Cognitive Flexibility Predicts Live-Fire Rifle Marksmanship in Airborne Cadets: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Method
Shooting Effectiveness
2.3. Cognitive Flexibility
2.4. Inhibitory Control
2.5. Physical Fitness
2.6. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morgan, C.A.; Doran, A.; Steffian, G.; Hazlett, G.; Southwick, S.M. Stress-Induced Deficits in Working Memory and Visuo-Constructive Abilities in Special Operations Soldiers. Biol. Psychiatry 2006, 60, 722–729. [Google Scholar] [CrossRef]
- Singleton, J. Supply Chain Leadership in Crisis: The Military Model for Resilience. Sci. Bull. 2025, 29, 139–150. [Google Scholar] [CrossRef]
- Deuster, P.A.; Silverman, M.N. Physical Fitness: A Pathway to Health and Resilience. US Army Med. Dep. J. 2013, 24–35. [Google Scholar]
- Alim, H.; Nor, N.; Yuliana, A.; Subramaniam, A. Cognitive Readiness of Military Personnel: Issues and Considerations for Malaysian Army. Int. J. Acad. Res. Econ. Manag. Sci. 2023, 12, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.A.T.; Christopher, J.J.; Villa, J.D.; Goodenough, R.R.; Hancock, C.L.; O’Donovan, M.; Mitchell, K.B. Methodology to Assess Individual Shooting Skills That Is Predictive of Squad Level Performance in a Close Combat Training Engagement. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2022, 66, 1487–1491. [Google Scholar] [CrossRef]
- Kelley, A.M.; Athy, J.R.; King, M.; Erickson, B.; Chiaramonte, J.; Vasbinder, M.; Thompson, A. Think Before You Shoot: The Relationship Between Cognition and Marksmanship; Defense Technical Information Center: Fort Belvoir, VA, USA, 2011.
- Giessing, L.; Frenkel, M.O.; Zinner, C.; Rummel, J.; Nieuwenhuys, A.; Kasperk, C.; Brune, M.; Engel, F.A.; Plessner, H. Effects of Coping-Related Traits and Psychophysiological Stress Responses on Police Recruits’ Shooting Behavior in Reality-Based Scenarios. Front. Psychol. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Anglin, K.M.; Novell, C.A.; Murphy, J.S.; Goodwin, G.A. Identifying Predictors of Army Marksmanship: A Cognitive, Affective, and Psychomotor Perspective. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 838–842. [Google Scholar] [CrossRef]
- Tornero-Aguilera, J.F.; Gil-Cabrera, J.; Clemente-Suárez, V.J. Effect of Different Physical Stressors on Soldier’s Psychophysiological Response and Marksmanship. Rom. J. Mil. Med. 2022, 125, 223–229. [Google Scholar] [CrossRef]
- Jamro, D.; Zurek, G.; Dulnik, M.; Lachowicz, M.; Lenart, D. Executive Function Level in Cadets’ Shooting Performance. Int. J. Environ. Res. Public. Health 2022, 19, 6007. [Google Scholar] [CrossRef]
- Zurek, G.; Lenart, D.; Lachowicz, M.; Zebrowski, K.; Jamro, D. Factors Influencing the Executive Functions of Male and Female Cadets. Int. J. Environ. Res. Public. Health 2022, 19, 17043. [Google Scholar] [CrossRef]
- Kerick, S.E.; Allender, L.E. Effects of Cognitive Workload on Decision Accuracy, Shooting Performance, and Cortical Activity of Soldiers. In Transformational Science and Technology for the Current and Future Force; Selected Topics in Electronics and Systems; WORLD SCIENTIFIC: Singapore, 2006; Volume 42, pp. 359–362. ISBN 978-981-270-201-2. [Google Scholar]
- Biggs, A.T. Applying Inhibitory Control Theories to Shoot/Don’t-Shoot Decisions. Appl. Cogn. Psychol. 2022, 36, 154–165. [Google Scholar] [CrossRef]
- Biggs, A.T.; Pettijohn, K.A. The Role of Inhibitory Control in Shoot/Don’t-Shoot Decisions. Q. J. Exp. Psychol. 2022, 75, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Reale, C.; Salwei, M.E.; Militello, L.G.; Weinger, M.B.; Burden, A.; Sushereba, C.; Torsher, L.C.; Andreae, M.H.; Gaba, D.M.; McIvor, W.R.; et al. Decision-Making During High-Risk Events: A Systematic Literature Review. J. Cogn. Eng. Decis. Mak. 2023, 17, 188–212. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.M.; Gladwin, T.E.; de Valk, N.M.; Zhang, W.; Kaldewaij, R.; van Ast, V.; Koch, S.B.J.; Klumpers, F.; Roelofs, K. Neural Dynamics of Shooting Decisions and the Switch from Freeze to Fight. Sci. Rep. 2019, 9, 4240. [Google Scholar] [CrossRef] [PubMed]
- Boulton, L.; Cole, J. Adaptive Flexibility: Examining the Role of Expertise in the Decision Making of Authorized Firearms Officers During Armed Confrontation. J. Cogn. Eng. Decis. Mak. 2016, 10, 291–308. [Google Scholar] [CrossRef]
- Hatfield, B.D.; Landers, D.M.; Ray, W.J. Cognitive Processes during Self-Paced Motor Performance: An Electroencephalographic Profile of Skilled Marksmen. J. Sport Psychol. 1984, 6, 42–59. [Google Scholar] [CrossRef]
- Sherwin, J.; Gaston, J. Soldiers and Marksmen under Fire: Monitoring Performance with Neural Correlates of Small Arms Fire Localization. Front. Hum. Neurosci. 2013, 7, 67. [Google Scholar] [CrossRef]
- Alves, J.; Brito, A.P. Tempo de reacção e processamento da Informação. PSICOLOGIA 1995, 10, 89–115. [Google Scholar]
- Shao, M.; Lai, Y.; Gong, A.; Yang, Y.; Chen, T.; Jiang, C. Effect of Shooting Experience on Executive Function: Differences between Experts and Novices. PeerJ 2020, 8, e9802. [Google Scholar] [CrossRef]
- Biggs, A.T.; Cain, M.S.; Mitroff, S.R. Cognitive Training Can Reduce Civilian Casualties in a Simulated Shooting Environment. Psychol. Sci. 2015, 26, 1164–1176. [Google Scholar] [CrossRef]
- Villa, J.; Lam, P.; Brown, S.; Simone, L.D.; O’donovan, M.; Hancock, C.; Elmore, W.; Frankston, S.E.; Bode, V.; Mitchell, B. The Relationship between the Individual Events within the U.S. Army’s Combat Fitness Test and a Simulated Marksmanship Performance Task. In Human Factors and Simulation; AHFE Open Access: New York, NA, USA, 2024; Volume 139. [Google Scholar]
- Stein, J.A.; Hepler, T.C.; DeBlauw, J.A.; Beattie, C.M.; Beshirs, C.D.; Holte, K.M.; Kurtz, B.K.; Heinrich, K.M. Lower-Body Muscular Power and Exercise Tolerance Predict Susceptibility to Enemy Fire during a Tactical Combat Movement Simulation. Ergonomics 2022, 65, 1245–1255. [Google Scholar] [CrossRef]
- Neto, L.I.d.N.; Machado, D.G.d.S.; Agrícola, P.M.D.; Farias-Junior, L.F.; Fonteles, A.I.; da Silva, S.K.A.; Elsangedy, H.M.; Okano, A.H. Efeito Do Esforço Físico No Desempenho De Tiro De Policiais Militares Do Batalhão De Choque. Rev. Bras. Med. Esporte 2017, 23, 109–113. [Google Scholar] [CrossRef]
- Evans, R.K.; Scoville, C.R.; Ito, M.A.; Mello, R.P. Upper Body Fatiguing Exercise and Shooting Performance. Mil. Med. 2003, 168, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; An, J.; Lee, S. Relationship Between Functional Movement Screen and Tactical Performance. J. Sport Hum. Perform. 2015, 3, 1–11. [Google Scholar]
- Murphy, J.S.; Hruska, M.; Goodwin, G.A.; Amburn, C.R. Developing Interoperable Data for Training Effectiveness Assessment in Army Marksmanship Training. MODSIM World 2015, 50, 10. [Google Scholar]
- Hagman, J.D. More Efficient Live-Fire Rifle Marksmanship Evaluation; Defense Technical Information Center: Fort Belvoir, VA, USA, 2005.
- Messinis, L.; Malegiannaki, A.-C.; Christodoulou, T.; Panagiotopoulos, V.; Papathanasopoulos, P. Color Trails Test: Normative Data and Criterion Validity for the Greek Adult Population. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2011, 26, 322–330. [Google Scholar] [CrossRef]
- Verbruggen, F.; Logan, G.D. Response Inhibition in the Stop-Signal Paradigm. Trends Cogn. Sci. 2008, 12, 418–424. [Google Scholar] [CrossRef]
- Verbruggen, F.; Aron, A.R.; Band, G.P.H.; Beste, C.; Bissett, P.G.; Brockett, A.T.; Brown, J.W.; Chamberlain, S.R.; Chambers, C.D.; Colonius, H.; et al. A consensus guide to capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task. eLife 2019, 8, e46323. [Google Scholar] [CrossRef]
- Bigelman, K.A.; East, W.B.; Thomas, D.M.; Turner, D.; Hertling, M. The New Army Combat Fitness Test: An Opportunity to Improve Recruitment and Retainment. Obesity 2019, 27, 1772–1775. [Google Scholar] [CrossRef]
- Burke, K.A.; Oron-Gilad, T.; Conway, G.; Hancock, P.A. Friend/Foe Identification and Shooting Performance: Effects of Prior Task Loading and Time Pressure. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2007, 51, 156–160. [Google Scholar] [CrossRef]
- Lam, P.; Villa, J.; Christopher, J.; Brown, S.; Desimone, L.; Elmore, W.; Elkin-Frankston, S.; Bode, V.; Mitchell, B. Evaluating the Effects of Visual Traits on Individual Marksmanship Performance in a Simulated Fireteam Engagement. In Digital Human Modeling and Applied Optimization; AHFE Open Access: New York, NY, USA, 2023; Volume 76, pp. 29–40. [Google Scholar]

| 95% CI Mean | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | Uper | Lower | SD | CV | Variance | Shapiro–Wilk | p-Value of Shapiro–Wilk | Min. | Max. | ||
| CTT-1 [s] | 29.30 | 32.00 | 26.60 | 5.77 | 0.20 | 33.27 | 0.97 | 0.76 | 18.00 | 39.00 | |
| CTT-2 [s] | 66.15 | 73.41 | 58.89 | 15.51 | 0.23 | 240.56 | 0.94 | 0.25 | 43.00 | 95.00 | |
| Interference index [%] | 127.00 | 143.65 | 110.35 | 35.58 | 0.28 | 1265.89 | 0.93 | 0.19 | 73.00 | 183.00 | |
| IC—response time [ms] | 485.95 | 511.99 | 459.91 | 55.64 | 0.11 | 3095.63 | 0.97 | 0.73 | 372.00 | 591.00 | |
| IC—accuracy [%] | 92.05 | 94.17 | 89.93 | 4.52 | 0.05 | 20.47 | 0.98 | 0.94 | 83.00 | 100.00 | |
| BRM [score] | 28.85 | 32.92 | 24.78 | 8.69 | 0.30 | 75.50 | 0.89 | 0.03 | 14.00 | 39.00 | |
| ACFT [score] | 546.70 | 563.80 | 529.60 | 36.53 | 0.07 | 1334.43 | 0.90 | 0.05 | 470.00 | 590.00 | |
| r | ρ | p-Value | Effect size (Fisher’s z) | Std. Error (z) | ||
|---|---|---|---|---|---|---|
| CTT-1 [s] | CTT-2 [s] | 0.736 ** | <0.001 | 0.942 | 0.243 | |
| CTT-1 [s] | Interference index [%] | −0.196 | 0.407 | −0.199 | 0.243 | |
| CTT-1 [s] | IC—response time [ms] | 0.211 | 0.371 | 0.215 | 0.243 | |
| CTT-1 [s] | IC—accuracy [%] | 0.030 | 0.901 | 0.030 | 0.243 | |
| CTT-1 [s] | BRM [score] | −0.458 * | 0.042 | −0.494 | 0.244 | |
| CTT-1 [s] | ACFT [score] | −0.104 | 0.661 | −0.105 | 0.237 | |
| CTT-2 [s] | Interference index [%] | 0.508 * | 0.022 | 0.561 | 0.243 | |
| CTT-2 [s] | IC—response time [ms] | 0.237 | 0.315 | 0.241 | 0.243 | |
| CTT-2 [s] | IC—accuracy [%] | −0.020 | 0.935 | −0.020 | 0.243 | |
| CTT-2 [s] | BRM [score] | −0.481 * | 0.032 | −0.525 | 0.244 | |
| CTT-2 [s] | ACFT [score] | −0.094 | 0.694 | −0.094 | 0.237 | |
| Interference index [%] | IC—response time [ms] | 0.081 | 0.735 | 0.081 | 0.243 | |
| Interference index [%] | IC—accuracy [%] | −0.050 | 0.833 | −0.050 | 0.243 | |
| Interference index [%] | BRM [score] | −0.179 | 0.450 | −0.181 | 0.239 | |
| Interference index [%] | ACFT [score] | −0.078 | 0.745 | −0.078 | 0.237 | |
| IC—response time [ms] | IC—accuracy [%] | 0.756 ** | <0.001 | 0.986 | 0.243 | |
| IC—response time [ms] | BRM [score] | 0.075 | 0.753 | 0.075 | 0.237 | |
| IC—response time [ms] | ACFT [score] | 0.142 | 0.550 | 0.143 | 0.238 | |
| IC—accuracy [%] | BRM [score] | 0.274 | 0.242 | 0.281 | 0.240 | |
| IC—accuracy [%] | ACFT [score] | 0.114 | 0.633 | 0.114 | 0.238 | |
| BRM [score] | ACFT [score] | 0.088 | 0.712 | 0.088 | 0.237 |
| Model | b | Std. Error | β (Standardized) | t | p | |
|---|---|---|---|---|---|---|
| M0 | (Intercept) | 3.524 | 47.907 | 0.074 | 0.942 | |
| CTT-2 [s] | −0.317 | 0.122 | −0.566 | −2.606 | 0.020 | |
| IC—response time [ms] | −0.021 | 0.051 | −0.137 | −0.422 | 0.679 | |
| IC—accuracy [%] | 0.694 | 0.607 | 0.361 | 1.143 | 0.271 | |
| ACFT [score] | −0.013 | 0.048 | −0.055 | −0.273 | 0.789 | |
| M1 | (Intercept) | −2.832 | 40.618 | −0.070 | 0.945 | |
| CTT-2 [s] | −0.310 | 0.115 | −0.554 | −2.686 | 0.016 | |
| IC—response time [ms] | −0.021 | 0.049 | −0.137 | −0.437 | 0.668 | |
| IC—accuracy [%] | 0.680 | 0.587 | 0.354 | 1.158 | 0.264 | |
| M2 | (Intercept) | 6.501 | 33.709 | 0.193 | 0.849 | |
| CTT-2 [s] | −0.330 | 0.104 | −0.588 | −3.167 | 0.006 | |
| IC—accuracy [%] | 0.480 | 0.357 | 0.250 | 1.345 | 0.196 | |
| M3 | (Intercept) | 50.828 | 7.215 | 7.045 | <0.001 | |
| CTT-2 [s] | −0.332 | 0.106 | −0.593 | −3.125 | 0.006 |
| Model | Sum of Squares | df | Mean Square | F | p | |
|---|---|---|---|---|---|---|
| M0 | Regression | 607.951 | 4 | 151.988 | 2.758 | 0.067 |
| Residual | 826.599 | 15 | 55.107 | |||
| Total | 1434.550 | 19 | ||||
| M1 | Regression | 603.858 | 3 | 201.286 | 3.877 | 0.029 |
| Residual | 830.692 | 16 | 51.918 | |||
| Total | 1434.550 | 19 | ||||
| M2 | Regression | 593.957 | 2 | 296.978 | 6.006 | 0.011 |
| Residual | 840.593 | 17 | 49.447 | |||
| Total | 1434.550 | 19 | ||||
| M3 | Regression | 504.533 | 1 | 504.533 | 9.765 | 0.006 |
| Residual | 930.017 | 18 | 51.668 | |||
| Total | 1434.550 | 19 |
| Model | R | R2 | Adjusted R2 | RMSE | R2 Change | F Change | df1 | df2 | p |
|---|---|---|---|---|---|---|---|---|---|
| M0 | 0.651 | 0.424 | 0.270 | 7.423 | 0.424 | 2.758 | 4 | 15 | 0.067 |
| M1 | 0.649 | 0.421 | 0.312 | 7.205 | −0.003 | −0.079 | 1 | 16 | 1.000 |
| M2 | 0.643 | 0.414 | 0.345 | 7.032 | −0.007 | −0.200 | 1 | 17 | 1.000 |
| M3 | 0.593 | 0.352 | 0.316 | 7.188 | −0.062 | −1.731 | 1 | 18 | 1.000 |
| Models | P(M) | P(M|Data) | BFM | BF10 | R2 |
|---|---|---|---|---|---|
| CTT-2 [s] | 0.050 | 0.222 | 5.411 | 1.000 | 0.352 |
| CTT-2 [s] + IC—response time [ms] + IC—accuracy [%] + ACFT [score] | 0.200 | 0.157 | 0.746 | 0.177 | 0.424 |
| Null model | 0.200 | 0.115 | 0.521 | 0.130 | 0.000 |
| CTT-2 [s] + IC—accuracy [%] | 0.033 | 0.108 | 3.528 | 0.734 | 0.414 |
| CTT-2 [s] + IC—response time [ms] + IC—accuracy [%] | 0.050 | 0.076 | 1.572 | 0.345 | 0.421 |
| CTT-2 [s] + IC—accuracy [%] + ACFT [score] | 0.050 | 0.073 | 1.504 | 0.331 | 0.417 |
| CTT-2 [s] + IC—response time [ms] | 0.033 | 0.069 | 2.160 | 0.469 | 0.372 |
| CTT-2 [s] + ACFT [score] | 0.033 | 0.056 | 1.735 | 0.382 | 0.352 |
| CTT-2 [s] + IC—response time [ms] + ACFT [score] | 0.050 | 0.048 | 0.964 | 0.218 | 0.374 |
| IC—accuracy [%] | 0.050 | 0.018 | 0.350 | 0.082 | 0.068 |
| ACFT [score] | 0.050 | 0.012 | 0.240 | 0.056 | 0.013 |
| IC—response time [ms] | 0.050 | 0.011 | 0.220 | 0.052 | 0.000 |
| IC—response time [ms] + IC—accuracy [%] | 0.033 | 0.011 | 0.331 | 0.076 | 0.160 |
| IC—response time [ms] + IC—accuracy [%] + ACFT [score] | 0.050 | 0.010 | 0.183 | 0.043 | 0.163 |
| IC—accuracy [%] + ACFT [score] | 0.033 | 0.006 | 0.186 | 0.043 | 0.074 |
| IC—response time [ms] + ACFT [score] | 0.033 | 0.004 | 0.128 | 0.030 | 0.013 |
| 95% CI | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Coefficient | P(Incl) | P(Excl) | P(Incl|Data) | P(Excl|Data) | BFincl | Mean | SD | Lower | Upper |
| Intercept | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 28.850 | 1.689 | 25.517 | 32.371 |
| CTT-2 [s] | 0.500 | 0.500 | 0.811 | 0.189 | 4.297 | −0.201 | 0.132 | −0.416 | 0.000 |
| IC—response time [ms] | 0.500 | 0.500 | 0.388 | 0.612 | 0.634 | −0.002 | 0.026 | −0.083 | 0.051 |
| IC—accuracy [%] | 0.500 | 0.500 | 0.461 | 0.539 | 0.855 | 0.201 | 0.369 | −0.366 | 1.142 |
| ACFT [score] | 0.500 | 0.500 | 0.368 | 0.632 | 0.583 | −0.002 | 0.025 | −0.074 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamro, D.; Dewey, J.A.; Żurek, G.; Lucena, R.; Lachowicz, M. Cognitive Flexibility Predicts Live-Fire Rifle Marksmanship in Airborne Cadets: A Pilot Study. Brain Sci. 2025, 15, 1150. https://doi.org/10.3390/brainsci15111150
Jamro D, Dewey JA, Żurek G, Lucena R, Lachowicz M. Cognitive Flexibility Predicts Live-Fire Rifle Marksmanship in Airborne Cadets: A Pilot Study. Brain Sciences. 2025; 15(11):1150. https://doi.org/10.3390/brainsci15111150
Chicago/Turabian StyleJamro, Dariusz, John A. Dewey, Grzegorz Żurek, Rui Lucena, and Maciej Lachowicz. 2025. "Cognitive Flexibility Predicts Live-Fire Rifle Marksmanship in Airborne Cadets: A Pilot Study" Brain Sciences 15, no. 11: 1150. https://doi.org/10.3390/brainsci15111150
APA StyleJamro, D., Dewey, J. A., Żurek, G., Lucena, R., & Lachowicz, M. (2025). Cognitive Flexibility Predicts Live-Fire Rifle Marksmanship in Airborne Cadets: A Pilot Study. Brain Sciences, 15(11), 1150. https://doi.org/10.3390/brainsci15111150

