Resting-State and Task-Based Functional Connectivity Reveal Distinct mPFC and Hippocampal Network Alterations in Major Depressive Disorder
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Selves Task Stimuli
2.4. MRI Acquisition
2.5. Analysis
3. Results
3.1. Resting-State FC
3.1.1. mPFC Seed
3.1.2. Left Hippocampus Seed
3.2. Task-Based Analyses Using the ERQ and the Selves Task
3.2.1. ERQ
3.2.2. Task-Based FC: Selves Task
mPFC Seed (Prevention Match Stimuli)
Hippocampus Seed (Contrast: Promotion and Prevention Words > Control Words)
4. Discussion
4.1. mPFC Findings
4.1.1. Resting-State FC
4.1.2. Selves Task FC
4.2. Findings with Left Hippocampus Seed
4.2.1. Resting-State FC
4.2.2. Selves Task: Promotion + Prevention > Control
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Depression. Available online: https://www.who.int/health-topics/depression#tab=tab_2 (accessed on 4 August 2025).
- Kaiser, R.H.; Whitfield-Gabrieli, S.; Dillon, D.G.; Goer, F.; Beltzer, M.; Minkel, J.; Smoski, M.; Dichter, G.; Pizzagalli, D.A. Dynamic resting-state functional connectivity in major depression. Neuropsychopharmacology 2016, 41, 1822–1830. [Google Scholar] [CrossRef]
- Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci. 2011, 15, 483–506. [Google Scholar] [CrossRef]
- Menon, B. Towards a new model of understanding—The triple network, psychopathology, and the structure of the mind. Med. Hypotheses 2019, 133, 109385. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.P.; Morgan, V.L.; Newton, A.T.; Gore, J.C. Assessing functional connectivity in the human brain by fMRI. Magn. Reson. Imaging 2007, 25, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.; Wang, Z.; Tong, E.; Williams, L.M.; Zaharchuk, G.; Zeineh, M.; Goldstein-Piekarski, A.N.; Ball, T.M.; Liao, C.; Wintermark, M. Resting-state functional MRI: Everything that nonexperts have always wanted to know. Am. J. Neuroradiol. 2018, 39, 1390–1399. [Google Scholar] [CrossRef] [PubMed]
- Smitha, K.A.; Akhil Raja, K.; Arun, K.M.; Rajesh, P.G.; Thomas, B.; Kapilamoorthy, T.R.; Kesavadas, C. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 2017, 30, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Castillo, J.; Kam, W.Y.; Hoy, C.W.; Bandettini, P.A. How to interpret resting-state fMRI: Ask your participants. J. Neurosci. 2021, 41, 1130–1141. [Google Scholar] [CrossRef]
- Dutta, A.; McKie, S.; Deakin, J.F. Resting state networks in major depressive disorder. Psychiatry Res. 2014, 224, 139–151. [Google Scholar] [CrossRef]
- Kaiser, R.H.; Andrews-Hanna, J.R.; Wager, T.D.; Pizzagalli, D.A. Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry 2015, 72, 603–611. [Google Scholar] [CrossRef]
- Mulders, P.C.; van Eijndhoven, P.F.; Schene, A.H.; Beckmann, C.F.; Tendolkar, I. Resting-state functional connectivity in major depressive disorder: A review. Neurosci. Biobehav. Rev. 2015, 56, 330–344. [Google Scholar] [CrossRef]
- Greicius, M.D.; Flores, B.H.; Menon, V.; Glover, G.H.; Solvason, H.B.; Kenna, H.; Reiss, A.L.; Schatzberg, A.F. Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 2007, 62, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Corbetta, M.; Van Essen, D.C.; Raichle, M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 2005, 102, 9673–9678. [Google Scholar] [CrossRef] [PubMed]
- Lydon-Staley, D.M.; Kuehner, C.; Zamoscik, V.; Huffziger, S.; Kirsch, P.; Bassett, D.S. Repetitive negative thinking in daily life and functional connectivity among default mode, fronto-parietal, and salience networks. Transl. Psychiatry 2019, 9, 234. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Furman, D.J.; Chang, C.; Thomason, M.E.; Dennis, E.; Gotlib, I.H. Default-mode and task-positive network activity in major depressive disorder: Implications for adaptive and maladaptive rumination. Biol. Psychiatry 2011, 70, 327–333. [Google Scholar] [CrossRef]
- Sheline, Y.I.; Price, J.L.; Yan, Z.; Mintun, M.A. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. USA 2010, 107, 11020–11025. [Google Scholar] [CrossRef]
- Goya-Maldonado, R.; Brodmann, K.; Keil, M.; Trost, S.; Dechent, P.; Gruber, O. Differentiating unipolar and bipolar depression by alterations in large-scale brain networks. Hum. Brain Mapp. 2016, 37, 808–818. [Google Scholar] [CrossRef]
- Hamilton, J.P.; Farmer, M.; Fogelman, P.; Gotlib, I.H. Depressive rumination, the default-mode network, and the dark matter of clinical neuroscience. Biol. Psychiatry 2015, 78, 224–230. [Google Scholar] [CrossRef]
- Zhou, H.X.; Chen, X.; Shen, Y.Q.; Li, L.; Chen, N.X.; Zhu, Z.C.; Castellanos, F.X.; Yan, C.G. Rumination and the default mode network: Meta-analysis of brain imaging studies and implications for depression. NeuroImage 2020, 206, 116287. [Google Scholar] [CrossRef]
- Berman, M.G.; Peltier, S.; Nee, D.E.; Kross, E.; Deldin, P.J.; Jonides, J. Depression, rumination, and the default network. Soc. Cogn. Affect. Neurosci. 2011, 6, 548–555. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Ford, J.M. Default mode network activity and connectivity in psychopathology. Annu. Rev. Clin. Psychol. 2012, 8, 49–76. [Google Scholar] [CrossRef]
- Sambataro, F.; Visintin, E.; Doerig, N.; Brakowski, J.; Holtforth, M.G.; Seifritz, E.; Spinelli, S. Altered dynamics of brain connectivity in major depressive disorder at-rest and during task performance. Psychiatry Res. Neuroimaging 2017, 259, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Mwansisya, T.E.; Hu, A.; Li, Y.; Chen, X.; Wu, G.; Huang, X.; Lv, D.; Li, Z.; Liu, C.; Xue, Z.; et al. Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review. Schizophr. Res. 2017, 189, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hasson, U.; Nusbaum, H.C.; Small, S.L. Task-dependent organization of brain regions active during rest. Proc. Natl. Acad. Sci. USA 2009, 106, 10841–10846. [Google Scholar] [CrossRef] [PubMed]
- Braga, R.M.; DiNicola, L.M.; Becker, H.C.; Buckner, R.L. Situating the left-lateralized language network in the broader organization of multiple specialized large-scale distributed networks. J. Neurophysiol. 2020, 124, 1415–1448. [Google Scholar] [CrossRef]
- Finn, E.S. Is it time to put rest to rest? Trends Cogn. Sci. 2021, 25, 1021–1032. [Google Scholar] [CrossRef]
- Eddington, K.M.; Dolcos, F.; Cabeza, R.; Krishnan, K.R.R.; Strauman, T.J. Neural correlates of promotion and prevention goal activation: An fMRI study using an idiographic approach. J. Cogn. Neurosci. 2007, 19, 1152–1162. [Google Scholar] [CrossRef]
- Eddington, K.M.; Dolcos, F.; McLean, A.N.; Krishnan, K.R.; Cabeza, R.; Strauman, T.J. Neural correlates of idiographic goal priming in depression: Goal-specific dysfunctions in the orbitofrontal cortex. Soc. Cogn. Affect. Neurosci. 2009, 4, 238–246. [Google Scholar] [CrossRef]
- Strauman, T.J.; Detloff, A.M.; Sestokas, R.; Smith, D.V.; Goetz, E.L.; Rivera, C.; Kwapil, L. What shall I be, what must I be: Neural correlates of personal goal activation. Front. Integr. Neurosci. 2013, 6, 123. [Google Scholar] [CrossRef]
- Detloff, A.M.; Hariri, A.R.; Strauman, T.J. Neural signatures of promotion versus prevention goal priming: fMRI evidence for distinct cognitive-motivational systems. Personal. Neurosci. 2020, 3, e1. [Google Scholar] [CrossRef]
- Higgins, E.T.; Bond, R.N.; Klein, R.; Strauman, T. Self-discrepancies and emotional vulnerability: How magnitude, accessibility, and type of discrepancy influence affect. J. Personal. Soc. Psychol. 1986, 51, 5–15. [Google Scholar] [CrossRef]
- Davis, S.W.; Beynel, L.; Neacsiu, A.D.; Luber, B.M.; Bernhardt, E.; Lisanby, S.H.; Strauman, T.J. Network-level dynamics underlying a combined rTMS and psychotherapy treatment for major depressive disorder: An exploratory network analysis. Int. J. Clin. Health Psychol. 2023, 23, 100382. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.M.; Smith, S.M.; Beckmann, C.F. Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Front. Syst. Neurosci. 2010, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Hahn, A.; Lanzenberger, R.; Kasper, S. Making Sense of Connectivity. Int. J. Neuropsychopharmacol. 2019, 22, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Fossati, P.; Hevenor, S.J.; Graham, S.J.; Grady, C.; Keightley, M.L.; Craik, F.; Mayberg, H. In search of the emotional self: An fMRI study using positive and negative emotional words. Am J Psychiatry 2003, 160, 1938–1945. [Google Scholar] [CrossRef]
- Lemogne, C.; Mayberg, H.; Bergouignan, L.; Volle, E.; Delaveau, P.; Lehericy, S.; Allilaire, J.F.; Fossati, P. Self-referential processing and the prefrontal cortex over the course of depression: A pilot study. J Affect Disord 2010, 124, 196–201. [Google Scholar] [CrossRef]
- Nejad, A.B.; Rotgé, J.Y.; Valabregue, R.; Guérin-Langlois, C.; Hoertel, N.; Gorwood, P.; Dubertret, C.; Limosin, F.; Fossati, P.; Lemogne, C. Medial prefrontal disengagement during self-focus in formerly depressed patients prone to rumination. J. Affect. Disord. 2019, 247, 36–44. [Google Scholar] [CrossRef]
- Williams, L.M. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: A theoretical review of the evidence and future directions for clinical translation. Depress. Anxiety 2017, 34, 9–24. [Google Scholar] [CrossRef]
- Jacob, Y.; Morris, L.S.; Huang, K.H.; Schneider, M.; Rutter, S.; Verma, G.; Murrough, J.W.; Balchandani, P. Neural correlates of rumination in major depressive disorder: A brain network analysis. NeuroImage Clin. 2020, 25, 102142. [Google Scholar] [CrossRef]
- Reber, T.P.; Henke, K. Rapid formation and flexible expression of memories of subliminal word pairs. Front. Psychol. 2011, 2, 343. [Google Scholar] [CrossRef]
- Duss, S.B.; Reber, T.P.; Hänggi, J.; Schwab, S.; Wiest, R.; Müri, R.M.; Brugger, P.; Gutbrod, K.; Henke, K. Unconscious relational encoding depends on hippocampus. Brain 2014, 137, 3355–3370. [Google Scholar] [CrossRef]
- Phelps, E.A. Human emotion and memory: Interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol 2004, 14, 198–202. [Google Scholar] [CrossRef]
- Brooks, S.J.; Savov, V.; Allzén, E.; Benedict, C.; Fredriksson, R.; Schiöth, H.B. Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: A systematic meta-analysis of fMRI studies. NeuroImage 2012, 59, 2962–2973. [Google Scholar] [CrossRef]
- Bianchi-Demicheli, F.; Ortigue, S. Mental representation of subjective pleasure of partnered experiences in women’s brain conveyed through event-related fMRI. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2009, 15, CR545–CR550. [Google Scholar]
- Ortigue, S.; Bianchi-Demicheli, F.; Hamilton, A.F.; Grafton, S.T. The neural basis of love as a subliminal prime: An event-related functional magnetic resonance imaging study. J. Cogn. Neurosci. 2007, 19, 1218–1230. [Google Scholar] [CrossRef]
- Ortigue, S.; Grafton, S.T.; Bianchi-Demicheli, F. Correlation between insula activation and self-reported quality of orgasm in women. NeuroImage 2007, 37, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Naccache, L.; Gaillard, R.; Adam, C.; Hasboun, D.; Clémenceau, S.; Baulac, M.; Cohen, L. A direct intracranial record of emotions evoked by subliminal words. Proc. Natl. Acad. Sci. USA 2005, 102, 7713–7717. [Google Scholar] [CrossRef] [PubMed]
- Ezama, L.; Hernández-Cabrera, J.A.; Seoane, S.; Pereda, E.; Janssen, N. Functional connectivity of the hippocampus and its subfields in resting-state networks. Eur. J. Neurosci. 2021, 53, 3378–3393. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Liu, Z.; Xu, C.; Li, J.; Gao, Q.; Sun, N.; Xu, Y.; Ren, Y.; Yang, C.; Zhang, K. Disrupted resting-state functional connectivity of the hippocampus in medication-naïve patients with major depressive disorder. J. Affect. Disord. 2012, 141, 194–203. [Google Scholar] [CrossRef]
- Shi, F.; Liu, B.; Zhou, Y.; Yu, C.; Jiang, T. Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus 2009, 19, 1055–1064. [Google Scholar] [CrossRef]
- Sokol, Y.; Levin, C.; Rosensweig, C.; Talasazan, N.; Serper, M.R. Temporal self and reflected appraisals in euthymic and depressed individuals. J. Affect. Disord. 2023, 327, 340–347. [Google Scholar] [CrossRef]
- Zahn, R.; Lythe, K.E.; Gethin, J.A.; Green, S.; Deakin, J.F.; Young, A.H.; Moll, J. The role of self-blame and worthlessness in the psychopathology of major depressive disorder. J. Affect. Disord. 2015, 186, 337–341. [Google Scholar] [CrossRef]
- Higgins, E.T.; Friedman, R.S.; Harlow, R.E.; Idson, L.C.; Ayduk, O.N.; Taylor, A. Achievement orientations from subjective histories of success: Promotion pride versus prevention pride. Eur. J. Soc. Psychol. 2001, 31, 3–23. [Google Scholar] [CrossRef]
- Nieto-Castanon, A.; Whitfield-Gabrieli, S. CONN Functional Connectivity Toolbox: RRID SCR_009550, Release 22; Hilbert Press: Boston, MA, USA, 2022. [Google Scholar] [CrossRef]
- JASP Team. JASP (Version 0.19.3). Available online: https://jasp-stats.org/ (accessed on 7 July 2025).
- Cheng, W.; Rolls, E.T.; Qiu, J.; Yang, D.; Ruan, H.; Wei, D.; Zhao, L.; Meng, J.; Xie, P.; Feng, J. Functional connectivity of the precuneus in unmedicated patients with depression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; McKie, S.; Downey, D.; Thomas, E.; Juhasz, G.; Arnone, D. Regional default mode network connectivity in major depressive disorder: Modulation by acute intravenous citalopram. Transl. Psychiatry 2019, 9, 116. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Xiao, J.; Liao, J.; Zhong, M.; Wang, W. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol. Psychiatry 2012, 71, 611–617. [Google Scholar] [CrossRef]
- Meng, Y.; Li, H.; Wang, J.; Xu, Y.; Wang, B. Cognitive behavioral therapy for patients with mild to moderate depression: Treatment effects and neural mechanisms. J. Psychiatr. Res. 2021, 136, 288–295. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Xu, K.; Ai, K.; Huang, W.; Zhang, J. The role of neurotransmitters in mediating the relationship between brain alterations and depressive symptoms in patients with inflammatory bowel disease. Hum. Brain Mapp. 2023, 44, 5357–5371. [Google Scholar] [CrossRef]
- Jennings, J.R.; Sheu, L.K.; Kuan, D.C.; Manuck, S.B.; Gianaros, P.J. Resting state connectivity of the medial prefrontal cortex covaries with individual differences in high-frequency heart rate variability. Psychophysiology 2016, 53, 444–454. [Google Scholar] [CrossRef]
- Yan, C.G.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.J.; Bo, Q.J.; Chen, G.M.; Chen, N.X.; Chen, W.; Cheng, C.; et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl. Acad. Sci. USA 2019, 116, 9078–9083. [Google Scholar] [CrossRef]
- Tozzi, L.; Zhang, X.; Chesnut, M.; Holt-Gosselin, B.; Ramirez, C.A.; Williams, L.M. Reduced functional connectivity of default mode network subsystems in depression: Meta-analytic evidence and relationship with trait rumination. NeuroImage Clin. 2021, 30, 102570. [Google Scholar] [CrossRef]
- Binder, J.R.; Desai, R.H.; Graves, W.W.; Conant, L.L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 2009, 19, 2767–2796. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, C.; Rong, B.; Wan, Q.; Chen, J.; Liu, Z.; Zhou, Y.; Wang, G.; Wang, H. Resting-state functional connectivity of salience network in schizophrenia and depression. Sci. Rep. 2022, 12, 11204. [Google Scholar] [CrossRef] [PubMed]
- McDermott, L.M.; Ebmeier, K.P. A meta-analysis of depression severity and cognitive function. J. Affect. Disord. 2009, 119, 1–8. [Google Scholar] [CrossRef] [PubMed]
- du Boisguéheneuc, F.; Levy, R.; Volle, E.; Seassau, M.; Duffau, H.; Kinkingnehun, S.; Samson, Y.; Zhang, S.; Dubois, B. Functions of the left superior frontal gyrus in humans: A lesion study. Brain: A J. Neurol. 2006, 129, 3315–3328. [Google Scholar] [CrossRef]
- Torrico, T.J.; Munakomi, S. Neuroanatomy, Thalamus. Available online: https://www.ncbi.nlm.nih.gov/books/NBK542184 (accessed on 4 August 2025).
- Abdallah, C.G.; Averill, L.A.; Collins, K.A.; Geha, P.; Schwartz, J.; Averill, C.; DeWilde, K.E.; Wong, E.; Anticevic, A.; Tang, C.Y.; et al. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology 2017, 42, 1210–1219. [Google Scholar] [CrossRef]
- Phillips, M.L.; Drevets, W.C.; Rauch, S.L.; Lane, R. Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biol. Psychiatry 2003, 54, 515–528. [Google Scholar] [CrossRef]
- Liu, D.Y.; Thompson, R.J. Selection and implementation of emotion regulation strategies in major depressive disorder: An integrative review. Clin. Psychol. Rev. 2017, 57, 183–194. [Google Scholar] [CrossRef]
- Cavanna, A.E.; Trimble, M.R. The precuneus: A review of its functional anatomy and behavioural correlates. Brain 2006, 129, 564–583. [Google Scholar] [CrossRef]
- Helm, K.; Viol, K.; Weiger, T.M.; Tass, P.A.; Grefkes, C.; Del Monte, D.; Schiepek, G. Neuronal connectivity in major depressive disorder: A systematic review. Neuropsychiatr. Dis. Treat. 2018, 14, 2715–2737. [Google Scholar] [CrossRef]
- Grimm, S.; Beck, J.; Schuepbach, D.; Hell, D.; Boesiger, P.; Bermpohl, F.; Niehaus, L.; Boeker, H.; Northoff, G. Imbalance between left and right dorsolateral prefrontal cortex in major depression is linked to negative emotional judgment: An fMRI study in severe major depressive disorder. Biol. Psychiatry 2008, 63, 369–376. [Google Scholar] [CrossRef]
- Horato, N.; Quagliato, L.A.; Nardi, A.E. The relationship between emotional regulation and hemispheric lateralization in depression: A systematic review and a meta-analysis. Transl. Psychiatry 2022, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.C.; Vakhtin, A.; Clark, V.P.; Abbott, C.C.; Quinn, D.K. Revisiting hemispheric asymmetry in mood regulation: Implications for rTMS for major depressive disorder. Brain Sci. 2022, 12, 112. [Google Scholar] [CrossRef] [PubMed]
- de Groot, M.H.; Nolen, W.A.; Huijsman, A.M.; Bouvy, P.F. Lateralized neuropsychological functioning in depressive patients before and after drug therapy. Biol. Psychiatry 1996, 40, 1282–1287. [Google Scholar] [CrossRef] [PubMed]
- Joormann, J.; Gotlib, I.H. Emotion regulation in depression: Relation to cognitive inhibition. Cogn. Emot. 2010, 24, 281–298. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Guell, X.; Stoodley, C.J.; Halko, M.A. The theory and neuroscience of cerebellar cognition. Annu. Rev. Neurosci. 2019, 42, 337–364. [Google Scholar] [CrossRef]
- Krook-Magnuson, E.; Szabo, G.G.; Armstrong, C.; Oijala, M.; Soltesz, I. Cerebellar Directed Optogenetic Intervention Inhibits Spontaneous Hippocampal Seizures in a Mouse Model of Temporal Lobe Epilepsy. eNeuro 2014, 1. [Google Scholar] [CrossRef]
- Froula, J.M.; Hastings, S.D.; Krook-Magnuson, E. The little brain and the seahorse: Cerebellar-hippocampal interactions. Front. Syst. Neurosci. 2023, 17, 1158492. [Google Scholar] [CrossRef]
- Yu, W.; Krook-Magnuson, E. Cognitive collaborations: Bidirectional functional connectivity between the cerebellum and the hippocampus. Front. Syst. Neurosci. 2015, 9, 177. [Google Scholar] [CrossRef]
- Fujita, H.; Kodama, T.; du Lac, S. Modular output circuits of the fastigial nucleus for diverse motor and nonmotor functions of the cerebellar vermis. eLife 2020, 9, e58613. [Google Scholar] [CrossRef]
- Heath, R.G.; Dempesy, C.W.; Fontana, C.J.; Myers, W.A. Cerebellar stimulation: Effects on septal region, hippocampus, and amygdala of cats and rats. Biol. Psychiatry 1978, 13, 501–529. [Google Scholar]
- Choe, K.Y.; Sanchez, C.F.; Harris, N.G.; Otis, T.S.; Mathews, P.J. Optogenetic fMRI and electrophysiological identification of region-specific connectivity between the cerebellar cortex and forebrain. Neuroimage 2018, 173, 370–383. [Google Scholar] [CrossRef]
- Zeidler, Z.; Hoffmann, K.; Krook-Magnuson, E. HippoBellum: Acute Cerebellar Modulation Alters Hippocampal Dynamics and Function. J. Neurosci. 2020, 40, 6910–6926. [Google Scholar] [CrossRef] [PubMed]
- Takehara-Nishiuchi, K. The Anatomy and Physiology of Eyeblink Classical Conditioning. Curr. Top. Behav. Neurosci. 2018, 37, 297–323. [Google Scholar] [CrossRef] [PubMed]
- Rochefort, C.; Arabo, A.; Andre, M.; Poucet, B.; Save, E.; Rondi-Reig, L. Cerebellum shapes hippocampal spatial code. Science 2011, 334, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Rondi-Reig, L.; Paradis, A.L.; Lefort, J.M.; Babayan, B.M.; Tobin, C. How the cerebellum may monitor sensory information for spatial representation. Front. Syst. Neurosci. 2014, 8, 205. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Sherman, J.C. The cerebellar cognitive affective syndrome. Brain 1998, 121 Pt 4, 561–579. [Google Scholar] [CrossRef]
- Campbell, S.; MacQueen, G. The role of the hippocampus in the pathophysiology of major depression. J. Psychiatry Neurosci. 2004, 29, 417–426. [Google Scholar] [CrossRef]
- Schmahmann, J.D. An emerging concept. The cerebellar contribution to higher function. Arch. Neurol. 1991, 48, 1178–1187. [Google Scholar] [CrossRef]
- Depping, M.S.; Schmitgen, M.M.; Kubera, K.M.; Wolf, R.C. Cerebellar contributions to major depression. Front. Psychiatry 2018, 9, 634. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, L.L.; Li, Y.; Ma, Q.; Li, B.; Shen, H.; Hu, D. Altered cerebellar functional connectivity with intrinsic connectivity networks in adults with major depressive disorder. PLoS ONE 2012, 7, e39516. [Google Scholar] [CrossRef]
- Yu, Y.; Shen, H.; Zeng, L.L.; Ma, Q.; Hu, D. Convergent and divergent functional connectivity patterns in schizophrenia and depression. PLoS ONE 2013, 8, e68250. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.L.; Shen, H.; Liu, L.; Wang, L.; Li, B.; Fang, P.; Zhou, Z.; Li, Y.; Hu, D. Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain 2012, 135, 1498–1507. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, Q.; Li, B.; Qian, S.; Wang, S.; Wang, Y.; Chen, C.; Liu, Z.; Ji, Y.; Liu, K.; et al. Cerebellum and hippocampus abnormalities in patients with insomnia comorbid depression: A study on cerebral blood perfusion and functional connectivity. Front. Neurosci. 2023, 17, 1202514. [Google Scholar] [CrossRef]
- Song, L.; Wu, G.; Zhang, J.; Liu, B.; Chen, X.; Wang, J.; Gu, X.; Tian, B.; Li, Y.; Zhang, A.; et al. The changes in brain network functional gradients and dynamic functional connectivity in SeLECTS patients revealing disruptive and compensatory mechanisms in brain networks. Front. Psychiatry 2025, 16, 1584071. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, W.; Chen, M.; Jiang, Q.; Huang, H.; Guo, W.; Yuan, Y. Functional connectivity of the default mode network subsystems alterations in suicide attempters with major depressive disorder. Asian J. Psychiatry 2025, 107, 104456. [Google Scholar] [CrossRef]
- Liu, C.; Pu, W.; Wu, G.; Zhao, J.; Xue, Z. Abnormal resting-state cerebral-limbic functional connectivity in bipolar depression and unipolar depression. BMC Neurosci. 2019, 20, 30. [Google Scholar] [CrossRef]
- Guo, W.; Liu, F.; Liu, J.; Yu, M.; Zhang, Z.; Liu, G.; Xiao, C.; Zhao, J. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine 2015, 94, e560. [Google Scholar] [CrossRef]
- Marek, S.; Tervo-Clemmens, B.; Calabro, F.J.; Montez, D.F.; Kay, B.P.; Hatoum, A.S.; Donohue, M.R.; Foran, W.; Miller, R.L.; Hendrickson, T.J.; et al. Reproducible brain-wide association studies require thousands of individuals. Nature 2022, 603, 654–660. [Google Scholar] [CrossRef]
- Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.; Yacoub, E.; Ugurbil, K. The WU-Minn Human Connectome Project: An overview. NeuroImage 2013, 80, 62–79. [Google Scholar] [CrossRef]
- Birn, R.M.; Molloy, E.K.; Patriat, R.; Parker, T.; Meier, T.B.; Kirk, G.R.; Nair, V.A.; Meyerand, M.E.; Prabhakaran, V. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage 2013, 83, 550–558. [Google Scholar] [CrossRef]
- Kundu, P.; Inati, S.J.; Evans, J.W.; Luh, W.M.; Bandettini, P.A. Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. NeuroImage 2012, 60, 1759–1770. [Google Scholar] [CrossRef]
- Lombardo, M.V.; Auyeung, B.; Holt, R.J.; Waldman, J.; Ruigrok, A.N.V.; Mooney, N.; Bullmore, E.T.; Baron-Cohen, S.; Kundu, P. Improving effect size estimation and statistical power with multi-echo fMRI and its impact on understanding the neural systems supporting mentalizing. NeuroImage 2016, 142, 55–66. [Google Scholar] [CrossRef]
- O’Reilly, J.X.; Woolrich, M.W.; Behrens, T.E.; Smith, S.M.; Johansen-Berg, H. Tools of the trade: Psychophysiological interactions and functional connectivity. Soc. Cogn. Affect. Neurosci. 2012, 7, 604–609. [Google Scholar] [CrossRef]







| MDD (n = 23) | HC (n = 17) | |
|---|---|---|
| Age (Mean ± SD) | 43 ± 14 | 33 ± 12 |
| Sex [Female: Frequency (%)] | 14 (61%) | 8 (47%) |
| White [Frequency (%)] | 18 (78%) | 7 (41%) |
| Black [Frequency (%)] | 2 (9%) | 4 (24%) |
| Asian [Frequency (%)] | 0 (0%) | 5 (29%) |
| Latino/Hispanic [Frequency (%)] | 1 (4%) | 1 (6%) |
| Multiple Races [Frequency (%)] | 2 (9%) | 0 |
| MADRS Score (Mean ± SD) | 27 ± 5 | |
| HDRS Score (Mean ± SD) | 20 ± 6 | |
| Current Episode Length in Years (Mean) | 1.88 ± 1.19 |
| Cluster Size | x | y | z | t-Value | Region * |
|---|---|---|---|---|---|
| MDD > HC | |||||
| 2382 | 42 | −50 | −26 | −4.87 | rITG, rLOC, rTOFusC, rCerebellum Crus 1, rCerebellum 6 |
| 2313 | 18 | 0 | 68 | −4.33 | rPreCG, rSFG, rMidFG, rIFG, rSMA |
| 1951 | 20 | −20 | 4 | −3.55 | rInsC, rThalamus, rPallidum, rPutamen, rPP |
| MDD | |||||
| 17,085 | −4 | 54 | −12 | 21.29 | lFP, rFP, lSFG, ACC, lParaCG |
| 3570 | 20 | 0 | 68 | −13.48 | lSFG |
| 2952 | 50 | −32 | 32 | −10.77 | laSMG |
| 2580 | −36 | −38 | 32 | −10.94 | raSMG |
| 2426 | −8 | −56 | 18 | 7.65 | lpTFusC |
| 1654 | 58 | −6 | −24 | 9.03 | Precuneus |
| 1292 | −52 | −62 | 28 | 8.96 | rMTG |
| 492 | 50 | −58 | 22 | 8.37 | rAG, rsLOC |
| 379 | 46 | −50 | −8 | −7.93 | rITG, rLOC |
| 153 | −24 | −36 | −20 | 6.69 | rHippoG |
| 139 | −38 | −44 | −38 | −8.88 | lAG |
| 129 | 22 | −32 | −18 | 6.08 | lITG |
| 128 | −20 | −8 | −16 | 6.34 | lAmygdala |
| 107 | −40 | −56 | −4 | −6.7 | lCerebellum |
| 53 | 38 | 36 | 34 | −5.73 | rFP |
| HC | |||||
| 14,764 | −8 | 56 | −2 | 25.61 | rFP, lFP, ACC, rParaCG, lParaCG |
| 1143 | 2 | −52 | 22 | 9.83 | rMTG |
| 1012 | 44 | −38 | 44 | −11.96 | raSMG |
| 767 | −28 | −56 | 34 | −16.97 | lSPL |
| 473 | −28 | −28 | −20 | 10.8 | lHippocampus |
| 368 | 10 | −66 | 50 | −11.69 | lSPL |
| 276 | 60 | −4 | −20 | 10.61 | Precuneus |
| 211 | −26 | −4 | 58 | −8.5 | lpTFusC |
| 126 | −22 | −4 | 40 | −7.71 | lPostCG |
| 59 | −52 | −32 | −32 | −7.98 | lITG |
| 55 | −2 | −82 | 4 | −7.85 | lIntraCalcC |
| 51 | −18 | −42 | 78 | −8.87 | lSFG |
| 49 | 58 | −64 | 24 | 6.73 | lCereb |
| 39 | 56 | −28 | −4 | 7 | PCC |
| 37 | 18 | −32 | 36 | −7.25 | rpMTG |
| 34 | −16 | −56 | −60 | −7.49 | rsLOC |
| Cluster Size | x | y | z | t−Value | Region |
|---|---|---|---|---|---|
| MDD > HC | |||||
| 9858 | −56 | −54 | −44 | −5.53 | lCerebellum Crus 2, lCerebellum Crus 1, rLG, rCerebellum Crus 1 |
| 5054 | −40 | 48 | 10 | −5.43 | lFP, rFP, rOFC, lIns, lOFC |
| 2481 | −16 | 10 | 66 | 3.98 | lSFG, lMidFG, lFP, lSMA, rSFG |
| MDD | |||||
| 14,408 | −20 | −20 | −14 | 19.02 | Brainstem, lCerebellum 4/5, lTP, Vermis, precuneus |
| 2147 | 18 | 6 | 62 | −10.37 | rSFG |
| 2128 | 40 | −44 | 40 | −12.25 | rpSMG |
| 1559 | 28 | 48 | 26 | −8.2 | rFP |
| 1521 | −46 | −48 | 54 | −13.26 | lpSMG |
| 492 | 0 | 50 | −14 | 7.28 | MedFC |
| 192 | −36 | 44 | 16 | −7.29 | lFP, rFP |
| 104 | −54 | −30 | −32 | −7.33 | lpITG |
| 48 | −34 | −8 | 50 | −5.85 | lPreCG |
| HC | |||||
| 21,168 | −26 | −16 | −18 | 18.5 | lOFC, brainstem, rLG, rOFC, SubCalC |
| 1381 | 8 | −52 | 56 | −9.84 | precuneus |
| 744 | 32 | 52 | 26 | −9.52 | rFP |
| 219 | 50 | −46 | 42 | −7.52 | rAG |
| 154 | 20 | 14 | 62 | −7.35 | rSFG |
| 112 | −18 | 8 | 66 | −7.74 | lSFG |
| 96 | −8 | −48 | −28 | 7.06 | lCereb |
| 71 | −58 | −40 | 46 | −8.5 | lpSMG |
| 62 | 66 | −26 | 6 | 7.41 | rpSTG |
| Cluster Size | x | y | z | t-Value | Region |
|---|---|---|---|---|---|
| MDD | |||||
| 7237 | 4 | 62 | 4 | 20.32 | rFP, lFP, ACC, lParaCG, rParaCG |
| 1488 | −12 | −54 | 24 | 8.49 | Precuneus |
| 294 | −42 | −66 | 28 | 6.94 | lsLOC |
| 206 | 64 | −8 | −24 | 9.02 | rpMTG |
| 163 | 46 | −60 | 28 | 7.37 | rsLOC |
| 160 | −20 | 36 | 48 | 7.2 | lSFG |
| 147 | −54 | 6 | −30 | 8.35 | laMTG |
| 114 | 44 | 8 | −40 | 8.03 | rTP |
| 90 | 14 | −66 | 62 | −8.02 | rsLOC |
| 59 | 32 | 16 | −16 | 7.76 | rOFC |
| 53 | −12 | −68 | 60 | −7.63 | lsLOC |
| 33 | 26 | −22 | −14 | 7.56 | rHippocampus |
| 31 | −18 | −68 | 46 | −6.5 | lsLOC |
| 31 | 32 | 20 | −44 | 7.63 | rTP |
| 28 | 32 | −48 | 60 | −6.59 | rSPL |
| 25 | −40 | 4 | −44 | 7.42 | lTP |
| 25 | 4 | −52 | −48 | 6.69 | rCerebellum |
| HC | |||||
| 4685 | 6 | 60 | −2 | 16.14 | ACC, rFP, lFP, rParaCG, lParaCG |
| 446 | −6 | −50 | 28 | 9.7 | PCC |
| 262 | −14 | 38 | 46 | 10.69 | lSFG |
| 189 | 18 | 32 | 44 | 12.16 | rSFG |
| 187 | 32 | 32 | −14 | 17.8 | rOFC |
| 137 | −40 | −60 | 26 | 9.12 | lAG |
| 64 | −60 | −6 | −22 | 9.71 | laMTG |
| 37 | −28 | −54 | 44 | −8.95 | lSPL |
| 19 | 32 | −48 | 42 | −7.47 | rSPL |
| 16 | −32 | −24 | 18 | 9.3 | rAG |
| 16 | 48 | −58 | 28 | 7.39 | lInsC |
| 14 | 36 | −38 | 38 | −8.29 | rpSMG |
| 13 | 56 | −48 | −12 | −9.4 | rtoITG |
| Cluster Size | x | y | z | t-Value | Region |
|---|---|---|---|---|---|
| MDD > HC | |||||
| 1991 | −36 | −68 | −38 | −5.73 | lCerebellum 8, lCerebellum Crus 2, rCerebellum 8, lCerebellum, rCerebellum Crus 1, lCerebellum 6, lCerebellum 7b, lCerebellum 9, lOFusG, rCerebellum, 7b Vermis 9/8, lTOFusC, lLG, rCerebellum Crus 1, rCerebellum 6 |
| MDD | |||||
| 1447 | 4 | 56 | 20 | −5.35 | rParaCG, AC, rFP, SubCalC, lFP, rSFG, lSFG, lParaCG, lAccumbens, lCaudate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekpo, E.; Beynel, L.; Luber, B.; Deng, Z.-D.; Strauman, T.J.; Lisanby, S.H. Resting-State and Task-Based Functional Connectivity Reveal Distinct mPFC and Hippocampal Network Alterations in Major Depressive Disorder. Brain Sci. 2025, 15, 1133. https://doi.org/10.3390/brainsci15111133
Ekpo E, Beynel L, Luber B, Deng Z-D, Strauman TJ, Lisanby SH. Resting-State and Task-Based Functional Connectivity Reveal Distinct mPFC and Hippocampal Network Alterations in Major Depressive Disorder. Brain Sciences. 2025; 15(11):1133. https://doi.org/10.3390/brainsci15111133
Chicago/Turabian StyleEkpo, Ekaete, Lysianne Beynel, Bruce Luber, Zhi-De Deng, Timothy J. Strauman, and Sarah H. Lisanby. 2025. "Resting-State and Task-Based Functional Connectivity Reveal Distinct mPFC and Hippocampal Network Alterations in Major Depressive Disorder" Brain Sciences 15, no. 11: 1133. https://doi.org/10.3390/brainsci15111133
APA StyleEkpo, E., Beynel, L., Luber, B., Deng, Z.-D., Strauman, T. J., & Lisanby, S. H. (2025). Resting-State and Task-Based Functional Connectivity Reveal Distinct mPFC and Hippocampal Network Alterations in Major Depressive Disorder. Brain Sciences, 15(11), 1133. https://doi.org/10.3390/brainsci15111133

