Targeting Cognition and Behavior Post-Stroke: Combined Emotional Music Stimulation and Virtual Attention Training in a Quasi-Randomized Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Setting and Participants
2.2. Procedures
2.3. Outcome Measures
2.4. Interventions
2.5. Combined Rehabilitative Approach: VRRS + EMS
2.6. Statistical Analysis
3. Results
3.1. Within-Group Comparisons (T0 vs. T1)
3.2. Between-Group Comparisons (T0 vs. T1)
3.3. Between-Group Comparisons of Change Scores (ΔT1–T0)
3.4. Correlations Between Autonomic Change and Non-Cognitive Symptoms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbott, A.L.; Silvestrini, M.; Topakian, R.; Golledge, J.; Brunser, A.M.; de Borst, G.J.; Harbaugh, R.E.; Doubal, F.N.; Rundek, T.; Thapar, A.; et al. Optimizing the Definitions of Stroke, Transient Ischemic Attack, and Infarction for Research and Application in Clinical Practice. Front. Neurol. 2017, 8, 537. [Google Scholar] [CrossRef]
- Aho, K.; Harmsen, P.; Hatano, S.; Marquardsen, J.; Smirnov, V.E.; Strasser, T. Cerebrovascular disease in the community: Results of a WHO collaborative study. Bull. World Health Organ. 1980, 58, 113–130. [Google Scholar]
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef]
- Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.O.; Pandian, J.; Lindsay, P.; Grupper, M.F.; Rautalin, I. World Stroke Organization: Global Stroke Fact Sheet 2025. Int. J. Stroke 2025, 20, 132–144. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Wang, D.; Rezaei, M.J. Stroke rehabilitation: From diagnosis to therapy. Front. Neurol. 2024, 15, 1402729. [Google Scholar] [CrossRef] [PubMed]
- Chohan, S.A.; Venkatesh, P.K.; How, C.H. Long-term complications of stroke and secondary prevention: An overview for primary care physicians. Singap. Med. J. 2019, 60, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Grefkes, C.; Fink, G.R. Recovery from stroke: Current concepts and future perspectives. Neurol. Res. Pract. 2020, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Hatem, S.M.; Saussez, G.; della Faille, M.; Prist, V.; Zhang, X.; Dispa, D.; Bleyenheuft, Y. Rehabilitation of motor function after stroke: A multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. 2016, 10, 442. [Google Scholar] [CrossRef]
- Lou, Y.; Liu, Z.; Ji, Y.; Cheng, J.; Zhao, C.; Li, L. Efficacy and safety of very early rehabilitation for acute ischemic stroke: A systematic review and meta-analysis. Front. Neurol. 2024, 15, 1423517. [Google Scholar] [CrossRef]
- Cassidy, J.M.; Cramer, S.C. Spontaneous and Therapeutic-Induced Mechanisms of Functional Recovery After Stroke. Transl. Stroke Res. 2017, 8, 33–46. [Google Scholar] [CrossRef]
- Tynterova, A.; Perepelitsa, S.; Golubev, A. Personalized Neurophysiological and Neuropsychological Assessment of Patients with Left and Right Hemispheric Damage in Acute Ischemic Stroke. Brain Sci. 2022, 12, 554. [Google Scholar] [CrossRef]
- Kopp, B.; Rösser, N.; Tabeling, S.; Stürenburg, H.J.; de Haan, B.; Karnath, H.O.; Wessel, K. Disorganized behavior on Link’s cube test is sensitive to right hemispheric frontal lobe damage in stroke patients. Front. Hum. Neurosci. 2014, 8, 79. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Yue, Y.Y.; Li, L.; Lang, S.Y.; Wang, M.W.; Du, X.D.; Deng, Y.L.; Wu, A.Q.; Yuan, Y.G. Clinical practice guidelines for post-stroke depression in China. Braz. J. Psychiatry 2018, 40, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Hama, S.; Yamashita, H.; Yamawaki, S.; Kurisu, K. Post-stroke depression and apathy: Interactions between functional recovery, lesion location, and emotional response. Psychogeriatrics 2011, 11, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Scolari, M.; Seidl-Rathkopf, K.N.; Kastner, S. Functions of the human frontoparietal attention network: Evidence from neuroimaging. Curr. Opin. Behav. Sci. 2015, 1, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.C.; Mulvihill, K.G. Multiple faces of anxiety: A frontal lobe perspective. Trends Neurosci. 2024, 47, 708–721. [Google Scholar] [CrossRef]
- Boshra, R.; Kastner, S. Attention control in the primate brain. Curr. Opin. Neurobiol. 2022, 76, 102605. [Google Scholar] [CrossRef]
- Zebhauser, P.T.; Vernet, M.; Unterburger, E.; Brem, A.K. Visuospatial Neglect—A Theory-Informed Overview of Current and Emerging Strategies and a Systematic Review on the Therapeutic Use of Non-invasive Brain Stimulation. Neuropsychol. Rev. 2019, 29, 397–420. [Google Scholar] [CrossRef]
- Raposo, I.; Szczepanski, S.M.; Haaland, K.; Endestad, T.; Solbakk, A.K.; Knight, R.T.; Helfrich, R.F. Periodic attention deficits after frontoparietal lesions provide causal evidence for rhythmic attentional sampling. Curr. Biol. 2023, 33, 4893–4904.e3. [Google Scholar] [CrossRef]
- Nimbvikar, A.A.; Panchawagh, S.; Chavan, A.P.; Ingole, J.R.; Pargaonkar, Y.; Pai, R. Modified rankin scale is a reliable tool for the rapid assessment of stroke severity and predicting disability outcomes. J. Fam. Med. Prim. Care 2024, 13, 1085–1090. [Google Scholar] [CrossRef]
- Carrozzino, D.; Patierno, C.; Fava, G.A.; Guidi, J. The Hamilton Rating Scales for Depression: A critical review of clinimetric properties of different versions. Psychother. Psychosom. 2020, 89, 133–150. [Google Scholar] [CrossRef]
- Schneider, H.; Esbitt, S.; Gonzalez, J.S. Hamilton Anxiety Rating Scale. In Encyclopedia of Behavioral Medicine; Gellman, M.D., Turner, J.R., Eds.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Chan, E.; Altendorff, S.; Healy, C.; Werring, D.J.; Cipolotti, L. The test accuracy of the Montreal Cognitive Assessment (MoCA) by stroke lateralization. J. Neurol. Sci. 2017, 373, 100–104. [Google Scholar] [CrossRef]
- Balram, V.; Ingleton, R.; Parsons, D.; George, S.; Van Den Berg, M. Non-pharmacological interventions to treat mood disturbances post-stroke: A systematic review. Top. Stroke Rehabil. 2024, 32, 188–207. [Google Scholar] [CrossRef]
- Goldenberg, G. Apraxia and the parietal lobes. Neuropsychologia 2009, 47, 1449–1459. [Google Scholar] [CrossRef]
- Elendu, C.; Amaechi, D.C.; Elendu, T.C.; Ibhiedu, J.O.; Egbunu, E.O.; Ndam, A.R.; Ogala, F.; Ologunde, T.; Peterson, J.C.; Boluwatife, A.I.; et al. Stroke and cognitive impairment: Understanding the connection and managing symptoms. Ann. Med. Surg. 2023, 85, 6057–6066. [Google Scholar] [CrossRef]
- Algahtani, R.; Gasemaltayeb, R.; Binsiddiq, Z.; Almatrafi, M.; Felimban, S.; Alsaud, R. Therapeutic interventions for the non-motor strokes sequelae: An overview. Egypt. J. Neurol. Psychiatry Neurosurg. 2025, 61, 38. [Google Scholar] [CrossRef]
- Maffoni, M.; Pierobon, A.; Mancini, D.; Magnani, A.; Torlaschi, V.; Fundarò, C. How do you target cognitive training? Bridging the gap between standard and technological rehabilitation of cognitive domains. Front. Psychol. 2024, 15, 1497642. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.; Liu, S.; Cao, M.; Zhao, J. A comprehensive review of virtual reality technology for cognitive rehabilitation in patients with neurological conditions. Appl. Sci. 2024, 14, 6285. [Google Scholar] [CrossRef]
- Leonardi, S.; Cacciola, A.; De Luca, R.; Aragona, B.; Andronaco, V.; Milardi, D.; Bramanti, P.; Calabrò, R.S. The role of music therapy in rehabilitation: Improving aphasia and beyond. Int. J. Neurosci. 2017, 127, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Nadon, É.; Tillmann, B.; Saj, A.; Gosselin, N. The emotional effect of background music on selective attention of adults. Front. Psychol. 2021, 12, 729037. [Google Scholar] [CrossRef]
- Maalouf, E.; Hallit, S.; Salameh, P.; Hosseini, H. Depression, anxiety, insomnia, stress, and the way of coping emotions as risk factors for ischemic stroke and their influence on stroke severity: A case–control study in Lebanon. Front. Psychiatry 2023, 14, 1097873. [Google Scholar] [CrossRef]
- Ryan, R.M. Control and information in the intrapersonal sphere: An extension of cognitive evaluation theory. J. Personal. Soc. Psychol. 1982, 43, 450–461. [Google Scholar] [CrossRef]
- Rosenthal, R. Meta—Analytic Procedures for Social Research, rev. ed.; Sage Publications: Newbury Park, CA, USA, 1991. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Laver, K.E.; Lange, B.; George, S.; Deutsch, J.E.; Saposnik, G.; Crotty, M. Virtual reality for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 2017, CD008349. [Google Scholar] [CrossRef]
- De Luca, R.; Bonanno, M.; Rifici, C.; Pollicino, P.; Caminiti, A.; Morone, G.; Calabrò, R.S. Does Non-Immersive Virtual Reality Improve Attention Processes in Severe Traumatic Brain Injury? Encouraging Data from a Pilot Study. Brain Sci. 2022, 12, 1211. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.F.; Schellenberg, E.G.; Husain, G. Arousal, mood, and the Mozart effect. Psychol. Sci. 2001, 12, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.N.; Huang, R.H.; Chiang, H.Y. Background music: Effects on attention performance. Work 2012, 42, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Särkämö, T.; Tervaniemi, M.; Laitinen, S.; Forsblom, A.; Soinila, S.; Mikkonen, M.; Autti, T.; Silvennoinen, H.M.; Erkkilä, J.; Laine, M.; et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 2008, 131 Pt 3, 866–876. [Google Scholar] [CrossRef]
- Magee, W.L.; Clark, I.; Tamplin, J.; Bradt, J. Music interventions for acquired brain injury. Cochrane Database Syst. Rev. 2017, 2017, CD006787. [Google Scholar] [CrossRef]
- Aalbers, S.; Fusar-Poli, L.; Freeman, R.E.; Spreen, M.; Ket, J.C.; Vink, A.C.; Maratos, A.; Crawford, M.; Chen, X.J.; Gold, C. Music therapy for depression. Cochrane Database Syst. Rev. 2017, 11, CD004517. [Google Scholar] [CrossRef]
- Bernardi, L.; Porta, C.; Sleight, P. Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: The importance of silence. Heart 2006, 92, 445–452. [Google Scholar] [CrossRef]
- Thoma, M.V.; Ryf, S.; Mohiyeddini, C.; Ehlert, U.; Nater, U.M. Emotion regulation through listening to music in everyday situations. Cogn. Emot. 2012, 26, 550–560. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef]
- Chalmers, J.A.; Quintana, D.S.; Abbott, M.J.; Kemp, A.H. Anxiety Disorders are Associated with Reduced Heart Rate Variability: A Meta-Analysis. Front. Psychiatry 2014, 5, 80. [Google Scholar] [CrossRef]
- Kemp, A.H.; Quintana, D.S.; Gray, M.A.; Felmingham, K.L.; Brown, K.; Gatt, J.M. Impact of depression and antidepressant treatment on heart rate variability: A review and meta-analysis. Biol. Psychiatry 2010, 67, 1067–1074. [Google Scholar] [CrossRef]
- Bradt, J.; Magee, W.L.; Dileo, C.; Wheeler, B.L.; McGilloway, E. Music therapy for acquired brain injury. Cochrane Database Syst. Rev. 2010, 7, CD006787. [Google Scholar] [CrossRef]
- Särkämö, T.; Sihvonen, A.J. Golden oldies and silver brains: Deficits, preservation, learning, and rehabilitation effects of music in ageing-related neurological disorders. Cortex 2018, 109, 104–123. [Google Scholar] [CrossRef]


| Test/Scale | Specific Domains Assessed | Description | 
|---|---|---|
| Modified Rankin Scale (mRS) [20] | Global disability, Activities of daily living, and social participation. | The mRS is a clinician-administered scale widely used to assess the degree of disability or dependence in daily activities among people who have suffered a stroke or other neurological events. Scores range from 0 (no symptoms) to 6 (death), with higher scores reflecting greater disability. It provides a robust index of overall functional outcome and social integration. | 
| Montreal Cognitive Assessment (MoCA) [23] | Visuospatial/executive function; Naming; Memory; Attention; Language; Abstraction; Delayed recall; Orientation | The MoCA is a rapid screening tool for mild cognitive impairment, assessing several neuropsychological domains, including visuospatial abilities, executive functioning, short-term memory recall, attention, concentration, working memory, language, abstraction, and orientation to time and place. The total score ranges from 0 to 30; higher scores indicate better cognition. | 
| Intrinsic Motivation Inventory (IMI) [33] | Interest/enjoyment; Perceived competence; Perceived choice; Effort/importance; Pressure/tension; Value/usefulness; relatedness. | The IMI is a multidimensional self-report instrument that assesses the individual’s subjective experience related to a target activity, specifically intrinsic motivation. It covers domains such as personal interest and enjoyment, perceived competence in the activity, exerted effort, perceived value and usefulness, felt pressure or tension, and sense of relatedness to others. | 
| Hamilton Rating Scale for Anxiety (HRS-A) [21] | Psychic anxiety (mental agitation, psychological distress); Somatic anxiety (physical complaints related to anxiety) | The HRS-A is a clinician-rated scale for quantifying the severity of a patient’s anxiety. It comprises 14 items, each rated on a 5-point scale, evaluating both psychic (subjective, mental) and somatic (physical, autonomic) symptoms of anxiety. Higher total scores indicate more severe anxiety. The scale is administered via clinical observation and interview. | 
| Hamilton Rating Scale for Depression (HRS-D) [22] | Depressed mood; Feelings of guilt; Suicidal ideation; Insomnia; Work and activities; Retardation/agitation; Anxiety; Somatic symptoms | The HRS-D is a clinician-administered scale designed to assess the presence and severity of depressive symptoms across multiple domains, including affective, cognitive, behavioral, and somatic aspects. The 21-item scale covers core symptoms such as mood, guilt, sleep, activity, psychomotor changes, anxiety, and somatic complaints. Higher scores indicate more severe depression. | 
| Frequency of Cardiac Activity (FC) | Heart rate; Autonomic function; Physiological stress response. | FC is monitored to provide an index of autonomic nervous system activity, specifically heart rate, which reflects physiological arousal and stress response. Heart rate was measured in both groups by nursing and neurophysiology staff to monitor for potential autonomic changes associated with intervention or rehabilitation sessions. | 
| Component | Description | 
|---|---|
| Personalized Music Selection | Patients listen to music that is emotionally meaningful or familiar to them (e.g., from their youth, about significant events such as marriage, graduation, childbirth…). This evokes stronger emotional and memory-related brain activity. | 
| Guided Listening Sessions | Structured sessions led by therapists where patients reflect on their emotions during or after listening. | 
| Live or Interactive Music | Use of live instruments, singing, or rhythmic participation (e.g., drumming) to enhance emotional engagement. | 
| Music-Based Relaxation | Slow, calming music used for relaxation, stress reduction, and autonomic regulation. | 
| Emotion Identification Tasks | Patients listen to music of different emotional tones (e.g., happy, sad, tense) and identify the feelings, promoting motivation and emotional awareness. | 
| Experimental | Control | ||||
|---|---|---|---|---|---|
| Median (I–III Quartile) | Median (I–III Quartile) | p | Effect Size | ||
| MOCA | T0 | 12.0 (11.25–12.0) | 12.0 (12.0–12.75) | 0.60 | r = 0.12 | 
| T1 | 17.0 (15.25–17.0) | 14.0 (13.0–14.0) | 0.005 * | r = 0.62 | |
| p | 0.006 * | 0.007 * | |||
| HRS-D | T0 | 12.5 (11.0–17.50) | 12.0 (10.25–14.5) | 0.49 | r = 0.15 | 
| T1 | 9.5 (7.25–13.75 | 12.5 (10.5–13.0) | 0.22 | r = 0.27 | |
| p | 0.005 * | 0.77 | |||
| HRS-A | T0 | 19.5 (18.25–22.75) | 19.5 (18.0–21.75) | 0.76 | r = 0.07 | 
| T1 | 16.0 (16.0–18.5) | 19.0 (17.25–21.5) | 0.17 | r = 0.31 | |
| p | 0.008 * | 0.05 | |||
| FC | T0 | 81.5 (79.18–84.43) | 75.12 (73.27–78.15) | 0.01 * | r = 0.57 | 
| T1 | 74.04 (73.99–75.79) | 74.18 (72.42–76.58) | 0.85 | r = 0.04 | |
| p | 0.002 * | 0.04 * | |||
| IMI | T0 | 165.0 (151.25–172.50) | 160.0 (156.25–173.75) | 0.88 | r = 0.03 | 
| T1 | 210.0 (205.0–225.0) | 172.5 (165.0–180.0) | <0.001 * | r = 0.84 | |
| p | 0.006 * | 0.008 * | |||
| Modified Rankin Scale | T0 | 4.0 (4.0–5.0) | 4.0 (4.0–4.75) | 0.73 | r = 0.08 | 
| T1 | 3.0 (2.25–3.0) | 4.0 (3.0–4.75) | 0.02 * | r = 0.51 | |
| p | 0.004 * | 0.15 | 
| Experimental | Control | |||
|---|---|---|---|---|
| Median (I–III Quartile) | Median (I–III Quartile) | p-Value | Effect Size | |
| ΔMOCA | 4.5 (3.25, 5.0) | 2.0 (1.25, 2.0) | 0.004 * | r = 0.64 | 
| ΔHRS-D | −3.5 (−5.0, −3.0) | 0.0 (−1.0, 1.0) | <0.001 * | r = 0.83 | 
| ΔHRS-A | −4.0 (−4.0, −2.25) | −1.0 (−2.0, 0.0) | 0.003 * | r = 0.66 | 
| ΔFC | −6.35 (−8.60, −5.05) | −1.71 (−2.38, −1.19) | <0.001 * | r = 0.98 | 
| ΔIMI | 54.0 (41.25, 60.0) | 10.0 (5.0, 10.0) | <0.001 * | r = 0.84 | 
| ΔmRS | −1.0 (−2.0, −1.0) | 0.0 (−0.75, 0.0) | <0.001 * | r = 0.74 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, R.; Impellizzeri, F.; Corallo, F.; Calderone, A.; Calapai, R.; Mirabile, A.; Bonanno, L.; Maggio, M.G.; Quartarone, A.; Ciancarelli, I.; et al. Targeting Cognition and Behavior Post-Stroke: Combined Emotional Music Stimulation and Virtual Attention Training in a Quasi-Randomized Study. Brain Sci. 2025, 15, 1168. https://doi.org/10.3390/brainsci15111168
De Luca R, Impellizzeri F, Corallo F, Calderone A, Calapai R, Mirabile A, Bonanno L, Maggio MG, Quartarone A, Ciancarelli I, et al. Targeting Cognition and Behavior Post-Stroke: Combined Emotional Music Stimulation and Virtual Attention Training in a Quasi-Randomized Study. Brain Sciences. 2025; 15(11):1168. https://doi.org/10.3390/brainsci15111168
Chicago/Turabian StyleDe Luca, Rosaria, Federica Impellizzeri, Francesco Corallo, Andrea Calderone, Rosalia Calapai, Alessio Mirabile, Lilla Bonanno, Maria Grazia Maggio, Angelo Quartarone, Irene Ciancarelli, and et al. 2025. "Targeting Cognition and Behavior Post-Stroke: Combined Emotional Music Stimulation and Virtual Attention Training in a Quasi-Randomized Study" Brain Sciences 15, no. 11: 1168. https://doi.org/10.3390/brainsci15111168
APA StyleDe Luca, R., Impellizzeri, F., Corallo, F., Calderone, A., Calapai, R., Mirabile, A., Bonanno, L., Maggio, M. G., Quartarone, A., Ciancarelli, I., & Calabrò, R. S. (2025). Targeting Cognition and Behavior Post-Stroke: Combined Emotional Music Stimulation and Virtual Attention Training in a Quasi-Randomized Study. Brain Sciences, 15(11), 1168. https://doi.org/10.3390/brainsci15111168
 
         
                                                





 
       