D.; Klein, K.; Lülling, J.; Meiberth, D.; Schweitzer, F.; Sturmer, S.; Zeyen, P.; Sahin, D.; et al. Multidomain cognitive impairment in non-hospitalized patients with the post-COVID-19 syndrome: Results from a prospective monocentric cohort. J. Neurol. 2022, 270, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Seeßle, J.; Waterboer, T.; Hippchen, T.; Simon, J.; Kirchner, M.; Lim, A.; Muller, B.; Merle, U. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin. Infect. Dis. 2021, 74, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Raman, B.; Bluemke, D.A.; Lüscher, T.F.; Neubauer, S. Long COVID: Post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 2022, 43, 1157–1172. [Google Scholar] [CrossRef]
- Taruffi, L.; Muccioli, L.; Mitolo, M.; Ferri, L.; Descovich, C.; Mazzoni, S.; Michelucci, R.; Lodi, R.; Cortelli, P.; Tonon, C.; et al. Neurological Manifestations of Long COVID: A Single-Center One-Year Experience. Neuropsychiatr. Dis. Treat. 2023, 19, 311–319. [Google Scholar] [CrossRef]
- Phetsouphanh, C.; Darley, D.R.; Wilson, D.B.; Howe, A.; Munier, C.M.L.; Patel, S.K.; Juno, J.A.; Burrell, L.M.; Kent, S.J.; Dore, G.J.; et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 2022, 23, 210–216. [Google Scholar] [CrossRef]
- Figueiredo, A.M.d.; Figueiredo, D.C.M.M.d.; Gomes, L.B.; Massuda, A.; Gil-García, E.; Vianna, R.P.d.T.; Daponte, A. Social determinants of health and COVID-19 infection in Brazil: An analysis of the pandemic. Rev. Bras. Enferm. 2020, 73, e20200673. [Google Scholar] [CrossRef]
- Babiloni, C.; Gentilini Cacciola, E.; Tucci, F.; Vassalini, P.; Chilovi, A.; Jakhar, D.; Musat, A.M.; Salvatore, M.; Soricelli, A.; Stocchi, F.; et al. Resting-state EEG rhythms are abnormal in post COVID-19 patients with brain fog without cognitive and affective disorders. Clin. Neurophysiol. 2024, 161, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Kesler, S.R.; Franco-Rocha, O.Y.; De La Torre Schutz, A.; Lewis, K.A.; Aziz, R.M.; Henneghan, A.M.; Melamed, E.; Brode, W.M. Altered functional brain connectivity, efficiency, and information flow associated with brain fog after mild to moderate COVID-19 infection. Sci. Rep. 2024, 14, 22094. [Google Scholar] [CrossRef]
- Versace, V.; Ortelli, P.; Dezi, S.; Ferrazzoli, D.; Alibardi, A.; Bonini, I.; Engl, M.; Maestri, R.; Assogna, M.; Ajello, V.; et al. Co-ultramicronized palmitoylethanolamide/luteolin normalizes GABAB-ergic activity and cortical plasticity in long COVID-19 syndrome. Clin. Neurophysiol. 2023, 145, 81–88. [Google Scholar] [CrossRef]
- Manganotti, P.; Michelutti, M.; Furlanis, G.; Deodato, M.; Buoite Stella, A. Deficient GABABergic and glutamatergic excitability in the motor cortex of patients with long-COVID and cognitive impairment. Clin. Neurophysiol. 2023, 151, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Twomey, R.; DeMars, J.; Franklin, K.; Culos-Reed, S.N.; Weatherald, J.; Wrightson, J.G. Chronic Fatigue and Postexertional Malaise in People Living with Long COVID: An Observational Sdy. Phys. Ther. 2022, 102, pzac005. [Google Scholar] [CrossRef] [PubMed]
- Noroozi Fashkhami, M.; Pour Mohammadi, S.; Azadyekta, M. The effectiveness of cognitive rehabilitation in improving working memory and attention in acute COVID-19 survivors. Int. J. Health Stud. 2024, 10, 29–36. Available online: https://sjms.shmu.ac.ir/index.php/ijhs/article/view/1097 (accessed on 20 October 2025).
- Jacobs, M.M.; Evans, E.; Ellis, C. Racial, ethnic, and sex disparities in the incidence and cognitive symptomology of long COVID-19. J. Natl. Med. Assoc. 2023, 115, 233–243. [Google Scholar] [CrossRef] [PubMed]
| Characteristic | Value | 
|---|---|
| Age (years) | |
| Mean (SD) | 39.7 (10.5) | 
| Median | 39.0 | 
| Range | 17–71 | 
| Gender, n (%) | |
| Female | 144 (67.9%) | 
| Male | 68 (32.1%) | 
| Education, n (%) | |
| Under Diploma | 25 (11.8%) | 
| Undergraduate (Diploma) | 35 (16.5%) | 
| Bachelor’s Degree (BA/BS) | 60 (28.3%) | 
| Master’s Degree (MA/MSC) | 75 (35.4%) | 
| Doctoral Degree (PhD) | 17 (8.0%) | 
| Marital Status, n (%) | |
| Single | 77 (36.5%) | 
| Married | 132 (62.3%) | 
| Widowed | 3 (1.4%) | 
| Quarantine History, n (%) | |
| Quarantined | 107 (50.7%) | 
| Number of COVID-19 Infections, n (%) | |
| 1 | 119 (56.1%) | 
| 2 or more | 93 (43.9%) | 
| Days of Quarantine (for those quarantined) | |
| Mean (SD) | 15.18 (7.9) | 
| Olfactory/Gustatory Dysfunction, n (%) | |
| Present | 109 (51.7%) | 
| Symptom | Prevalence, n (%) | 
|---|---|
| Physical Symptoms | |
| Severe fatigue after mild activity | 49 (23.2%) | 
| Chronic fatigue | 48 (22.7%) | 
| Headache | 40 (19.0%) | 
| High fever | 28 (13.3%) | 
| Dizziness | 26 (12.3%) | 
| Chronic pain | 23 (10.9%) | 
| Shortness of breath | 18 (8.5%) | 
| Sleep disturbance | 16 (7.6%) | 
| Abdominal pain | 13 (6.2%) | 
| Severe infection | 12 (5.7%) | 
| Neurocognitive Symptoms | |
| Difficulty retaining new information | 122 (57.9%) | 
| Difficulty concentrating | 110 (52.1%) | 
| Memory lapse | 101 (47.9%) | 
| Slowed thinking | 73 (34.6%) | 
| Difficulty making decisions | 59 (28.0%) | 
| Confusion | 44 (20.9%) | 
| Feeling disoriented | 41 (19.4%) | 
| Physical Symptom | Prevalence, n (%) | Total Cognitive Complaints Mean (SD) t, p-Value | Memory Impairment Mean (SD) t, p-Value | Attention Impairment Mean (SD) t, p-Value | Cohen’s d | 
|---|---|---|---|---|---|
| Severe Fatigue After Mild Activity | 49 (23.2%) | 0.46 | |||
| No | 162 (76.8%) | 33.41 (8.09) | 15.94 (4.21) | 17.47 (5.20) | |
| Yes | 49 (23.2%) | 37.26 (9.00) | 18.02 (4.53) | 19.24 (5.64) | |
| t-test (t, df, p) | −2.84, 209, 0.005 * | −2.97, 209, 0.003 * | −2.05, 209, 0.041 * | ||
| Chronic Fatigue | 48 (22.7%) | - | |||
| No | 163 (77.3%) | 33.93 (8.50) | 16.30 (4.35) | 17.62 (5.32) | |
| Yes | 48 (22.7%) | 35.60 (8.23) | 16.85 (4.44) | 18.75 (5.42) | |
| t-test (t, df, p) | −1.21, 209, 0.227 | −0.77, 209, 0.442 | −1.28, 209, 0.201 | ||
| Headache | 40 (19.0%) | 0.36 | |||
| No | 171 (81.0%) | 33.73 (8.31) | 16.10 (4.31) | 17.63 (5.22) | |
| Yes | 40 (19.0%) | 36.77 (8.72) | 17.82 (4.38) | 18.95 (5.78) | |
| t-test (t, df, p) | −2.07, 209, 0.040 * | −2.27, 209, 0.024 * | −1.41, 209, 0.161 | ||
| Dizziness | 26 (12.3%) | - | |||
| No | 185 (87.7%) | 33.92 (8.30) | 16.22 (4.37) | 17.71 (5.25) | |
| Yes | 26 (12.3%) | 37.04 (9.16) | 17.92 (4.26) | 19.11 (5.95) | |
| t-test (t, df, p) | −1.77, 209, 0.078 | −1.88, 209, 0.062 | −1.26, 209, 0.210 | ||
| Chronic Pain | 23 (10.9%) | - | |||
| No | 188 (89.1%) | 34.04 (8.37) | 16.27 (4.34) | 17.77 (5.24) | |
| Yes | 23 (10.9%) | 36.52 (8.93) | 17.74 (4.43) | 18.78 (6.22) | |
| t-test (t, df, p) | −1.33, 209, 0.184 | −1.53, 209, 0.127 | −0.86, 209, 0.393 | ||
| Shortness of Breath | 18 (8.5%) | 0.54 | |||
| No | 193 (91.5%) | 33.92 (8.10) | 16.30 (4.34) | 17.62 (5.12) | |
| Yes | 18 (8.5%) | 38.44 (10.97) | 17.78 (4.61) | 20.67 (6.90) | |
| t-test (t, df, p) | −2.19, 209, 0.030 * | −1.37, 209, 0.171 | −2.33, 209, 0.021 * | ||
| Sleep Disturbance | 16 (7.6%) | - | |||
| No | 195 (92.4%) | 34.06 (8.32) | 16.31 (4.30) | 17.75 (5.27) | |
| Yes | 16 (7.6%) | 37.31 (9.69) | 17.87 (5.03) | 19.43 (6.21) | |
| t-test (t, df, p) | −1.48, 209, 0.139 | −1.38, 209, 0.168 | −1.21, 209, 0.227 | ||
| Abdominal Pain | 13 (6.2%) | - | |||
| No | 198 (93.8%) | 34.22 (8.14) | 16.35 (4.28) | 17.87 (5.11) | |
| Yes | 13 (6.2%) | 35.61 (12.61) | 17.61 (5.63) | 18.00 (8.42) | |
| t-test (t, df, p) | −0.57, 209, 0.566 | −0.80, 12.92, 0.441 | −0.05, 12.59, 0.958 | 
| Neurocognitive Symptom | Prevalence, n (%) | Age (Mean Difference, p-Value) | Gender (Chi-Square, p-Value) | Education (Chi-Square, p-Value) | 
|---|---|---|---|---|
| Difficulty retaining new information | 122 (57.8) | −2.09, 0.151 | 4.51, 0.034 * | 3.13, 0.537 | 
| Difficulty concentrating | 110 (52.1) | 2.73, 0.058 | 0.66, 0.613 | 22.38, 0.001 * | 
| Memory lapse | 101 (47.9) | 1.59, 0.268 | 0.01, 0.907 | 5.17, 0.270 | 
| Slowed thinking | 73 (34.6) | −0.40, 0.790 | 0.26, 0.455 | 2.75, 0.600 | 
| Difficulty making decisions | 59 (28.0) | 3.68, 0.021 * | 7.03, 0.008 * | 3.79, 0.435 | 
| Confusion | 44 (20.9) | 5.12, 0.001 * | 1.99, 0.158 | 3.15, 0.533 | 
| Feeling disoriented | 41 (19.4) | 2.43, 0.183 | 0.01, 0.955 | 5.73, 0.221 | 
| Outcome | F (4, 207) | p | η2 | Levene p | Significant Scheffé Contrasts (Higher Mean First) | 
|---|---|---|---|---|---|
| Total cognitive complaints | 4.70 | 0.001 | 0.083 | 0.177 | Under Diploma > BA/BS (ΔM = 6.16, p = 0.043) | 
| Memory impairment | 3.25 | 0.013 | 0.059 | 0.610 | Under Diploma > BA/BS (ΔM = 3.30, p = 0.035) | 
| Attention impairment | 4.64 | 0.001 | 0.083 | 0.120 | Undergraduate > BA/BS (ΔM = 3.87, p = 0.016); Undergraduate > MA/MSC (ΔM = 3.78, p = 0.014) | 
| Infection Characteristic | Prevalence, n (%) | Total Cognitive Complaints Mean (SD) | Memory Impairment Mean (SD) | Attention Impairment Mean (SD) | 
|---|---|---|---|---|
| Severe Infection (n = 211) | ||||
| No | 199 (94.3%) | 34.1 (8.6) | 16.3 (4.4) | 17.8 (5.4) | 
| Yes | 12 (5.7%) | 37.1 (4.5) | 18.3 (3.6) | 18.8 (4.5) | 
| t-test (t, df, p) | −2.06, 16.45, 0.055 | −1.49, 209, 0.137 | −0.63, 209, 0.537 | |
| High Fever (n = 211) | ||||
| No | 183 (86.7%) | 34.1 (8.2) | 16.34 (5.2) | 17.7 (5.2) | 
| Yes | 28 (13.3%) | 36.0 (9.8) | 17.00 (6.3) | 19.0 (6.3) | 
| t-test (t, df, p) | −1.14, 209, 0.256 | −0.74, 209, 0.457 | −1.19, 209, 0.236 | |
| Olfactory/Gustatory Dysfunction (n = 211) | ||||
| No | 102 (48.3%) | 33.7 (8.4) | 15.8 (4.2) | 17.9 (5.3) | 
| Yes | 109 (51.7%) | 34.9 (8.5) | 17.0 (4.4) | 17.8 (5.5) | 
| t-test (t, df, p) | −1.02, 209, 0.310 | −2.11, 209, 0.036 * | 0.10, 209, 0.916 | |
| Duration of Olfactory/Gustatory Dysfunction (days) | — | r = 0.029, p = 0.675 | r = 0.092, p = 0.185 | r = −0.028, p = 0.682 | 
| Number of COVID-19 Infections | — | r = 0.068, p = 0.324 | r = 0.112, p = 0.106 | r = 0.017, p = 0.811 | 
| Predictor | B | β | SE | t | p-Value | 
|---|---|---|---|---|---|
| Constant | 35.1 | — | 2.8 | 12.5 | <0.0 | 
| Gender | 0.3 | 0.0 | 1.2 | 0.3 | 0.8 | 
| Age | −0.0 | −0.1 | 0.1 | −0.7 | 0.5 | 
| Education | −1.2 | −0.2 | 0.5 | −2.59 | 0.0 | 
| Number of Physical Symptoms | 0.7 | 0.2 | 0.3 | 2.68 | 0.0 | 
| Duration of olfactory/gustatory Dysfunction | −0.0 | −0.0 | 0.0 | −0.14 | 0.9 | 
| Number of Infections | 0.2 | 0.0 | 0.8 | 0.27 | 0.8 | 
| R2: 0.07 | Adjusted R2: 0.04 | ||||
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pour Mohammadi, S.; Etesamipour, R.; Mercado Romero, F.; Noroozi Fashkhami, M.; Peláez, I. Physical Symptoms and Neurocognitive Complaints in Long COVID: Associations with Gender, Age, Education, and Clinical Factors. Brain Sci. 2025, 15, 1180. https://doi.org/10.3390/brainsci15111180
Pour Mohammadi S, Etesamipour R, Mercado Romero F, Noroozi Fashkhami M, Peláez I. Physical Symptoms and Neurocognitive Complaints in Long COVID: Associations with Gender, Age, Education, and Clinical Factors. Brain Sciences. 2025; 15(11):1180. https://doi.org/10.3390/brainsci15111180
Chicago/Turabian StylePour Mohammadi, Somayeh, Razieh Etesamipour, Francisco Mercado Romero, Moein Noroozi Fashkhami, and Irene Peláez. 2025. "Physical Symptoms and Neurocognitive Complaints in Long COVID: Associations with Gender, Age, Education, and Clinical Factors" Brain Sciences 15, no. 11: 1180. https://doi.org/10.3390/brainsci15111180
APA StylePour Mohammadi, S., Etesamipour, R., Mercado Romero, F., Noroozi Fashkhami, M., & Peláez, I. (2025). Physical Symptoms and Neurocognitive Complaints in Long COVID: Associations with Gender, Age, Education, and Clinical Factors. Brain Sciences, 15(11), 1180. https://doi.org/10.3390/brainsci15111180
 
        



 
       