Difficulty in Attention Switching and Its Neural Basis in Problematic Smartphone Use
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Attention Switching
2.3. Nighttime Screen Time
2.4. Volumes of the Nucleus Accumbens
2.5. Statistical Analysis
2.6. Generative AI Statement
3. Results
4. Discussion
4.1. NAcc and Difficulty in Attention Switching
4.2. Attentional Switching and Nighttime Screen Time
4.3. NAcc and Nighttime Screen Time
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
ADHD | Attention-Deficit/Hyperactivity Disorder |
ADHD-RS | Attention-Deficit/Hyperactivity Disorder Rating Scale |
AQ | Autism Spectrum Quotient |
ASD | Autism Spectrum Disorder |
CAT12 | Computational Anatomy Toolbox 12 |
CI | Confidence Interval |
DSM-5 | Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition |
IGD | Internet Gaming Disorder |
KAKENHI | Grants-in-Aid for Scientific Research (Japan Society for the Promotion of Science) |
MRI | Magnetic Resonance Imaging |
NAcc | Nucleus Accumbens |
PSU | Problematic Smartphone Use |
SPM | Statistical Parametric Mapping |
WCST | Wisconsin Card Sorting Test |
References
- Panova, T.; Carbonell, X. Is smartphone addiction really an addiction? J. Behav. Addict. 2018, 7, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Sohn, S.Y.; Rees, P.; Wildridge, B.; Kalk, N.J.; Carter, B. Prevalence of problematic smartphone usage and associated mental health outcomes amongst children and young people: A systematic review, meta-analysis and GRADE of the evidence. BMC Psychiatry 2019, 19, 356. [Google Scholar]
- Haug, S.; Castro, R.P.; Kwon, M.; Filler, A.; Kowatsch, T.; Schaub, M.P. Smartphone use and smartphone addiction among young people in Switzerland. J. Behav. Addict. 2015, 4, 299–307. [Google Scholar] [CrossRef]
- Hartanto, A.; Chua, Y.J.; Quek, F.Y.X.; Wong, J.; Ooi, W.M.; Majeed, N.M. Problematic smartphone usage, objective smartphone engagement, and executive functions: A latent variable analysis. Atten. Percept. Psychophys. 2023, 85, 2610–2625. [Google Scholar] [CrossRef]
- Yuan, K.; Qin, W.; Wang, G.; Zeng, F.; Zhao, L.; Yang, X.; Liu, P.; Liu, J.; Sun, J.; von Deneen, K.M.; et al. Microstructure abnormalities in adolescents with internet addiction disorder. PLoS ONE 2011, 6, e20708. [Google Scholar] [CrossRef]
- Lin, F.; Zhou, Y.; Du, Y.; Qin, L.; Zhao, Z.; Xu, J.; Lei, H. Abnormal white matter integrity in adolescents with internet addiction disorder: A tract-based spatial statistics study. PLoS ONE 2012, 7, e30253. [Google Scholar] [CrossRef]
- Jonasson, L.S.; Axelsson, J.; Riklund, K.; Braver, T.S.; Ögren, M.; Bäckman, L.; Nyberg, L. Dopamine release in nucleus accumbens during rewarded task switching measured by [11C] raclopride. NeuroImage 2014, 99, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Hamamura, T.; Kobayashi, N.; Oka, T.; Kawashima, I.; Sakai, Y.; Tanaka, S.C.; Honjo, M. Validity, Reliability, and Correlates of the Smartphone Addiction Scale–Short Version among Japanese Adults. BMC Psychol. 2023, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Kim, D.J.; Cho, H.; Yang, S. The smartphone addiction scale: Development and validation of a short version for adolescents. PLoS ONE 2013, 8, e83558. [Google Scholar] [CrossRef]
- Tateno, M.; Kim, D.J.; Teo, A.R.; Skokauskas, N.; Guerrero, A.P.; Kato, T.A. Smartphone addiction in Japanese college students: Usefulness of the Japanese version of the smartphone addiction scale as a screening tool for a new form of internet addiction. Psychiatry Investig. 2019, 16, 115–120. [Google Scholar] [CrossRef]
- Lee, H.; Ahn, H.; Choi, S.; Lee, S. The SAMS: Smartphone Addiction Management System and verification. J. Med. Syst. 2014, 38, 1. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Chang, L.R.; Lee, Y.H.; Tseng, H.W.; Kuo, T.B.; Chen, S.H. Development and validation of the Smartphone Addiction Inventory (SPAI). PLoS ONE 2014, 9, e98312. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Lin, Y.-C.; Lee, Y.-H.; Lin, P.-H.; Lin, S.-H.; Chang, L.-R.; Tseng, H.-W.; Yen, L.-Y.; Yang, C.C.H.; Kuo, T.B.J. Time distortion associated with smartphone addiction: Identifying smartphone addiction via a mobile application (App). J. Psychiatr. Res. 2015, 65, 139–145. [Google Scholar] [CrossRef]
- Zhang, S.; Faries, D.E.; Vowles, M.; Michelson, D. ADHD Rating Scale IV: Psychometric properties from a multinational study as a clinician-administered instrument. Int. J. Methods Psychiatr. Res. 2005, 14, 186–201. [Google Scholar] [CrossRef]
- Weinstein, A.; Weizman, A. Emerging association between addictive gaming and attention-deficit/hyperactivity disorder. Curr. Psychiatry Rep. 2012, 14, 590–597. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The Autism-Spectrum Quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 2001, 31, 5–17. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Killgore, W.D.S. Effects of sleep deprivation on cognition. Prog. Brain Res. 2010, 185, 105–129. [Google Scholar] [PubMed]
- Csipo, T.; Lipecz, A.; Owens, C.; Mukli, P.; Perry, J.W.; Tarantini, S.; Balasubramanian, P.; Nyúl-Tóth, Á.; Yabluchanska, V.; Sorond, F.A.; et al. Sleep deprivation impairs cognitive performance, alters task-associated cerebral blood flow and decreases cortical neurovascular coupling-related hemodynamic responses. Sci. Rep. 2021, 11, 20994. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Parrish, A.-M.; Zaman, S.B.; Alotaibi, M.S.; Hosseinzadeh, H. Smartphone Addiction and Associated Health Outcomes in Adult Populations: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 12257. [Google Scholar] [CrossRef]
- Solly, J.E.; Knight, L.K.; Duerden, E.G. Structural Gray Matter Differences in Problematic Usage of the Internet: A Systematic Review and Meta-Analysis. Mol. Psychiatry 2022, 22, 1000–1009. [Google Scholar]
- Koob, G.F.; Volkow, N.D. Neurocircuitry of addiction. Neuropsychopharmacology 2010, 35, 217–238. [Google Scholar] [CrossRef]
- Ecker, C.; Ginestet, C.; Feng, Y.; Johnston, P.; Lombardo, M.V.; Lai, M.-C.; Suckling, J.; Palaniyappan, L.; Daly, E.; Murphy, C.M.; et al. Brain surface anatomy in adults with autism: The relationship between surface area, cortical thickness, and autistic symptoms. JAMA Psychiatry 2013, 70, 59–70. [Google Scholar]
- Zhang, S.; Hu, S.; Chao, H.H.; Li, C.R. Hemispheric Lateralization of Resting-State Functional Connectivity of the Ventral Striatum: An Exploratory Study. Brain Struct. Funct. 2017, 222, 2573–2583. [Google Scholar] [PubMed]
- Li, C.S.R.; Yan, P.; Sinha, R.; Lee, T.W. Subcortical processes of motor response inhibition during a stop signal task. NeuroImage 2008, 41, 1352–1363. [Google Scholar] [CrossRef]
- Arness, D.C.; Ollis, T. A mixed-methods study of problematic social media use, attention dysregulation, and social media use motives. Curr. Psychol. 2023, 42, 24379–24398. [Google Scholar]
- Lo, J.C.; Ong, J.L.; Leong, R.L.; Gooley, J.J.; Chee, M.W.L. Cognitive performance, sleepiness, and mood in partially sleep deprived adolescents: The need for sleep study. Sleep 2016, 39, 687–698. [Google Scholar] [CrossRef]
- Robbins, T.W.; Everitt, B.J. Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol. 1996, 6, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Bozyiğit, T.; Yılmaz, S. The relationship between digital game addiction, executive functions and impulsivity in early adolescents. Nesne 2023, 11, 188–198. [Google Scholar]
- Kobayashi, N.; Jitoku, D.; Mochimatsu, R.; Hamamura, T.; Honjo, M.; Takagi, S.; Sugihara, G.; Takahashi, H. Treatment readiness and prognosis for problematic smartphone use: Evaluation of the Stages of Change, Readiness, and Treatment Eagerness Scale (SOCRATES) and log data. PCN Rep. 2024, 3, e172. [Google Scholar] [PubMed]
Characteristics | N = 53 |
---|---|
Gender | |
male | 41 (77%) |
female | 12 (23%) |
Age | |
12–19 | 32 (60%) |
20–29 | 19 (36%) |
over 30 | 2 (4%) |
Duration of illness (months) | 24 (2–108) |
ADHD | 16 (30%) |
ASD | 18 (33%) |
Self-administered psychological scales | Median (min.–max.) |
SAS-SV (Smartphone Addiction Scale Short Version) | 37 (15–52) |
ADHD-RS (ADHD rating scale) | |
ADHD-RS-Inattention subscale | 12 (2–27) |
ADHD-RS-Hyperactivity-Impulsivity subscale | 4 (0–27) |
AQ (Autism Spectrum Quotient) | 21 (7–32) |
AQ-Social Skills | 5 (0–10) |
AQ-Attention Switching | 5 (2–10) |
AQ-Attention to Detail | 3 (0–9) |
AQ-Communication | 4 (0–8) |
AQ-Imagination | 3 (0–7) |
Log data and MRI data | Median (min.–max.) |
screen time (s)/day | 15,491 (0–60,180) |
nighttime screen time (s)/day*1 | 337 (0–20,527) |
log acquisition rate*2 | 35.7 (0–100) |
Left NAcc*3 | 0.459 (0.350–0.516) |
Right NAcc*3 | 0.973 (0.810–1.085) |
Predictor Variables | Coefficient | Standardized Coefficient | t | p | VIF |
---|---|---|---|---|---|
Right NAcc | 8825.523 | 0.330 | 2.371 | 0.022 | 1.005 |
Difficulty in attention switching | 793.284 | 0.183 | 1.317 | 0.195 | 1.005 |
Model Summary | |||||
Observation | F (2,44) | Prob > F | R2 | ||
53 | 3.917 | 0.027 | 0.151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, N.; Jitoku, D.; Hamamura, T.; Honjo, M.; Yamaguchi, Y.; Shimizu, M.; Takagi, S.; Fujino, J.; Sugihara, G.; Takahashi, H. Difficulty in Attention Switching and Its Neural Basis in Problematic Smartphone Use. Brain Sci. 2025, 15, 1100. https://doi.org/10.3390/brainsci15101100
Kobayashi N, Jitoku D, Hamamura T, Honjo M, Yamaguchi Y, Shimizu M, Takagi S, Fujino J, Sugihara G, Takahashi H. Difficulty in Attention Switching and Its Neural Basis in Problematic Smartphone Use. Brain Sciences. 2025; 15(10):1100. https://doi.org/10.3390/brainsci15101100
Chicago/Turabian StyleKobayashi, Nanase, Daisuke Jitoku, Toshitaka Hamamura, Masaru Honjo, Yusei Yamaguchi, Masaaki Shimizu, Shunsuke Takagi, Junya Fujino, Genichi Sugihara, and Hidehiko Takahashi. 2025. "Difficulty in Attention Switching and Its Neural Basis in Problematic Smartphone Use" Brain Sciences 15, no. 10: 1100. https://doi.org/10.3390/brainsci15101100
APA StyleKobayashi, N., Jitoku, D., Hamamura, T., Honjo, M., Yamaguchi, Y., Shimizu, M., Takagi, S., Fujino, J., Sugihara, G., & Takahashi, H. (2025). Difficulty in Attention Switching and Its Neural Basis in Problematic Smartphone Use. Brain Sciences, 15(10), 1100. https://doi.org/10.3390/brainsci15101100