Utilizing Artificial Intelligence for CSF Segmentation and Analysis in Head CT Imaging: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
- General characteristics: authors, country of origin, publication year, journal name, impact factor (IF), overall aim of the study, and keywords.
- Dataset information: number of unique patients, mean patient age, and number of CT scans assigned to training, validation, and testing sets.
- Artificial Intelligence (AI): characteristics of the AI method used, software utilized for segmentation, and details of image preprocessing.
- Study type: prospective or retrospective.
- Results: Dice Similarity Coefficient (DSC) and correlation coefficients (r) of volumetric measurements.
2.4. Quality Assessment
2.5. Risk of Bias Assessment
3. Results
3.1. Purpose of Research
3.2. Sample Size and Mean Age of Study Populations
3.3. Type of Study
3.4. Characteristics of the AI Technology
3.5. Provided Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, M.H. Monro-Kellie 2.0: The Dynamic Vascular and Venous Pathophysiological Components of Intracranial Pressure. J. Cereb. Blood Flow. Metab. 2016, 36, 1338–1350. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-J.; Czosnyka, Z.; Kasprowicz, M.; Smieleweski, P.; Baledent, O.; Guerguerian, A.-M.; Pickard, J.D.; Czosnyka, M. Continuous Monitoring of the Monro-Kellie Doctrine: Is It Possible? J. Neurotrauma 2012, 29, 1354–1363. [Google Scholar] [CrossRef] [PubMed]
- Mitręga, A.; Kaczyńska, D.; Bielówka, M.; Rojek, M.; Janik, M.; Dudek, P.; Denisiewicz, N.; Wocław, A.; Czogalik, Ł.; Stencel, M.; et al. Analysis of Teleradiology Tools in Diagnostics, Treatment of Neurological Diseases and Review of the Usage of Mobile Stroke Units–A Systematic Review. MedInnov. J. 2025, 1, 1–10. [Google Scholar] [CrossRef]
- Lipková, J.; Menze, B.; Wiestler, B.; Koumoutsakos, P.; Lowengrub, J.S. Modelling Glioma Progression, Mass Effect and Intracranial Pressure in Patient Anatomy. J. R. Soc. Interface 2022, 19, 20210922. [Google Scholar] [CrossRef]
- Kufel, J.; Bargieł-Łączek, K.; Kocot, S.; Koźlik, M.; Bartnikowska, W.; Janik, M.; Czogalik, Ł.; Dudek, P.; Magiera, M.; Lis, A.; et al. What Is Machine Learning, Artificial Neural Networks and Deep Learning?—Examples of Practical Applications in Medicine. Diagnostics 2023, 13, 2582. [Google Scholar] [CrossRef]
- Gore, J.C. Artificial Intelligence in Medical Imaging. Magn. Reson. Imaging 2020, 68, A1–A4. [Google Scholar] [CrossRef]
- Uparela-Reyes, M.J.; Villegas-Trujillo, L.M.; Cespedes, J.; Velásquez-Vera, M.; Rubiano, A.M. Usefulness of Artificial Intelligence in Traumatic Brain Injury: A Bibliometric Analysis and Mini-Review. World Neurosurg. 2024, 188, 83–92. [Google Scholar] [CrossRef]
- Yousef, R.; Khan, S.; Gupta, G.; Siddiqui, T.; Albahlal, B.M.; Alajlan, S.A.; Haq, M.A. U-Net-Based Models towards Optimal MR Brain Image Segmentation. Diagnostics 2023, 13, 1624. [Google Scholar] [CrossRef]
- Beeche, C.; Singh, J.P.; Leader, J.K.; Gezer, S.; Oruwari, A.P.; Dansingani, K.K.; Chhablani, J.; Pu, J. Super U-Net: A Modularized Generalizable Architecture. Pattern Recognit. 2022, 128, 108669. [Google Scholar] [CrossRef]
- Li, Z.; Feng, N.; Pu, H.; Dong, Q.; Liu, Y.; Liu, Y.; Xu, X. PIxel-Level Segmentation of Bladder Tumors on MR Images Using a Random Forest Classifier. Technol. Cancer Res. Treat. 2022, 21, 15330338221086395. [Google Scholar] [CrossRef]
- Qamar, S.; Öberg, R.; Malyshev, D.; Andersson, M. A Hybrid CNN-Random Forest Algorithm for Bacterial Spore Segmentation and Classification in TEM Images. Sci. Rep. 2023, 13, 18758. [Google Scholar] [CrossRef]
- van Hal, S.T.; van der Jagt, M.; van Genderen, M.E.; Gommers, D.; Veenland, J.F. Using Artificial Intelligence to Predict Intracranial Hypertension in Patients After Traumatic Brain Injury: A Systematic Review. Neurocrit. Care 2024, 41, 285–296. [Google Scholar] [CrossRef]
- Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO Framework to Improve Searching PubMed for Clinical Questions. BMC Med. Inform. Decis. Mak. 2007, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- McHugh, M.L. Interrater Reliability: The Kappa Statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Aromataris, E.; Fernandez, R.; Godfrey, C.M.; Holly, C.; Khalil, H.; Tungpunkom, P. Summarizing Systematic Reviews: Methodological Development, Conduct and Reporting of an Umbrella Review Approach. Int. J. Evid. Based Healthc. 2015, 13, 132–140. [Google Scholar] [CrossRef]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A Critical Appraisal Tool for Systematic Reviews That Include Randomised or Non-Randomised Studies of Healthcare Interventions, or Both. BMJ 2017, 358, j4008. [Google Scholar] [CrossRef]
- Long, H.A.; French, D.P.; Brooks, J.M. Optimising the Value of the Critical Appraisal Skills Programme (CASP) Tool for Quality Appraisal in Qualitative Evidence Synthesis. Res. Methods Med. Health Sci. 2020, 1, 31–42. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; QUADAS-2 Group. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Dhar, R. Automated Quantitative Assessment of Cerebral Edema after Ischemic Stroke Using CSF Volumetrics. Neurosci. Lett. 2020, 724, 134879. [Google Scholar] [CrossRef]
- Puzio, T.; Matera, K.; Wiśniewski, K.; Grobelna, M.; Wanibuchi, S.; Jaskólski, D.J.; Bobeff, E.J. Automated Volumetric Evaluation of Intracranial Compartments and Cerebrospinal Fluid Distribution on Emergency Trauma Head CT Scans to Quantify Mass Effect. Front. Neurosci. 2024, 18, 1341734. [Google Scholar] [CrossRef]
- Srikrishna, M.; Pereira, J.B.; Heckemann, R.A.; Volpe, G.; van Westen, D.; Zettergren, A.; Kern, S.; Wahlund, L.-O.; Westman, E.; Skoog, I.; et al. Deep Learning from MRI-Derived Labels Enables Automatic Brain Tissue Classification on Human Brain CT. NeuroImage 2021, 244, 118606. [Google Scholar] [CrossRef] [PubMed]
- Songsaeng, D.; Nava-apisak, P.; Wongsripuemtet, J.; Kingchan, S.; Angkoondittaphong, P.; Phawaphutanon, P.; Supratak, A. The Diagnostic Accuracy of Artificial Intelligence in Radiological Markers of Normal-Pressure Hydrocephalus (NPH) on Non-Contrast CT Scans of the Brain. Diagnostics 2023, 13, 2840. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dhar, R.; Heitsch, L.; Ford, A.; Fernandez-Cadenas, I.; Carrera, C.; Montaner, J.; Lin, W.; Shen, D.; An, H.; et al. Automated Quantification of Cerebral Edema Following Hemispheric Infarction: Application of a Machine-Learning Algorithm to Evaluate CSF Shifts on Serial Head CTs. Neuroimage Clin. 2016, 12, 673–680. [Google Scholar] [CrossRef]
- Irimia, A.; Maher, A.S.; Rostowsky, K.A.; Chowdhury, N.F.; Hwang, D.H.; Law, E.M. Brain Segmentation From Computed Tomography of Healthy Aging and Geriatric Concussion at Variable Spatial Resolutions. Front. Neuroinf. 2019, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Van De Leemput, S.C.; Meijs, M.; Patel, A.; Meijer, F.J.A.; Van Ginneken, B.; Manniesing, R. Multiclass Brain Tissue Segmentation in 4D CT Using Convolutional Neural Networks. IEEE Access 2019, 7, 51557–51569. [Google Scholar] [CrossRef]
- Dhar, R.; Chen, Y.; An, H.; Lee, J.-M. Application of Machine Learning to Automated Analysis of Cerebral Edema in Large Cohorts of Ischemic Stroke Patients. Front. Neurol. 2018, 9, 687. [Google Scholar] [CrossRef]
- Booker, J.; Zolnourian, A.; Street, J.; Arora, M.; Pandit, A.S.; Toma, A.; Wu, C.-H.; Galea, I.; Bulters, D. Quantification of Blood and CSF Volume to Predict Outcome after Aneurysmal Subarachnoid Hemorrhage. Neurosurg. Rev. 2024, 47, 752. [Google Scholar] [CrossRef]
- Chen, L.; Bentley, P.; Mori, K.; Misawa, K.; Fujiwara, M.; Rueckert, D. DRINet for Medical Image Segmentation. IEEE Trans. Med. Imaging 2018, 37, 2453–2462. [Google Scholar] [CrossRef]
- Dhar, R.; Chen, Y.; Hamzehloo, A.; Kumar, A.; Heitsch, L.; He, J.; Chen, L.; Slowik, A.; Strbian, D.; Lee, J.-M. Reduction in CSF Volume as an Early Quantitative Biomarker of Cerebral Edema after Ischemic Stroke. Stroke 2020, 51, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.Y.; Chen, Y.; Kumar, A.; Zlepper, Z.; Jayaraman, K.; Aung, W.Y.; Clarke, J.V.; Allen, M.; Athiraman, U.; Osbun, J.; et al. Automated Quantification of Reduced Sulcal Volume Identifies Early Brain Injury after Aneurysmal Subarachnoid Hemorrhage. Stroke 2021, 52, 1380–1389. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.T.; McNulty, J.; Hussein, H.; Klinger, N.; Chua, M.M.J.; Ng, P.R.; Chalif, J.; Mehta, N.H.; Arnaout, O. Automated Ventricular Segmentation and Shunt Failure Detection Using Convolutional Neural Networks. Sci. Rep. 2024, 14, 22166. [Google Scholar] [CrossRef] [PubMed]
- Foroushani, H.M.; Hamzehloo, A.; Kumar, A.; Chen, Y.; Heitsch, L.; Slowik, A.; Strbian, D.; Lee, J.-M.; Marcus, D.S.; Dhar, R. Accelerating Prediction of Malignant Cerebral Edema after Ischemic Stroke with Automated Image Analysis and Explainable Neural Networks. Neurocrit. Care 2022, 36, 471–482. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Brock, K.K.; Mutic, S.; McNutt, T.R.; Li, H.; Kessler, M.L. Use of Image Registration and Fusion Algorithms and Techniques in Radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med. Phys. 2017, 44, e43–e76. [Google Scholar] [CrossRef]
- Mastella, E.; Calderoni, F.; Manco, L.; Ferioli, M.; Medoro, S.; Turra, A.; Giganti, M.; Stefanelli, A. A Systematic Review of the Role of Artificial Intelligence in Automating Computed Tomography-Based Adaptive Radiotherapy for Head and Neck Cancer. Phys. Imaging Radiat. Oncol. 2025, 33, 100731. [Google Scholar] [CrossRef]
- Badr, F.F.; Jadu, F.M. Performance of Artificial Intelligence Using Oral and Maxillofacial CBCT Images: A Systematic Review and Meta-Analysis. Niger. J. Clin. Pract. 2022, 25, 1918–1927. [Google Scholar] [CrossRef]
- Hu, P.; Yan, T.; Xiao, B.; Shu, H.; Sheng, Y.; Wu, Y.; Shu, L.; Lv, S.; Ye, M.; Gong, Y.; et al. Deep Learning-Assisted Detection and Segmentation of Intracranial Hemorrhage in Noncontrast Computed Tomography Scans of Acute Stroke Patients: A Systematic Review and Meta-Analysis. Int. J. Surg. 2024, 110, 3839–3847. [Google Scholar] [CrossRef]
| Authors | Aim of the Method |
|---|---|
| Rajat Dhar [21] | Development of a neural network-based image segmentation algorithm that can automatically measure CSF volume on serial CT scans from stroke patients. |
| Tomasz Puzio et al. [22] | Assessment on whether CSF distribution evaluated by a specifically developed deep-learning neural network (DLNN) could assist in quantifying mass effect. |
| Meera Srikrishna et al. [23] | Development of an automatic method for segmenting grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), and intracranial volume (ICV) from head CT images. |
| Dittapong Songsaeng et al. [24] | Improvement of normal-pressure hydrocephalus diagnosis by comparing the accuracy, sensitivity, specificity, and predictive values of radiological parameters, as evaluated by radiologists and AI methods, utilizing cerebrospinal fluid volumetry. |
| Yasheng Chen et al. [25] | Development and validation of an automated technique for CSF segmentation via integration of random forest (RF) based machine learning with geodesic active contour (GAC) segmentation. |
| Andrei Irimia et al. [26] | Evaluation of AI performance in segmenting white matter, gray matter, and cerebrospinal fluid from head CT images. |
| Sil C. Van De Leemput et al. [27] | Development of a fully convolutional neural network (CNN) for 3D multiclass segmentation in 4D head CT, trained end-to-end using sparse 2D annotations. |
| Rajat Dhar et al. [28] | Development of a machine learning algorithm capable of segmenting and measuring CSF volume from serial CT scans of stroke patients. |
| James Booker et al. [29] | Describing the relationship between blood and CSF volumes in different compartments on baseline CT after aSAH, assess whether they independently predict long-term outcomes with AI integration, and explore their interaction with age. |
| Liang Chen et al. [30] | Development of a novel CNN architecture, called Dense-Res-Inception Net (DRINet), to improve feature extraction and enhance segmentation accuracy in medical images, particularly in cases where differences between categories are subtle in terms of intensity, location, shape, and size. |
| Rajat Dhar et al. [31] | Assessment on whether early changes in cerebrospinal fluid volume, measured using a neural network-based algorithm, can serve as an early biomarker for cerebral edema and poor clinical outcomes in stroke patients. |
| Jane Y Yuan et al. [32] | Development of an automated algorithm to extract selective sulcal volume (SSV) and evaluate the age-dependent relationship of reduced SSV on early outcomes after a SAH. |
| Kevin T. Huang et al. [33] | Development of an algorithm that can automatically detect ventriculomegaly on head CT scans, serving as an indicator of shunt failure in real-life adult hydrocephalus patients. The algorithm aims to achieve this by accurately identifying the lateral and third ventricles. |
| Hossein Mohammadian Foroushani et al. [34] | Development and evaluation of machine learning models, specifically fully connected and long short-term memory (LSTM) neural networks, to predict which stroke patients will require hemicraniectomy or die due to midline shift. These models use serial clinical and imaging data, including volumetric cerebrospinal fluid (CSF) measurements extracted from baseline and 24-h CT scans. |
| Authors | Characteristics of the AI Technology | Software Used for Segmentation |
|---|---|---|
| Rajat Dhar [21] | Random forest model, which was refined by training a fully CNN (based on the U-Net architecture) to accurately perform the segmentation of CSF | - |
| Tomasz Puzio et al. [22] | Convolutional neural network with basic U-Net architecture in a 3D version | Exhibeon3 DICOM viewer |
| Meera Srikrishna et al. [23] | U-Net deep learning model | SPM12 |
| Dittapong Songsaeng et al. [24] | Modified 2D U-Net model | SPM12 |
| Yasheng Chen et al. [25] | Random forest classifiers using Haar-like features combined with geodesic active contour (GAC) refinement via the level-set method | MIPAV |
| Andrei Irimia et al. [26] | Gaussian Mixture Model (GMM)-based segmentation approach adapted from probabilistic classification methods, incorporating topology-constrained segmentation inspired by Ashburner and Friston’s methods and refined using Bayesian inference principles and a priori tissue probability maps | SPM 12 and MATLAB |
| Sil C. Van De Leemput et al. [27] | 3D CNN architecture, inspired by U-Net | VCAST (volumetric cluster annotation and segmentation tool) |
| Rajat Dhar et al. [28] | Random forest machine learning | XNAT (eXtensible Neuroimaging Archive Toolkit) |
| James Booker et al. [29] | Random forest machine learning | MIPAV |
| Liang Chen et al. [30] | Dense-Res-Inception Net (DRINet) | MRICron |
| Rajat Dhar et al. [31] | Convolutional neural network (based on the U-Net architecture) | MIPAV |
| Jane Y Yuan et al. [32] | Deep learning-based approach: a four-layer U-Net | - |
| Kevin T. Huang et al. [33] | Two-dimensional U-Net | 3D Slicer |
| Hossein Mohammadian Foroushani et al. [34] | A fully connected neural network and a recurrent neural network that employed a Long Short-Term Memory (LSTM) architecture | - |
| Authors | Dice Similarity Coefficient (DSC) | Correlation of Volumetric Measures (r) | Intraclass Correlation Coefficient (ICC) |
|---|---|---|---|
| Dhar [21] | 0.95 | - | - |
| Puzio et al. [22] | 0.782 (training); 0.765 (validation) | - | 0.96 |
| Srikrishna et al. [23] | 0.75 | 0.91 | - |
| Chen et al. [25] | 0.751 ± 0.059 (baseline scans); 0.721 ± 0.064 (follow-up scans) | 0.92 | - |
| Irimia et al. [26] | 0.92 ± 0.007 (study group)/ 0.74 ± 0.066 (control group) | - | 0.74 (study group)/ 0.61 (control group) |
| Sil C. Van De Leemput et al. [27] | 0.86 ± 0.04 | - | - |
| Booker et al. [29] | 0.7604 ± 0.106 | - | - |
| Liang et al. [30] | 0.92 | - | - |
| Yuan et al. [32] | 0.82 ± 0.11 | 0.99 | - |
| Huang et al. [33] | 0.809 ± 0.094 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielówka, M.; Mitręga, A.; Kaczyńska, D.; Rojek, M.; Magiera, M.; Kufel, J.; Grzegorczyn, S. Utilizing Artificial Intelligence for CSF Segmentation and Analysis in Head CT Imaging: A Systematic Review. Brain Sci. 2025, 15, 1144. https://doi.org/10.3390/brainsci15111144
Bielówka M, Mitręga A, Kaczyńska D, Rojek M, Magiera M, Kufel J, Grzegorczyn S. Utilizing Artificial Intelligence for CSF Segmentation and Analysis in Head CT Imaging: A Systematic Review. Brain Sciences. 2025; 15(11):1144. https://doi.org/10.3390/brainsci15111144
Chicago/Turabian StyleBielówka, Michał, Adam Mitręga, Dominika Kaczyńska, Marcin Rojek, Mikołaj Magiera, Jakub Kufel, and Sławomir Grzegorczyn. 2025. "Utilizing Artificial Intelligence for CSF Segmentation and Analysis in Head CT Imaging: A Systematic Review" Brain Sciences 15, no. 11: 1144. https://doi.org/10.3390/brainsci15111144
APA StyleBielówka, M., Mitręga, A., Kaczyńska, D., Rojek, M., Magiera, M., Kufel, J., & Grzegorczyn, S. (2025). Utilizing Artificial Intelligence for CSF Segmentation and Analysis in Head CT Imaging: A Systematic Review. Brain Sciences, 15(11), 1144. https://doi.org/10.3390/brainsci15111144

