Idiopathic Intracranial Hypertension Animal Models and Venous Sinus Stenting: Status of Disease and Device-Focused Evidence
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Animal Models: IIH, Elevated ICP, Venous Stenting
3.1.1. Diet-Induced Obesity Rodent Models
3.1.2. Androgen Excess Models
3.1.3. CSF Hypersecretion and Absorption Models
3.1.4. Venous Outflow Impairment Models
3.1.5. Models of Dural Sinus Venous Stent Implantation Without Venous Outflow Impairment
3.1.6. Models of Healthy Peripheral Veins (Without Being Intracranial nor Having Venous Outflow Impairment)
3.2. Venous Sinus Stents Used in IIH Patients and Corresponding Animal Data
3.2.1. Precise® Pro RX Carotid/Peripheral Stent System (Cordis, Santa Clara, CA, USA)
3.2.2. Protégé® RX Carotid/EverFlex™ Peripheral Stent System (Medtronic Vascular Inc., Plymouth, MN, USA)
3.2.3. Carotid/Peripheral WALLSTENT® Endoprosthesis (Boston Scientific Corp., Marlborough, MA, USA)
3.2.4. Zilver® 518/Flex Vascular/Biliary Stent (Cook Medical LLC, Bloomington, IN, USA)
3.2.5. Acculink® Carotid/Xact® Carotid/Xpert® Self-Expanding Stent System (Abbott, IL, USA)
3.2.6. LifeStent/LifeStar® Vascular Stent System (Bard Peripheral Vascular Inc., Becton, Dickinson and Company, Tempe, AZ, USA)
3.2.7. Casper™/Roadsaver® Carotid Artery Stent System (Terumo MicroVention, Tustin, CA, USA)
3.2.8. Other Stents
3.2.9. Dedicated Stents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALS | Amyotrophic lateral sclerosis |
AQP1 | Aquaporin-1 |
BCI | Brain–computer interface |
CFR | Code of Federal Regulations |
COF | Chronic outward force |
CSF | Cerebral spinal fluid |
CT | Computed tomography |
CVST | Cerebral venous sinus thrombosis |
FDA | U.S. Food and Drug Administration |
GLP | Good Laboratory Practice |
ICP | Intracranial pressure |
IIH | Idiopathic intracranial hypertension |
IVC | Inferior vena cava |
NKCC1 | Na+-K+-2Cl− cotransporter |
OCT | Optical coherence tomography |
PTX | Paclitaxel |
RF | Radiofrequency |
SFA | Superficial femoral artery |
SSS | Superior sagittal sinus |
TIPS | Transjugular intrahepatic portosystemic shunt |
VRD | Vascular reconstruction device |
VSS | Venous sinus stenting |
References
- Farb, R.I.; Vanek, I.; Scott, J.N.; Mikulis, D.J.; Willinsky, R.A.; Tomlinson, G.; terBrugge, K.G. Idiopathic Intracranial Hypertension: The Prevalence and Morphology of Sinovenous Stenosis. Neurology 2003, 60, 1418–1424. [Google Scholar] [CrossRef]
- Yiangou, A.; Mollan, S.P.; Sinclair, A.J. Idiopathic Intracranial Hypertension: A Step Change in Understanding the Disease Mechanisms. Nat. Rev. Neurol. 2023, 19, 769–785. [Google Scholar] [CrossRef]
- Kalyvas, A.; Neromyliotis, E.; Koutsarnakis, C.; Komaitis, S.; Drosos, E.; Skandalakis, G.P.; Pantazi, M.; Gobin, Y.P.; Stranjalis, G.; Patsalides, A. A Systematic Review of Surgical Treatments of Idiopathic Intracranial Hypertension (IIH). Neurosurg. Rev. 2021, 44, 773–792. [Google Scholar] [CrossRef]
- Mansour, O.Y.; Goma, A.; Mekky, J.; Shafik, M.; Aladham, F.; Alnaami, I.; Al-Jehani, H.M.; Alshamy, A.; Alghamdi, F.; Aykac, O.; et al. Venous Sinus Stenting for Idiopathic Intracranial Hypertension in the MENA Region: Initial Results from the VEHICLE Registry. Neurol. Res. 2025, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Monteiro, A.; Kuo, C.C.; Jacoby, W.T.; Cappuzzo, J.M.; Becker, A.B.; Davies, J.M.; Snyder, K.V.; Levy, E.I.; Siddiqui, A.H. Stenting for Venous Sinus Stenosis in Patients With Idiopathic Intracranial Hypertension: An Updated Systematic Review and Meta-Analysis of the Literature. Neurosurgery 2024, 94, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Patsalides, A.; Oliveira, C.; Wilcox, J.; Brown, K.; Grover, K.; Gobin, Y.P.; Dinkin, M.J. Venous Sinus Stenting Lowers the Intracranial Pressure in Patients with Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2019, 11, 175–178. [Google Scholar] [CrossRef]
- Ognard, J.; Hajj, G.E.; Bayraktar, E.; Ghozy, S.; Kadirvel, R.; Kallmes, D.; Brinjikji, W. E-268 Lack of Specific Animal Model for Venous Sinus Stenting: A Systematic Review and Standardized Evaluation. J. Neurointerv. Surg. 2025, 17, A277. [Google Scholar] [CrossRef]
- Westgate, C.S.J.; Hagen, S.M.; Israelsen, I.M.E.; Hamann, S.; Jensen, R.H.; Eftekhari, S. The Impact of Obesity-Related Raised Intracranial Pressure in Rodents. Sci. Rep. 2022, 12, 9102. [Google Scholar] [CrossRef]
- Wardman, J.H.; Jensen, M.N.; Andreassen, S.N.; Styrishave, B.; Wilhjelm, J.E.; Sinclair, A.J.; MacAulay, N. Modelling Idiopathic Intracranial Hypertension in Rats: Contributions of High Fat Diet and Testosterone to Intracranial Pressure and Cerebrospinal Fluid Production. Fluids Barriers CNS 2023, 20, 44. [Google Scholar] [CrossRef]
- Biousse, V.; Bruce, B.B.; Newman, N.J. Update on the Pathophysiology and Management of Idiopathic Intracranial Hypertension. J. Neurol. Neurosurg. Psychiatry 2012, 83, 488–494. [Google Scholar] [CrossRef]
- Uldall, M.; Bhatt, D.K.; Kruuse, C.; Juhler, M.; Jansen-Olesen, I.; Jensen, R.H. Choroid Plexus Aquaporin 1 and Intracranial Pressure Are Increased in Obese Rats: Towards an Idiopathic Intracranial Hypertension Model? Int. J. Obes. 2017, 41, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Courtney, Y.; Lehtinen, M.K. Apocrine Secretion by the Choroid Plexus. Fluids Barriers CNS 2025, 22, 75. [Google Scholar] [CrossRef]
- MacAulay, N.; Keep, R.F.; Zeuthen, T. Cerebrospinal Fluid Production by the Choroid Plexus: A Century of Barrier Research Revisited. Fluids Barriers CNS 2022, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Wardman, J.H.; Andreassen, S.N.; Toft-Bertelsen, T.L.; Jensen, M.N.; Wilhjelm, J.E.; Styrishave, B.; Hamann, S.; Heegaard, S.; Sinclair, A.J.; MacAulay, N. CSF Hyperdynamics in Rats Mimicking the Obesity and Androgen Excess Characteristic of Patients with Idiopathic Intracranial Hypertension. Fluids Barriers CNS 2024, 21, 10. [Google Scholar] [CrossRef]
- O’Reilly, M.W.; Westgate, C.S.J.; Hornby, C.; Botfield, H.; Taylor, A.E.; Markey, K.; Mitchell, J.L.; Scotton, W.J.; Mollan, S.P.; Yiangou, A.; et al. A Unique Androgen Excess Signature in Idiopathic Intracranial Hypertension Is Linked to Cerebrospinal Fluid Dynamics. JCI Insight 2019, 4, e125348. [Google Scholar] [CrossRef]
- Steffensen, A.B.; Oernbo, E.K.; Stoica, A.; Gerkau, N.J.; Barbuskaite, D.; Tritsaris, K.; Rose, C.R.; MacAulay, N. Cotransporter-Mediated Water Transport Underlying Cerebrospinal Fluid Formation. Nat. Commun. 2018, 9, 2167. [Google Scholar] [CrossRef]
- Tan, M.G.; Worley, B.; Kim, W.B.; Ten Hove, M.; Beecker, J. Drug-Induced Intracranial Hypertension: A Systematic Review and Critical Assessment of Drug-Induced Causes. Am. J. Clin. Dermatol. 2020, 21, 163–172. [Google Scholar] [CrossRef]
- Maddux, G.W.; Foltz, F.M.; Nelson, S.R. Effect of Vitamin A Intoxication on Intracranial Pressure and Brain Water in Rats. J. Nutr. 1974, 104, 478–482. [Google Scholar] [CrossRef]
- Eftekhari, S.; Westgate, C.S.J.; Uldall, M.S.; Jensen, R.H. Preclinical Update on Regulation of Intracranial Pressure in Relation to Idiopathic Intracranial Hypertension. Fluids Barriers CNS 2019, 16, 35. [Google Scholar] [CrossRef] [PubMed]
- Khasawneh, A.H.; Alexandra, P.C.; Zajciw, P.A.; Harris, C.A. A Preliminary Exploration of Acute Intracranial Pressure-Cerebrospinal Fluid Production Relationships in Experimental Hydrocephalus. Brain Circ. 2020, 6, 200–207. [Google Scholar] [CrossRef]
- Abdou, H.; Edwards, J.; Patel, N.; Stonko, D.P.; Elansary, N.; Lang, E.; Richmond, M.J.; Ptak, T.; White, J.M.; Scalea, T.M.; et al. Characterizing Brain Perfusion in a Swine Model of Raised Intracranial Pressure. J. Surg. Res. 2022, 278, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, P.; Metellus, P.; Velly, L.; Vidal, V.; Rolland, P.-H.; Mekaouche, M.; Dubreuil, G.; Levrier, O. Functional Cerebral Venous Outflow in Swine and Baboon: Feasibility of an Intracranial Venous Hypertension Model. J. Investig. Surg. 2008, 21, 323–329. [Google Scholar] [CrossRef]
- Ungersböck, K.; Heimann, A.; Kempski, O. Cerebral Blood Flow Alterations in a Rat Model of Cerebral Sinus Thrombosis. Stroke 1993, 24, 563–569; discussion 569–570. [Google Scholar] [CrossRef]
- Yenigün, M.; Jünemann, M.; Gerriets, T.; Stolz, E. Sinus Thrombosis—Do Animal Models Really Cover the Clinical Syndrome? Ann. Transl. Med. 2015, 3, 138. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Manaenko, A.; Hu, Q.; Zhang, X. Cerebral Venous Impairment and Cerebral Venous Sinus Thrombosis. Brain Hemorrhages 2024, 5, 131–142. [Google Scholar] [CrossRef]
- Ognard, J.; El Hajj, G.; Verma, O.; Ghozy, S.; Kadirvel, R.; Kallmes, D.F.; Brinjikji, W. Advances in Endovascular Brain Computer Interface: Systematic Review and Future Implications. J. Neurosci. Methods 2025, 420, 110471. [Google Scholar] [CrossRef]
- Oxley, T.J.; Opie, N.L.; Rind, G.S.; Liyanage, K.; John, S.E.; Ronayne, S.; McDonald, A.J.; Dornom, A.; Lovell, T.J.H.; Mitchell, P.J.; et al. An Ovine Model of Cerebral Catheter Venography for Implantation of an Endovascular Neural Interface. J. Neurosurg. 2018, 128, 1020–1027. [Google Scholar] [CrossRef]
- Wang, X.; Wu, S.; Yang, H.; Bao, Y.; Li, Z.; Gan, C.; Deng, Y.; Cao, J.; Li, X.; Wang, Y.; et al. Intravascular Delivery of an Ultraflexible Neural Electrode Array for Recordings of Cortical Spiking Activity. Nat. Commun. 2024, 15, 9442. [Google Scholar] [CrossRef]
- Nordström, C.-H.; Jakobsen, R.; Mølstrøm, S.; Nielsen, T.H. Cerebral Venous Blood Is Not Drained via the Internal Jugular Vein in the Pig. Resuscitation 2021, 162, 437–438. [Google Scholar] [CrossRef]
- Habib, C.A.; Utriainen, D.; Peduzzi-Nelson, J.; Dawe, E.; Mattei, J.; Latif, Z.; Casey, K.; Haacke, E.M. MR Imaging of the Yucatan Pig Head and Neck Vasculature. J. Magn. Reson. Imaging 2013, 38, 641–649. [Google Scholar] [CrossRef]
- Pasarikovski, C.R.; Ku, J.C.; Keith, J.; Ramjist, J.; Dobashi, Y.; Priola, S.M.; da Costa, L.; Yang, V.X.D. Endovascular Cerebral Venous Sinus Imaging with Optical Coherence Tomography. AJNR Am. J. Neuroradiol. 2020, 41, 2292–2297. [Google Scholar] [CrossRef] [PubMed]
- Boddu, S.R.; Gobin, P.; Oliveira, C.; Dinkin, M.; Patsalides, A. Anatomic Measurements of Cerebral Venous Sinuses in Idiopathic Intracranial Hypertension Patients. PLoS ONE 2018, 13, e0196275. [Google Scholar] [CrossRef] [PubMed]
- Junior, A.M.d.O.G.; Chaves, R.H.d.F.; Furlaneto, I.P.; Rodrigues, E.d.M.; de Albuquerque, F.B.A.; Smit, J.H.A.; de Oliveira, C.P.; Abib, S.d.C.V. Comparative Angiotomographic Study of Swine Vascular Anatomy: Contributions to Research and Training Models in Vascular and Endovascular Surgery. J. Vasc. Bras. 2021, 20, e20200086. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, Z.; Bian, C.; Guo, L.; Tong, Z.; Guo, J.; Qi, L.; Cui, S.; Zhang, C.; Chen, Y.; et al. In Vivo Evaluation of Safety and Performance of a Tapered Nitinol Venous Stent with Inclined Proximal End in an Ovine Iliac Venous Model. Sci. Rep. 2024, 14, 7669. [Google Scholar] [CrossRef]
- Marston, W.A.; Chinubhai, A.; Kao, S.; Kalbaugh, C.; Kouri, A. In Vivo Evaluation of Safety and Performance of a Nitinol Venous Stent in an Ovine Iliac Venous Model. J. Vasc. Surg. Venous Lymphat. Disord. 2016, 4, 73–79. [Google Scholar] [CrossRef]
- Barbati, M.E.; Bechter-Hugl, B.; Thomis, S.; Hermanns-Sachweh, B.; Coudyzer, W.; Yan, Y.; Shekarchian, S.; Jalaie, H. Evaluation of Safety and Performance of a New Prototype Self-Expandable Nitinol Venous Stent in an Ovine Model. JVS Vasc. Sci. 2023, 4, 100113. [Google Scholar] [CrossRef]
- Jalaie, H.; Schleimer, K.; Toonder, I.M.; Gombert, A.; Afify, M.; Doganci, S.; Modabber, A.; Razavi, M.K.; Barbati, M.E. Effect of Stent Strut Interval on Neointima Formation After Venous Stenting in an Ovine Model. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 276–283. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Sugimoto, K.; Zamora, C.A.; Takahashi, T.; Hayashi, Y.; Sugimura, K. Placement of Self-Expanding Stents with Different Diameters in the Porcine Venous System: An Experimental Study. J. Vasc. Interv. Radiol. 2006, 17, 113–119. [Google Scholar] [CrossRef]
- Ramot, Y.; Steiner, M.; Vazana, U.; Nyska, A.; Horev, A. VIVA Stent Preclinical Evaluation in Swine: A Novel Cerebral Venous Stent with a Unique Delivery System. J. Clin. Med. 2025, 14, 4721. [Google Scholar] [CrossRef]
- Kitrou, P.M.; Spiliopoulos, S.; Katsanos, K.; Tsantis, S.; Diamantopoulos, A.; Kallidonis, P.; Kyriakopoulou, M.; Kagadis, G.C.; Karnabatidis, D.; Siablis, D. Venous Drug-Eluting vs. Bare-Metal Stenting: An Experimental Animal Study Using Frequency Domain Optical Coherence Tomography. Hell. J. Cardiol. 2014, 55, 386–392. [Google Scholar]
- Oliver, A.A.; Cortese, J.; Ognard, J.; Dai, D.; Bayraktar, E.A.; Ding, Y.H.; Christensen, T.A.; Gamb, S.I.; Ranatunga, W.K.; Carlson, K.D.; et al. Magnetic Capture of Autologous Mesenchymal Stem Cells Promotes the Rapid Endothelialization of Peripheral Venous Stents in Rabbits. Acta Biomater. 2025. [Google Scholar] [CrossRef] [PubMed]
- Walsh, D.R.; Lynch, J.J.; O’ Connor, D.T.; Newport, D.T.; Mulvihill, J.J.E. Mechanical and Structural Characterisation of the Dural Venous Sinuses. Sci. Rep. 2020, 10, 21763. [Google Scholar] [CrossRef] [PubMed]
- Koskinas, K.C.; Chatzizisis, Y.S.; Antoniadis, A.P.; Giannoglou, G.D. Role of Endothelial Shear Stress in Stent Restenosis and Thrombosis: Pathophysiologic Mechanisms and Implications for Clinical Translation. J. Am. Coll. Cardiol. 2012, 59, 1337–1349. [Google Scholar] [CrossRef] [PubMed]
- Perkins, L.E.L. Animal Models of Vascular Stenting. Drug Discov. Today: Dis. Models 2017, 24, 31–36. [Google Scholar] [CrossRef]
- Touzé, R.; Bonnin, S.; Houdart, E.; Nicholson, P.; Bodaghi, B.; Shotar, E.; Clarençon, F.; Lenck, S.; Touitou, V. Long-Term Kinetic Papilledema Improvement After Venous Sinus Stenting in Idiopathic Intracranial Hypertension. Clin. Neuroradiol. 2021, 31, 483–490. [Google Scholar] [CrossRef]
- Schwarz, J.; Al Balushi, A.; Sundararajan, S.; Dinkin, M.; Oliveira, C.; Greenfield, J.P.; Patsalides, A. Management of Idiopathic Intracranial Hypertension in Children Utilizing Venous Sinus Stenting. Interv. Neuroradiol. 2021, 27, 257–265. [Google Scholar] [CrossRef]
- Garner, R.M.; Aldridge, J.B.; Wolfe, S.Q.; Fargen, K.M. Quality of Life, Need for Retreatment, and the Re-Equilibration Phenomenon after Venous Sinus Stenting for Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2021, 13, 79–85. [Google Scholar] [CrossRef]
- Shazly, T.A.; Jadhav, A.P.; Aghaebrahim, A.; Ducruet, A.F.; Jankowitz, B.T.; Jovin, T.G.; Bonhomme, G.R. Venous Sinus Stenting Shortens the Duration of Medical Therapy for Increased Intracranial Pressure Secondary to Venous Sinus Stenosis. J. Neurointerv. Surg. 2018, 10, 310–314. [Google Scholar] [CrossRef]
- Liu, K.C.; Starke, R.M.; Durst, C.R.; Wang, T.R.; Ding, D.; Crowley, R.W.; Newman, S.A. Venous Sinus Stenting for Reduction of Intracranial Pressure in IIH: A Prospective Pilot Study. J. Neurosurg. 2017, 127, 1126–1133. [Google Scholar] [CrossRef]
- Satti, S.R.; Leishangthem, L.; Spiotta, A.; Chaudry, M.I. Dural Venous Sinus Stenting for Medically and Surgically Refractory Idiopathic Intracranial Hypertension. Interv. Neuroradiol. 2017, 23, 186–193. [Google Scholar] [CrossRef]
- Zehri, A.H.; Lee, K.E.; Kartchner, J.; Arnel, M.; Martin, T.; Wolfe, S.Q.; Fargen, K.M. Efficacy of Dural Venous Sinus Stenting in Treating Idiopathic Intracranial Hypertension with Acute Vision Loss. Neuroradiol. J. 2022, 35, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Carlos Martinez-Gutierrez, J.; Kole, M.J.; Lopez-Rivera, V.; Inam, M.E.; Tang, R.; Al-Zubidi, N.; Adesina, O.-O.; Lekka, E.; Engstrom, A.C.; Sheth, S.; et al. Primary Balloon Angioplasty of Venous Sinus Stenosis in Idiopathic Intracranial Hypertension. Interv. Neuroradiol. 2023, 29, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Raynald; Yang, H.; Tong, X.; Huo, X.; Li, X.; Liu, L.; Sui, B.; Qu, H.; Dong, K.; Wang, Y.; et al. Stenting versus Medical Treatment for Idiopathic Intracranial Hypertension: A Matched-Control Study. J. Neurointerv. Surg. 2023, 15, 1021–1026. [Google Scholar] [CrossRef]
- Buhbut, O.; Ben Assayag, H.; Aharoni-Bar, S.; Epstein, M.; Tsumi, E.; Regev, T.; Bunin, A.; Honig, A.; Kotaro, B.O.; Ben Arie, G.; et al. Disability and Patient-Reported Satisfaction in Women with Idiopathic Intracranial Hypertension: A Comparative Study of Venous Sinus Stenting and Medical Management. Diagnostics 2024, 14, 2572. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Raynald; Huo, X.; Tong, X.; Wang, Z.; Li, X.; Liu, L.; Wang, S.; Miao, Z.; Mo, D. The Effects of Pressure Gradient on Papilledema Improvement After Venous Sinus Stenting in Idiopathic Intracranial Hypertension. J. Endovasc. Ther. 2025, 32, 467–474. [Google Scholar] [CrossRef]
- Belachew, N.F.; Baschung, S.; Almiri, W.; Encinas, R.; Kaesmacher, J.; Dobrocky, T.; Schankin, C.J.; Abegg, M.; Piechowiak, E.I.; Raabe, A.; et al. Casper Versus Precise Stent for the Treatment of Patients with Idiopathic Intracranial Hypertension. Clin. Neuroradiol. 2021, 31, 853–862. [Google Scholar] [CrossRef]
- Dinkin, M.J.; Patsalides, A. Venous Sinus Stenting in Idiopathic Intracranial Hypertension: Results of a Prospective Trial. J. Neuro-Ophthalmol. 2017, 37, 113–121. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Yang, H.; Raynald; Tong, X.; Wang, Y.; Miao, Z.; Mo, D. Factors Influencing Favourable Clinical Outcomes in Idiopathic Intracranial Hypertension with Venous Sinus Stenosis Stenting. Clin. Neuroradiol. 2025, 35, 287–293. [Google Scholar] [CrossRef]
- Wang, S.; Raynald; Zhang, R.; Yang, H.; Tong, X.; Song, S.; Liang, X.; Wang, Y.; Miao, Z.; Mo, D. Factors Affecting Visual Outcomes after Dural Venous Sinus Stenting in Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2025. [Google Scholar] [CrossRef]
- Lee, K.E.; Zehri, A.; Soldozy, S.; Syed, H.; Catapano, J.S.; Maurer, R.; Albuquerque, F.C.; Liu, K.C.; Wolfe, S.Q.; Brown, S.; et al. Dural Venous Sinus Stenting for Treatment of Pediatric Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2021, 13, 465–470. [Google Scholar] [CrossRef]
- Shields, L.B.E.; Shields, C.B.; Yao, T.L.; Plato, B.M.; Zhang, Y.P.; Dashti, S.R. Endovascular Treatment for Venous Sinus Stenosis in Idiopathic Intracranial Hypertension: An Observational Study of Clinical Indications, Surgical Technique, and Long-Term Outcomes. World Neurosurg. 2019, 121, e165–e171. [Google Scholar] [CrossRef]
- Cappuzzo, J.M.; Hess, R.M.; Morrison, J.F.; Davies, J.M.; Snyder, K.V.; Levy, E.I.; Siddiqui, A.H. Transverse Venous Stenting for the Treatment of Idiopathic Intracranial Hypertension, or Pseudotumor Cerebri. Neurosurg. Focus 2018, 45, E11. [Google Scholar] [CrossRef]
- El Mekabaty, A.; Obuchowski, N.A.; Luciano, M.G.; John, S.; Chung, C.Y.; Moghekar, A.; Jones, S.; Hui, F.K. Predictors for Venous Sinus Stent Retreatment in Patients with Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2017, 9, 1228–1232. [Google Scholar] [CrossRef]
- Kumpe, D.A.; Seinfeld, J.; Huang, X.; Mei, Q.; Case, D.E.; Roark, C.D.; Subramanian, P.S.; Lind, K.E.; Pelak, V.S.; Bennett, J.L. Dural Sinus Stenting for Idiopathic Intracranial Hypertension: Factors Associated with Hemodynamic Failure and Management with Extended Stenting. J. Neurointerv. Surg. 2017, 9, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Ducruet, A.F.; Crowley, R.W.; McDougall, C.G.; Albuquerque, F.C. Long-Term Patency of Venous Sinus Stents for Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2014, 6, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Fields, J.D.; Javedani, P.P.; Falardeau, J.; Nesbit, G.M.; Dogan, A.; Helseth, E.K.; Liu, K.C.; Barnwell, S.L.; Petersen, B.D. Dural Venous Sinus Angioplasty and Stenting for the Treatment of Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2013, 5, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, F.C.; Dashti, S.R.; Hu, Y.C.; Newman, C.B.; Teleb, M.; McDougall, C.G.; Rekate, H.L. Intracranial Venous Sinus Stenting for Benign Intracranial Hypertension: Clinical Indications, Technique, and Preliminary Results. World Neurosurg. 2011, 75, 648–652. [Google Scholar] [CrossRef]
- Bilgin, C.; Oliver, A.A.; Cutsforth-Gregory, J.K.; Chen, J.J.; Rammos, S.K.; Cloft, H.J.; Lanzino, G.; Kallmes, D.F.; Brinjikji, W. Zilver Stent versus Carotid Wallstent for Endovascular Treatment of Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2023, 15, 1269–1273. [Google Scholar] [CrossRef]
- Hendrix, P.; Whiting, C.J.; Griessenauer, C.J.; Bohan, C.; Schirmer, C.M.; Goren, O. Neuro-Ophthalmological Evaluation Including Optical Coherence Tomography Surrounding Venous Sinus Stenting in Idiopathic Intracranial Hypertension with Papilledema: A Case Series. Neurosurg. Rev. 2022, 45, 2239–2247. [Google Scholar] [CrossRef]
- Asif, H.; Craven, C.L.; Siddiqui, A.H.; Shah, S.N.; Matloob, S.A.; Thorne, L.; Robertson, F.; Watkins, L.D.; Toma, A.K. Idiopathic Intracranial Hypertension: 120-Day Clinical, Radiological, and Manometric Outcomes after Stent Insertion into the Dural Venous Sinus. J. Neurosurg. 2018, 129, 723–731. [Google Scholar] [CrossRef]
- Matloob, S.A.; Toma, A.K.; Thompson, S.D.; Gan, C.L.; Robertson, F.; Thorne, L.; Watkins, L.D. Effect of Venous Stenting on Intracranial Pressure in Idiopathic Intracranial Hypertension. Acta Neurochir. 2017, 159, 1429–1437. [Google Scholar] [CrossRef]
- Handzic, A.; Xie, J.S.; Hendriks, E.; Mosimann, P.; Nicholson, P.; Micieli, J.; Margolin, E. Visual and Pharmacotherapy Outcomes After Transverse Sinus Stenting for Idiopathic Intracranial Hypertension. J. Neuroophthalmol. 2025, 45, 10–16. [Google Scholar] [CrossRef]
- Larson, A.; Rinaldo, L.; Chen, J.J.; Cutsforth-Gregory, J.; Theiler, A.R.; Brinjikji, W. Reductions in Bilateral Transverse Sinus Pressure Gradients with Unilateral Transverse Venous Sinus Stenting for Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2021, 13, 187–190. [Google Scholar] [CrossRef]
- Lenck, S.; Vallée, F.; Labeyrie, M.-A.; Touitou, V.; Saint-Maurice, J.-P.; Guillonnet, A.; Tantot, A.; Crassard, I.; Bernat, A.-L.; Houdart, E. Stenting of the Lateral Sinus in Idiopathic Intracranial Hypertension According to the Type of Stenosis. Neurosurgery 2017, 80, 393. [Google Scholar] [CrossRef] [PubMed]
- Patsalides, A.; Fargen, K.M.; Davies, J.M.; Boddu, S.R.; Dinkin, M.; Priest, R.; Pomeranz, H.D.; Gobin, Y.P.; Siddiqui, A.H. The River Study: The First Prospective Multicenter Trial of a Novel Venous Sinus Stent for the Treatment of Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2025. [Google Scholar] [CrossRef]
- Mendes Pereira, V.; Rodrigues, R.F.; Consoli, A.; Janot, K.; Jimenez, A.; Diestro, J.D.B.; Spears, J.; Vanek, I.; Liu, E.; Cancelliere, N. Follow-up Imaging Characteristics of a Novel Braided Stent (BosSTENTTM) in Treating Transverse Sinus Stenosis Related to Venous Congestion and/or Pulsatile Tinnitus. Interv. Neuroradiol. 2025, 15910199251358917. [Google Scholar] [CrossRef] [PubMed]
- Koovor, J.M.; Lopez, G.V.; Riley, K.; Tejada, J. Transverse Venous Sinus Stenting for Idiopathic Intracranial Hypertension: Safety and Feasibility. Neuroradiol. J. 2018, 31, 513–517. [Google Scholar] [CrossRef]
- Gorjian, M.; Andrada, J.E.; Sitko, K.R.; Sorte, D.E.; Taylor, C.L.; Eliyas, J.K.; Carlson, A.P. Dural Venous Sinus Stenting Technique for Idiopathic Intracranial Hypertension in Patients with Tortuous Venous Anatomy. Neurosurg. Rev. 2023, 46, 177. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Rajah, G.; Ding, Y.; Hua, Y.; Zhang, H.; Jiao, L.; Li, G.; Ren, M.; Meng, R.; Lin, F.; et al. Safety and Efficacy of Intravascular Ultrasound as an Adjunct to Stenting for Cerebral Venous Sinus Stenosis-Induced Idiopathic Intracranial Hypertension: A Pilot Study. J. Neurosurg. 2020, 132, 749–754. [Google Scholar] [CrossRef]
- Liu, X.; Di, H.; Wang, J.; Cao, X.; Du, Z.; Zhang, R.; Yu, S.; Li, B. Endovascular Stenting for Idiopathic Intracranial Hypertension with Venous Sinus Stenosis. Brain Behav. 2019, 9, e01279. [Google Scholar] [CrossRef]
- Raper, D.M.S.; Ding, D.; Buell, T.J.; Crowley, R.W.; Starke, R.M.; Liu, K.C. Effect of Body Mass Index on Venous Sinus Pressures in Idiopathic Intracranial Hypertension Patients Before and After Endovascular Stenting. Neurosurgery 2018, 82, 555. [Google Scholar] [CrossRef]
- Kumpe, D.A.; Bennett, J.L.; Seinfeld, J.; Pelak, V.S.; Chawla, A.; Tierney, M. Dural Sinus Stent Placement for Idiopathic Intracranial Hypertension: Clinical Article. J. Neurosurg. 2012, 116, 538–548. [Google Scholar] [CrossRef] [PubMed]
- El Mekabaty, A.; Pearl, M.S.; Moghekar, A.; Gailloud, P. Mid-Term Assessment of Transverse Sinus Stent Patency in 104 Patients Treated for Intracranial Hypertension Secondary to Dural Sinus Stenosis. J. Neurointerv. Surg. 2021, 13, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Tu, K.; He, J.; Guan, Z.; Gan, Y.; Chen, F.; Dong, K.; Wang, S.; Gong, X.; Qu, H.; et al. Baseline Factors Associated with Post-Stenting Intracranial Pressure in Patients with Idiopathic Intracranial Hypertension with Venous Sinus Stenosis. Headache 2025. [Google Scholar] [CrossRef] [PubMed]
- Raygor, K.P.; Jaikumar, V.; Malueg, M.D.; Im, J.; Khan, H.S.; Bouslama, M.; Lincoff, N.S.; Monteiro, A.; Lai, P.M.R.; Davies, J.M.; et al. Comparative Analysis of Dural Venous Sinus Pressures, Gradients, and Dimensions in Idiopathic Intracranial Hypertension Between Stented and Unstented Patients. Neurosurgery 2025. [Google Scholar] [CrossRef]
- Levitt, M.R.; Albuquerque, F.C.; Gross, B.A.; Moon, K.; Jadhav, A.P.; Ducruet, A.F.; Crowley, R.W. Venous Sinus Stenting in Patients without Idiopathic Intracranial Hypertension. J. Neurointerv. Surg. 2017, 9, 512–515. [Google Scholar] [CrossRef]
- Teleb, M.S.; Cziep, M.E.; Issa, M.; Lazzaro, M.; Asif, K.; Hun Hong, S.; Lynch, J.R.; Fitzsimmons, B.M.; Remler, B.F.; Zaidat, O.O. Stenting and Angioplasty for Idiopathic Intracranial Hypertension: A Case Series with Clinical, Angiographic, Ophthalmological, Complication, and Pressure Reporting. J. Neuroimaging 2015, 25, 72–80. [Google Scholar] [CrossRef]
- Aguilar-Pérez, M.; Martinez-Moreno, R.; Kurre, W.; Wendl, C.; Bäzner, H.; Ganslandt, O.; Unsöld, R.; Henkes, H. Endovascular Treatment of Idiopathic Intracranial Hypertension: Retrospective Analysis of Immediate and Long-Term Results in 51 Patients. Neuroradiology 2017, 59, 277–287. [Google Scholar] [CrossRef]
- Xu, Z.; Yan, L.; Xu, Y.; He, H.; Xu, Y.; Zhang, S.; Zhu, M.; Wu, Y.; Shui, S. Stenting versus Balloon Angioplasty Alone for Idiopathic Intracranial Hypertension. Quant. Imaging Med. Surg. 2024, 14, 9431–9443. [Google Scholar] [CrossRef]
- Smith, K.A.; Peterson, J.C.; Arnold, P.M.; Camarata, P.J.; Whittaker, T.J.; Abraham, M.G. A Case Series of Dural Venous Sinus Stenting in Idiopathic Intracranial Hypertension: Association of Outcomes with Optical Coherence Tomography1. Int. J. Neurosci. 2017, 127, 145–153. [Google Scholar] [CrossRef]
- Silva, J.M.A.; Conti, M.L.M.; Aguiar, G.B.; Jory, M.; Monzillo, P.H.; Veiga, J.C.E. Endovascular Treatment for Idiopathic Intracranial Hypertension Improves Clinical Symptoms and Signs. Arq. Bras. De. Neurocir. Braz. Neurosurg. 2017, 36, 01–06. [Google Scholar] [CrossRef]
- Boddu, S.; Dinkin, M.; Suurna, M.; Hannsgen, K.; Bui, X.; Patsalides, A. Resolution of Pulsatile Tinnitus after Venous Sinus Stenting in Patients with Idiopathic Intracranial Hypertension. PLoS ONE 2016, 11, e0164466. [Google Scholar] [CrossRef]
- Bussière, M.; Falero, R.; Nicolle, D.; Proulx, A.; Patel, V.; Pelz, D. Unilateral Transverse Sinus Stenting of Patients with Idiopathic Intracranial Hypertension. Am. J. Neuroradiol. 2010, 31, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Jin, H.; Hu, Y.; Chen, L.; Chen, Z.; Zhong, G. Long-Term Efficacy of Venous Sinus Stenting in the Treatment of Idiopathic Intracranial Hypertension. CNS Neurosci. Ther. 2024, 30, e14356. [Google Scholar] [CrossRef]
- Ahmed, R.M.; Wilkinson, M.; Parker, G.D.; Thurtell, M.J.; Macdonald, J.; McCluskey, P.J.; Allan, R.; Dunne, V.; Hanlon, M.; Owler, B.K.; et al. Transverse Sinus Stenting for Idiopathic Intracranial Hypertension: A Review of 52 Patients and of Model Predictions. AJNR Am. J. Neuroradiol. 2011, 32, 1408–1414. [Google Scholar] [CrossRef]
- Donnet, A.; Metellus, P.; Levrier, O.; Mekkaoui, C.; Fuentes, S.; Dufour, H.; Conrath, J.; Grisoli, F. Endovascular Treatment of Idiopathic Intracranial Hypertension. Neurology 2008, 70, 641–647. [Google Scholar] [CrossRef]
- Goodwin, C.R.; Elder, B.D.; Ward, A.; Orkoulas-Razis, D.; Kosztowski, T.A.; Hoffberger, J.; Moghekar, A.; Radvany, M.; Rigamonti, D. Risk Factors for Failed Transverse Sinus Stenting in Pseudotumor Cerebri Patients. Clin. Neurol. Neurosurg. 2014, 127, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.N.P. Idiopathic Intracranial Hypertension: 12 Cases Treated by Venous Sinus Stenting. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1662–1666. [Google Scholar] [CrossRef]
- Iyer, A.M.; Midtlien, J.P.; Kittel, C.; Klever, L.A.; Wiater, A.; Chang, E.; Margraf, C.; Fargen, K.M. The Correlation between Intracranial Pressure and Venous Sinus Pressures Changes after Venous Sinus Stenting. J. Neurointerv. Surg. 2025. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tong, X.; Li, X.; Liu, L.; Liu, Z.; Mo, D.; Wang, Y. Association of Post-Intervention Pressure Gradient with Symptom-Free at 6 Months in Idiopathic Intracranial Hypertension with Venous Sinus Stenosis Treated by Stenting. Interv. Neuroradiol. 2023, 29, 413–418. [Google Scholar] [CrossRef]
- Tanaka, K.; Winters, S.; Parker, G.D.; Allan, R.; Brunacci, D.; Ang, T.; Wong, J.; Harrison, E.; Halmagyi, G.M. Repeat Venous Sinus Stenting for Management of Recurrent Sinus Stenosis Related Treatment Failure of Idiopathic Intracranial Hypertension: A Case Series. Interv. Neuroradiol. 2025, 15910199251332396. [Google Scholar] [CrossRef]
- Abdalkader, M.; Klein, P.; Nguyen, T.N. Outcomes of Venous Sinus Stenosis Stenting in Patients with Pulsatile Tinnitus and Sigmoid Sinus Wall Anomalies. J. Neurointerv. Surg. 2025. [Google Scholar] [CrossRef]
- Ahlhelm, F.; Kaufmann, R.; Ahlhelm, D.; Ong, M.F.; Roth, C.; Reith, W. Carotid Artery Stenting Using a Novel Self-Expanding Braided Nickel–Titanium Stent: Feasibility and Safety Porcine Trial. Cardiovasc. Interv. Radiol. 2009, 32, 1019–1027. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Summary of Safety and Effectiveness Data: Precise® Nitninol Stent System; Center for Devices and Radiological Health (CDRH): Silver Spring, MD, USA, 2007.
- de Vries, E.E.; Kök, M.; Hoving, A.M.; Slump, C.H.; Toorop, R.J.; de Borst, G.J. (In)Comparability of Carotid Artery Stent Characteristics: A Systematic Review on Assessment and Comparison with Manufacturer Data. Cardiovasc. Interv. Radiol. 2020, 43, 1430–1437. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Summary of Safety and Effectiveness Data: Protégé® GPSTM and RX Carotid Stent Systems; Center for Devices and Radiological Health (CDRH): Silver Spring, MD, USA, 2007.
- Dake, M.D.; Van Alstine, W.G.; Zhou, Q.; Ragheb, A.O. Polymer-Free Paclitaxel-Coated Zilver PTX Stents—Evaluation of Pharmacokinetics and Comparative Safety in Porcine Arteries. J. Vasc. Interv. Radiol. 2011, 22, 603–610. [Google Scholar] [CrossRef]
- Sakamoto, A.; Torii, S.; Jinnouchi, H.; Fuller, D.; Cornelissen, A.; Sato, Y.; Kuntz, S.; Mori, M.; Kawakami, R.; Kawai, K.; et al. Vascular Response of a Polymer-Free Paclitaxel-Coated Stent (Zilver PTX) versus a Polymer-Coated Paclitaxel-Eluting Stent (Eluvia) in Healthy Swine Femoropopliteal Arteries. J. Vasc. Interv. Radiol. 2021, 32, 792–801.e5. [Google Scholar] [CrossRef]
- Torii, S.; Yahagi, K.; Mori, H.; Harari, E.; Romero, M.E.; Kolodgie, F.D.; Young, B.; Ragheb, A.; Virmani, R.; Finn, A.V. Safety of Zilver PTX Drug-Eluting Stent Implantation Following Drug-Coated Balloon Dilation in a Healthy Swine Model. J. Endovasc. Ther. 2018, 25, 118–126. [Google Scholar] [CrossRef]
- Gasior, P.; Cheng, Y.; Valencia, A.F.; McGregor, J.; Conditt, G.B.; Kaluza, G.L.; Granada, J.F. Impact of Fluoropolymer-Based Paclitaxel Delivery on Neointimal Proliferation and Vascular Healing: A Comparative Peripheral Drug-Eluting Stent Study in the Familial Hypercholesterolemic Swine Model of Femoral Restenosis. Circ. Cardiovasc. Interv. 2017, 10, e004450. [Google Scholar] [CrossRef]
- Hiraki, T.; Pavcnik, D.; Uchida, B.T.; Timmermans, H.A.; Wu, R.-H.; Niyyati, M.; Keller, F.S.; Rösch, J. Small Intestinal Submucosa Sandwich Zilver Stent-Grafts for TIPS: Experimental Pilot Study in Swine. Minim. Invasive Ther. Allied Technol. 2005, 14, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Niyyati, M.; Petersen, B.D.; Pavcnik, D.; Uchida, B.T.; Timmermans, H.A.; Hiraki, T.; Wu, R.-H.; Brountzos, E.; Keller, F.S.; Rösch, J. A Flexible Stent with Small Intestinal Submucosa Covering for Direct Intrahepatic Portocaval Shunt: Experimental Pilot Study in Swine. Cardiovasc. Interv. Radiol. 2005, 28, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Toyota, N.; Pavcnik, D.; VanAlstine, W.; Uchida, B.T.; Timmermans, H.A.; Yin, Q.; Kaufman, J.A.; Keller, F.S.; Ito, K.; Rösch, J. Comparison of Small Intestinal Submucosa–Covered and Noncovered Nitinol Stents in Sheep Iliac Arteries: A Pilot Study. J. Vasc. Interv. Radiol. 2002, 13, 489–498. [Google Scholar] [CrossRef]
- Barth, K.H.; Virmani, R.; Froelich, J.; Takeda, T.; Lossef, S.V.; Newsome, J.; Jones, R.; Lindisch, D. Paired Comparison of Vascular Wall Reactions to Palmaz Stents, Strecker Tantalum Stents, and Wallstents in Canine Iliac and Femoral Arteries. Circulation 1996, 93, 2161–2169. [Google Scholar] [CrossRef]
- Summary of Safety and Effectiveness Data (SSED): Zilver® PTX® Drug-Eluting Peripheral Stent; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2012.
- Che, H.; Jiang, J.; Liu, H.; Wei, J.; Zhang, X. Preliminary Report of a New Type of Braided Vein Stent in Animals. Phlebology 2019, 34, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Cejna, M.; Virmani, R.; Jones, R.; Bergmeister, H.; Loewe, C.; Schoder, M.; Grgurin, M.; Lammer, J. Biocompatibility and Performance of the Wallstent and the Wallgraft, Jostent, and Hemobahn Stent-Grafts in a Sheep Model. J. Vasc. Interv. Radiol. 2002, 13, 823–830. [Google Scholar] [CrossRef] [PubMed]
- SCHÜRMANN, K.; Vorwerk, D.; Kulisch, A.; Stroehmer-Kulisch, E.; Biesterfeld, S.; Stopinski, T.; GÜNTHER, R.W. Experimental Arterial Stent Placement: Comparison of a New Nitinol Stent and Wallstent. Investig. Radiol. 1995, 30, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Rolland, P.H.; Charifi, A.B.; Verrier, C.; Bodard, H.; Friggi, A.; Piquet, P.; Moulin, G.; Bartoli, J.M. Hemodynamics and Wall Mechanics after Stent Placement in Swine Iliac Arteries: Comparative Results from Six Stent Designs. Radiology 1999, 213, 229–246. [Google Scholar] [CrossRef]
- Pärsson, H.; Cwikiel, W.; Johansson, K.; Swartbol, P.; Norgren, L. Deposition of Platelets and Neutrophils in Porcine Iliac Arteries after Angioplasty and Wallstent Placement Compared with Angioplasty Alone. Cardiovasc. Interv. Radiol. 1994, 17, 190–196. [Google Scholar] [CrossRef]
- Uurto, I.; Mikkonen, J.; Parkkinen, J.; Keski-Nisula, L.; Nevalainen, T.; Kellomäki, M.; Törmälä, P.; Salenius, J.-P. Drug-Eluting Biodegradable Poly-D/L-Lactic Acid Vascular Stents: An Experimental Pilot Study. J. Endovasc. Ther. 2005, 12, 371–379. [Google Scholar] [CrossRef]
- Uurto, I.; Juuti, H.; Parkkinen, J.; Kellomäki, M.; Keski-Nisula, L.; Nevalainen, T.; Törmälä, P.; Salenius, J.-P. Biodegradable Self-Expanding Poly-L/D-Lactic Acid Vascular Stent: A Pilot Study in Canine and Porcine Iliac Arteries. J. Endovasc. Ther. 2004, 11, 712–718. [Google Scholar] [CrossRef]
- de Borst, G.J.; Meijer, R.; Lo, R.H.; Vosmeer, H.W.G.; Ackerstaff, R.G.A.; Moll, F.L. Effect of Carotid Angioplasty and Stenting on Duplex Velocity Measurements in a Porcine Model. J. Endovasc. Ther. 2008, 15, 672–679. [Google Scholar] [CrossRef]
- Whitbread, T.; Birch, P.; Rogers, S.; Majeed, A.; Rochester, J.; Beard, J.D.; Gaines, P. A New Animal Model for Abdominal Aortic Aneurysms:Initial Results Using a Multiple-Wire Stent. Eur. J. Vasc. Endovasc. Surg. 1996, 11, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, A.B.; Borsa, J.J.; Hoffer, E.; Bloch, R.; So, C. Evaluation of Silicone as an Endovascular Stent Membrane: In Vivo Canine Studies. Cardiovasc. Interv. Radiol. 2001, 24, 324–328. [Google Scholar] [CrossRef]
- Cha, S.-H.; Han, M.H.; Choi, Y.H.; Yoon, C.J.; Baik, S.K.; Kim, S.J.; Chang, K.-H. Vascular Responses in Normal Canine Carotid Arteries: Comparison between Various Self-Expanding Stents of the Same Unconstrained Size. Investig. Radiol. 2003, 38, 95–101. [Google Scholar] [CrossRef]
- Schellhammer, F.; Wahkloo, A.K.; Nagursky, H.; Schumacher, M. Vein Graft-Coated Stents for Endovascular Occlusion of Canine Experimental Arteriovenous Fistulae. Investig. Radiol. 1999, 34, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, E.C.; Khangure, M.S.; Morling, P.; York, T.J.; McAuliffe, W. Oversizing of Self-Expanding Stents: Influence on the Development of Neointimal Hyperplasia of the Carotid Artery in a Canine Model. AJNR Am. J. Neuroradiol. 2002, 23, 121–127. [Google Scholar]
- Chalmers, R.T.; Hoballah, J.J.; Sharp, W.J.; Kresowik, T.F.; Corson, J.D. Effect of an Endovascular Stent on Healing of an End-to-End Polytetrafluoroethylene-Artery Anastomosis in a Canine Model. Br. J. Surg. 1994, 81, 1443–1447. [Google Scholar] [CrossRef]
- Vernhet, H.; Demaria, R.; Juan, J.M.; Oliva-Lauraire, M.C.; Sénac, J.P.; Dauzat, M. Changes in Wall Mechanics after Endovascular Stenting in the Rabbit Aorta: Comparison of Three Stent Designs. AJR Am. J. Roentgenol. 2001, 176, 803–807. [Google Scholar] [CrossRef]
- Spies, C.; Doshi, R.; Spoon, J.; Snell, R.J. Carotid Artery Stent Type Influences Duplex Ultrasonography Derived Peak Systolic Velocity: Findings of an in-Vitro Model. Catheter. Cardiovasc. Interv. 2007, 70, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Summary of Safety and Effectiveness Data (SSED): ACCULINKTM Carotid Stent System; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2004.
- U.S. Food and Drug Administration. Summary of Safety and Effectiveness Data (SSED): Xact® Carotid Stent System; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2005.
- Summary of Safety and Effectiveness Data (SSED): LifeStent® FlexStar and FlexStar XL Vascular Stent System; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2009.
- Summary of Safety and Effectiveness Data (SSED): RoadsaverTM / CASPERTM Carotid Stent System; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024.
- Griffin, A.; Chaparro, E.; Fedorova, E.; Holmes, C.; Manson, R.J.; Hauck, E.F. Thromboembolic Events with Enterprise Versus Pipeline: Porcine In Vivo Experiment. World Neurosurg. 2019, 122, e1405–e1411. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.; Junk, D.; Papanagiotou, P.; Keuler, A.; Körner, H.; Schumacher, M.; Reith, W. A Comparison of 2 Stroke Devices: The New Aperio Clot-Removal Device and the Solitaire AB/FR. AJNR Am. J. Neuroradiol. 2012, 33, 1317–1320. [Google Scholar] [CrossRef]
- Matsuda, Y.; Chung, J.; Lopes, D.K. Analysis of Neointima Development in Flow Diverters Using Optical Coherence Tomography Imaging. J. Neurointerv. Surg. 2018, 10, 162–167. [Google Scholar] [CrossRef]
- Janas, A.; Milewski, K.; Buszman, P.P.; Nowakowski, P.; Jelonek, M.; Orlik, B.; Krauze, A.; Samborski, S.; Beaudry, D.; Lecelrc, G.; et al. Safety and Biocompatibility of a Novel Self-Expanding Nitinol Carotid Stent with Hybrid Cell Design in a Porcine Model of Neointimal Hyperplasia. Kardiol. Pol. 2015, 73, 240–245. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Summary of Safety and Effectiveness Data (SSED): VENOUS WALLSTENT (P980033/S050); Center for Devices and Radiological Health (CDRH), FDA: Silver Spring, MD, USA, 2020.
- Fujiu, K.; Manabe, I.; Sasaki, M.; Inoue, M.; Iwata, H.; Hasumi, E.; Komuro, I.; Katada, Y.; Taguchi, T.; Nagai, R. Nickel-Free Stainless Steel Avoids Neointima Formation Following Coronary Stent Implantation. Sci. Technol. Adv. Mater. 2012, 13, 064218. [Google Scholar] [CrossRef]
- Garriboli, L.; Jannello, A.M. Delayed Carotid Wallstent Shortening. Int. J. Surg. Case Rep. 2015, 8, 68–70. [Google Scholar] [CrossRef]
- Mattle, H.; Edelman, R.R.; Reis, M.A.; Atkinson, D.J. Flow Quantification in the Superior Sagittal Sinus Using Magnetic Resonance. Neurology 1990, 40, 813–815. [Google Scholar] [CrossRef] [PubMed]
- Giri, J.; Kennedy, K.F.; Weinberg, I.; Hawkins, B.M.; Press, M.C.; Drachman, D.; McCormick, D.J.; Aronow, H.D.; White, C.J.; Rosenfield, K.; et al. Comparative Effectiveness of Commonly Used Devices for Carotid Artery Stenting: An NCDR Analysis (National Cardiovascular Data Registry). JACC Cardiovasc. Interv. 2014, 7, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Bosiers, M.; Lioupis, C.; Deloose, K.; Verbist, J.; Peeters, P. Two-Year Outcome after Xpert Stent Implantation for Treating below the Knee Lesions in Critical Limb Ischemia. Vascular 2009, 17, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Al-Hakim, R.; Lee, E.W.; Kee, S.T.; Seals, K.; Varghese, B.; Chien, A.; Quirk, M.; McWilliams, J. Hemodynamic Analysis of Edge Stenosis in Peripheral Artery Stent Grafts. Diagn. Interv. Imaging 2017, 98, 729–735. [Google Scholar] [CrossRef]
- Tan, M.; Takahara, M.; Soga, Y.; Mori, S.; Tsuchiya, T.; Mazaki, T.; Shintani, Y.; Noguchi, M.; Taniguchi, M.; Kobayashi, Y.; et al. Three-Year Clinical Outcomes Following Implantation of LifeStent Self-Expanding Nitinol Stents in Patients With Femoropopliteal Artery Lesions. Angiology 2022, 73, 244–251. [Google Scholar] [CrossRef]
- Wressnegger, A.; Kaider, A.; Funovics, M.A. Self-Expanding Nitinol Stents of High versus Low Chronic Outward Force in de Novo Femoropopliteal Occlusive Arterial Lesions (BIOFLEX-COF Trial): Study Protocol for a Randomized Controlled Trial. Trials 2017, 18, 594. [Google Scholar] [CrossRef]
- https://fyra.io Biotronik’s BIOFLEX-COF Trial Investigates Influence of Chronic Outward Force on Stent Patency. Available online: https://evtoday.com/news/biotroniks-bioflex-cof-trial-investigates-influence-of-chronic-outward-force-on-stent-patency (accessed on 11 April 2025).
- LaDisa, J.F.; Olson, L.E.; Molthen, R.C.; Hettrick, D.A.; Pratt, P.F.; Hardel, M.D.; Kersten, J.R.; Warltier, D.C.; Pagel, P.S. Alterations in Wall Shear Stress Predict Sites of Neointimal Hyperplasia after Stent Implantation in Rabbit Iliac Arteries. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H2465–H2475. [Google Scholar] [CrossRef]
- Stone, P.A.; Campbell, J.E.; Fischer, R.; Phang, D.; Thompson, S.N.; Dippel, N.; Mousa, A. Early Results with LifeStent Implantation in RESILIENT and Non-RESILIENT Inclusion Criteria Patients. Vascular 2015, 23, 225–233. [Google Scholar] [CrossRef]
- Wissgott, C.; Schmidt, W.; Brandt, C.; Behrens, P.; Andresen, R. Preliminary Clinical Results and Mechanical Behavior of a New Double-Layer Carotid Stent. J. Endovasc. Ther. 2015, 22, 634–639. [Google Scholar] [CrossRef]
- Maramattom, B.V. Cerebral Dural Venous Sinus Stenting: Endovascular Technique. Neurol. India 2024, 72, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Consoli, A.; Cancelliere, N.M.; Charbonnier, G.; Nishi, H.; Vanek, I.; Marotta, T.R.; Spears, J.; Pereira, V.M. Novel, Braided, Self-Expandable Stent Designed for the Treatment of Pulsatile Tinnitus Caused by Intracranial Venous Stenosis: First-in-Human Experience and Long-Term Outcomes. J. Neurointerv. Surg. 2024, 17, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zheng, Y.; Diao, Z.; Qiu, J.; Wang, G. Review: Research Progress and Future Prospects for Promoting Endothelialization on Endovascular Stents and Preventing Restenosis. J. Med. Biol. Eng. 2011, 31, 307–316. [Google Scholar] [CrossRef]
- Li, G.; Hu, B.; Sun, Y.; Huang, X.; Zhang, X. Histological Features of In-Stent Restenosis after Iliac Vein Thrombus Removal and Stent Placement in a Goat Model. J. Vasc. Interv. Radiol. 2024, 35, 611–617. [Google Scholar] [CrossRef]
- Saber, H.; Lewis, W.; Sadeghi, M.; Rajah, G.; Narayanan, S. Stent Survival and Stent-Adjacent Stenosis Rates Following Venous Sinus Stenting for Idiopathic Intracranial Hypertension: A Systematic Review and Meta-Analysis. Interv. Neurol. 2018, 7, 490–500. [Google Scholar] [CrossRef]
- Li, N.; Ferracane, J.; Andeen, N.; Lewis, S.; Woltjer, R.; Rugonyi, S.; Jahangiri, Y.; Uchida, B.; Farsad, K.; Kaufman, J.A.; et al. Endovascular Venous Stenosis and Thrombosis Large Animal Model: Angiographic, Histological, and Biomechanical Characterizations. J. Vasc. Interv. Radiol. 2022, 33, 255–261.e2. [Google Scholar] [CrossRef]
- Bourrienne, M.; Gay, J.; Mazighi, M.; Ajzenberg, N. State of the Art in Cerebral Venous Sinus Thrombosis Animal Models. J. Thromb. Haemost. 2022, 20, 2187–2196. [Google Scholar] [CrossRef] [PubMed]
- Staelens, L.; Langenaeken, T.; Rega, F.; Meuris, B. Difference in Coagulation Systems of Large Animal Species Used in Cardiovascular Research: A Systematic Review. J. Artif. Organs 2025, 28, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.S.; Veening-Griffioen, D.H.; Boon, W.P.C.; Moors, E.H.M.; Wied, C.C.G.-D.; Schellekens, H.; van Meer, P.J.K. A Standardised Framework to Identify Optimal Animal Models for Efficacy Assessment in Drug Development. PLoS ONE 2019, 14, e0218014. [Google Scholar] [CrossRef] [PubMed]
- Bramhall, M.; Flórez-Vargas, O.; Stevens, R.; Brass, A.; Cruickshank, S. Quality of Methods Reporting in Animal Models of Colitis. Inflamm. Bowel Dis. 2015, 21, 1248–1259. [Google Scholar] [CrossRef] [PubMed]
Author [Ref.] | Year | Design | Country | Number of Patients | Notes |
---|---|---|---|---|---|
Precise (Cordis) (exclusively) | Total Patients: 765, Studies: 16 | ||||
Touzé R et al. [45] | 2021 | Retrospective | France | 16 | |
Schwarz et al. [46] | 2021 | Retrospective | USA | 8 | |
Garner et al. [47] | 2021 | Retrospective | USA | 81 | |
Shazly et al. [48] | 2018 | Retrospective | USA | 3 | Precise (n = 3) or Zilver (n = 3) |
Liu et al. [49] | 2017 | Prospective | USA | 4 | Precise (n = 4), Protégé (n = 6), Wallstent (n = 2) |
Satti et al. [50] | 2017 | Retrospective | USA | 43 | |
Zehri A et al. [51] | 2022 | Retrospective | USA | 10 | |
Martinez-Gutierrez et al. [52] | 2022 | Prospective | USA | 53 | Size used: 8 mm × 40 mm |
Raynald [53] | 2023 | Retrospective | China | 121 | |
Buhbut [54] | 2024 | Retrospective | Israel | 37 | Size used: 7 mm × 40 mm; 8 mm × 40 mm |
Yang [55] | 2022 | Prospective | China | 121 | |
Belachew [56] | 2021 | Retrospective | Switzerland | 5 | Casper (n = 10) or Precise (n = 5) |
Dinkin et al. [57] | 2017 | Prospective | USA | 13 | |
He [58] | 2024 | Retrospective | China | 172 | |
Wang [59] | 2025 | Prospective | China | 74 | |
Lee KE et al. [60] | 2021 | Retrospective | USA | 4 | Precise (n = 4), Zilver (n = 7), Protégé (n = 2), or Fielder (n = 1) |
Zilver (Cook Medical) (exclusively) | Total Patients: 249, Studies: 11 | ||||
Shields et al. [61] | 2019 | Retrospective | USA | 42 | |
Cappuzzo et al. [62] | 2018 | Retrospective | USA | 18 | 8 mm × 60 mm |
El Mekabaty et al. [63] | 2017 | Retrospective | USA | 31 | Biliary, 7–9 mm × 30–60 mm |
Kumpe et al. [64] | 2017 | Retrospective | USA | 39 | |
Ducruet et al. [65] | 2014 | Retrospective | USA | 30 | |
Fields et al. [66] | 2013 | Retrospective | USA | 15 | 518, 10 mm |
Albuquerque et al. [67] | 2011 | Prospective | USA | 18 | |
Bilgin [68] | 2023 | Retrospective | USA | 28 | |
Hendrix [69] | 2022 | Retrospective | USA | 18 | |
Shazly et al. [48] | 2018 | Retrospective | USA | 3 | Precise (n = 3) or Zilver (n = 3) |
Lee KE et al. [60] | 2021 | Retrospective | USA | 7 | Precise (n = 4), Zilver (n = 7), Protégé (n = 2), or Fielder (n = 1) |
Wallstent (Boston Scientific) (exclusively) | Total Patients: 158, Studies: 7 | ||||
Asif et al. [70] | 2018 | Retrospective | UK | 41 | |
Matloob et al. [71] | 2017 | Retrospective | UK | 10 | |
Bilgin [68] | 2023 | Retrospective | USA | 53 | Wallstent (n = 53) or Zilver (n = 28) |
Handzic [72] | 2025 | Retrospective | Canada | 15 | Wallstent (Boston Scientific) |
Larson [73] | 2020 | Retrospective | USA | 16 | |
Lenck et al. [74] | 2017 | Retrospective | France | 21 | |
Liu et al. [49] | 2017 | Prospective | USA | 2 | Precise (n = 4), Protégé (n = 6), Wallstent (n = 2) |
Protégé (Medtronic) (exclusively) | Total Patients: 8, Studies: 2 | ||||
Liu et al. [49] | 2017 | Prospective | USA | 6 | Precise (n = 4), Protégé (n = 6), Wallstent (n = 2) |
Lee KE et al. [60] | 2021 | Retrospective | USA | 2 | Precise (n = 4), Zilver (n = 7), Protégé (n = 2), or Fielder (n = 1) |
Casper (Terumo) (exclusively) | Total Patients: 10, Studies: 1 | ||||
Belachew [56] | 2021 | Retrospective | Switzerland | 10 | |
River stent (Serenity Medical), venous specific (exclusively) | Total Patients: 39, Studies: 1 | ||||
Patsalides [75] | 2025 | Prospective | USA | 39 | River stent (Serenity Medical) |
BosStent (Sonorous), venous specific (exclusively) | Total Patients: 39, Studies: 2 | ||||
Mendes Pereira et al. [76] | 2025 | Retrospective | Canada | 27 | BosStent |
Consoli et al. | 2024 | Retrospective | Canada | 12 | BosStent |
Other stents (exclusively) | Total Patients: 64, Studies: 3 | ||||
Koovor et al. [77] | 2018 | Retrospective | USA | 16 | Acculink stent (Abbot) |
Gorijan [78] | 2023 | Retrospective | USA | 36 | LifeStar stent (Bard PV) |
Yan [79] | 2019 | Retrospective | China | 12 | Sinus-SuperFlex-635 stent (Optimed) |
Multiple stents were used in one study without specifying the numbers for each | Total Patients: 619, Studies: 11 | ||||
Liu et al. [80] | 2019 | Retrospective | China | 88 | Precise (~80%), Xpert, Wallstent, Solitaire, Protégé |
Raper et al. [81] | 2018 | Retrospective | USA | 50 | Precise, Protégé Everflex, Zilver biliary |
Kumpe et al. [82] | 2012 | Retrospective | USA | 18 | Precise, Acculink, or Zilver |
El Mekabaty et al. [83] | 2021 | Retrospective | USA | 104 | Precise stent (5–10 mm × 40 mm) or Acculink |
Song [84] | 2025 | Retrospective | China | 104 | Precise or Wallstent |
Raygor [85] | 2025 | Retrospective | USA | 96 | Zilver or Precise |
Levitt [86] | 2017 | Retrospective | USA | 9 | Zilver, Wallstent, or Protégé |
Teleb et al. [87] | 2015 | Prospective | USA | 18 | Wallstents (most used), Express, Smart, Xpert stents |
Aguilar-Pérez M et al. [88] | 2017 | Retrospective | Germany | 51 | Wallstent, Protégé, Solitaire, balloon-expandable stents |
Xu [89] | 2024 | Retrospective | China | 64 | Wallstent or Protégé |
Smith et al. [90] | 2017 | Retrospective | USA | 17 | Wallstent, Precise or/and Zilver |
Unspecified | Total Patients: 127, Studies: 6 | ||||
Silva et al. [91] | 2017 | Retrospective | Brazil | 7 | Self-expanding stent |
Boddu et al. [92] | 2016 | Prospective | USA | 29 | Self-expanding stent (8–10 mm × 20–60 mm) |
Bussière M et al. [93] | 2010 | Retrospective | Canada | 13 | Balloon-expandable or self-expanding stent |
Cheng [94] | 2023 | Prospective | China | 16 | Self-expanding stent |
Ahmed et al. [95] | 2011 | Retrospective | Australia | 52 | Self-expanding Stent |
Donnet et al. [96] | 2008 | Retrospective | France | 10 | Self-expanding stent |
Not Reported (NR) | Total Patients: 435, Studies: 7 | ||||
Patsalides et al. [6] | 2019 | Prospective | USA | 50 | NR |
Goodwin et al. [97] | 2014 | Retrospective | USA | 15 | NR |
Higgins et al. [98] | 2003 | Retrospective | UK | 12 | NR |
Iyer [99] | 2024 | Retrospective | USA | 206 | NR |
Wang et al. [100] | 2022 | Prospective | China | 101 | NR |
Tanaka [101] | 2025 | Retrospective | Australia | 18 | NR |
Abdalkader [102] | 2025 | Retrospective | USA | 33 | NR |
Stent | Animal Studies | Type of Study | Species | No. | Implantation Site | Findings | Ref. |
---|---|---|---|---|---|---|---|
Precise | Yes | Published articles | Minipig | 14 stents | Carotid and subclavian arteries as a reference to evaluate a novel stent (E-volution). | Pig carotid model: No thrombosis; ~34% area stenosis at 4 weeks (max neointima ~0.5 mm); complete endothelialization by 28 days; performance equivalent to reference carotid stents. | [103] |
Pig | 6 stents | Internal mammary vein as a reference to assess the safety of a novel self-expanding braided venous stent (VIVA). | Significant increase in venous diameter following deployment of the Precise stent, indicative of its higher radial force; however, this did not translate into increased vessel injury, thrombosis, or delayed healing compared to the test group. | [39] | |||
FDA testing | Pig (acute study), Dog (chronic) | 23 Precise stents for acute porcine study, 63 stents with similar design (S.M.A.R.T. stents) for chronic canine study | Carotid, subclavian, maxillary, iliac, femoral arteries. | Rated excellent, good, or acceptable for stent performance and mechanical characteristics. | [104] | ||
Protégé | Yes | Published articles | N/A | N/A | N/A | Bench study: slightly less flexible, more radial force than Precise stent | (Bench [105]) |
FDA testing | Pig, dog | 39 stents | Carotid artery (15 stents, canine; 6 stents, pig) iliac artery (15 stents, canine; 3 stents, pig), and subclavian artery (9 stents, pig). | Successful tracking and deployment. Within 6 months, no histology results from stenosis. | [106] | ||
Zilver Stent | Yes | Published articles | Pig | 72 stents | Each animal received two non-overlapping paclitaxel-coated Zilver stents in the left iliofemoral artery and two in the right iliofemoral artery. | Within 3 months, vessels with both paclitaxel-coated and bare-metal stents showed comparable, complete healing. | [107] |
Pig | 16 stents | Zilver PTX stents were implanted in the iliofemoral arteries and were compared with another paclitaxel-eluting stent. | Greater vessel healing and less drug impacts were found in the Zilver PTX group. | [108] | |||
Pig | 40 stents | Each animal underwent balloon inflation in both iliofemoral arteries using a drug-coated balloon on one side and an uncoated balloon on the other. A Zilver PTX drug-eluting stent was deployed across each previously ballooned region (1 stent per vessel, 2 stents per animal). | No significant differences in the safety parameters, including inflammation and endothelial cell loss, were observed when comparing the safety of Zilver PTX drug-eluting stents following drug-coated balloon (DCB) angioplasty and conventional balloon angioplasty (BA). | [109] | |||
Pig | 12 stents | Polymer-free paclitaxel-eluting Zilver PTX stents were tested on a familial hypercholesterolemic swine model of femoral restenosis and compared to a bare-metal (Innova) and a new-generation fluoropolymer-based paclitaxel-eluting stent (Eluvia). | The Zilver PTX stent showed moderate inhibition of neointimal hyperplasia compared to a bare-metal stent, but was significantly outperformed by the fluoropolymer-based Eluvia stent. | [110] | |||
Pig | 6 stents | A piglet small intestinal submucosa (SIS) sandwich Zilver endograft was used for experimental transjugular intrahepatic portosystemic shunt (TIPS) creation. | The piglet SIS sandwich Zilver stent graft was found to offer only limited TIPS patency. | [111] | |||
Pig | 6 stents | A flexible sandwich Zilver stent graft with small intestinal submucosa was used for the creation of an intravascular ultrasound (IVUS)-guided direct intrahepatic portocaval shunt (DIPS). | The DIPS was found to be either severely stenosed or occluded at 4 weeks. | [112] | |||
Sheep | 18 stents (total) | Six externally SIS-covered endografts, 6 internally SIS-covered endografts, and 6 bare stents were used. The stents were placed in the balloon-injured external iliac arteries via the carotid approach. | Bare-metal and externally SIS-covered Zilver stents showed excellent biocompatibility, with 100% patency, minimal neointimal hyperplasia, and complete endothelialization by 3 months. In contrast, internally SIS-covered stents performed poorly. | [113] | |||
Sheep | 12 stents | Six bare Zilver nitinol stents, six Zilver stents covered with SIS, and six Palmaz stents covered with polytetrafluoroethylene were implanted in the balloon-injured femoral arteries of nine female sheep. | All of the bare stents and SIS-covered endografts remained patent throughout the follow-up period, but both developed progressive eccentric intimal hyperplasia, which was more pronounced in SIS-covered endografts at 6 months. | [114] | |||
FDA testing | Domestic and miniature pigs | 413 stents | Not reported. | The results demonstrate no safety issues, complete vessel healing, no negative sequelae, and no regional or systemic effects associated with Zilver PTX stents. | [115] | ||
Wallstent | Yes | Published articles | Sheep | 24 stents | Stents were placed on the iliac veins bilaterally for each animal. | The Wallstent was used as a reference in the control group and demonstrated lower maximal radial resistive force compared to the novel stent, complete endothelialization, no thrombosis, and stenosis rates of ~ 32% at 90 days. | [116] |
Sheep | 8 stents | One stent was implanted in the iliac artery of each animal. | The Wallstent was used as a reference and demonstrated the lowest neointimal area and minimal inflammation compared to covered stent grafts, no thrombosis, and the highest endothelialization, with mature, spindle-shaped cells. | [117] | |||
Sheep | 14 stents | Both a Wallstent and a nitinol stent were implanted on opposite sides of iliac arteries. | The Wallstent exhibited significantly less neointimal thickness than the nitinol stent at both 1 and 4.5 months. | [118] | |||
Pig | 3 stents | One stent was implanted in the iliac artery of each animal. | Wallstent implantation led to flattened compliance, diameter pulsatility, and relative pulsatility within the stent, along with increased stiffness, elastic modulus, and wall stress. | [119] | |||
Pig | 13 stents | A total of 50% iliac artery stenoses was created using resorbable ligatures in 13 pigs. After 30 days, PTA was performed bilaterally, with an additional stenting procedure conducted on one side. | Wallstent implantation after angioplasty led to significantly increased platelet and neutrophil deposition compared to angioplasty alone, indicating a notable acute thrombogenic response. | [120] | |||
Pig | 4 stents | Wallstents were implanted into common iliac arteries as a reference for novel drug-eluting stents. | Wallstents exhibited the largest luminal diameter and area and low neointimal thickness, with mild vascular injury and minimal inflammation. | [121] | |||
Miniature pig, dog | 5 stents in total (3 in dogs and 2 in pigs) | Each animal received one Wallstent in one iliac artery. | All Wallstent-treated arteries remained patent at follow-up (45 days in dogs, 32 days in pigs). | [122] | |||
Pig | 5 stents | Each animal received one Wallstent on a common carotid artery and one Precise stent on the contralateral side. | Wallstent implantation led to significant luminal narrowing for all segments (proximal, mid, distal) and was associated with elevated duplex ultrasound velocities, indicating mechanical stiffening and a compliance mismatch. | [123] | |||
Pig | 6 stents | A Wallstent was placed in a novel porcine model of abdominal aortic aneurysms, created using glutaraldehyde-tanned bovine jugular vein interposition grafts. | The Wallstent produced a favorable hemodynamic environment, reducing the pulsatility and size, with partial thrombosis of the sac and high endothelialization rates. | [124] | |||
Dog | 6 stents | Each animal received one silicone-covered stent (Permalume; Boston Scientific Vascular), in the right iliac artery and one Wallstent (Boston Scientific Vascular) of the same diameter and length in the left iliac artery. | Angiography demonstrated no stenoses or occlusions. Histopathology showed no tissue atrophy, necrosis, gross infection, or inflammation. Bare-metal Wallstents demonstrated a smooth glistening neointima that had formed uniformly throughout the lumen. | [125] | |||
Dog | 13 stents | In 7 dogs, Wallstents and Palmaz stents were implanted in contralateral vessels. Six dogs received both iliac and femoral stents. One dog received only iliac stents. | All stented arteries remained patent, with modest neointimal growth and luminal narrowing, comparable to Palmaz stents. Histology showed moderate medial atrophy and some wall trauma from wire ends. | [114] | |||
Dog | 5 stents | Various self-expanding stents, including Wallstents, were endovascularly placed in common carotid arteries. | The SMART stent showed the greatest expansibility. The thickness of the neointimal coverage was more prominent with the SMART stent than the Wallstent. | [126] | |||
Dog | 1 stent | One stainless-steel Wallstent was coated with autologous vein grafts and placed in the carotid–jugular AVF model. | Deployment was technically challenging due to the rigid, sharp steel filaments, which penetrated the vein graft. | [127] | |||
Dog | 8 stents | Stents were placed into both common carotid arteries. In each CCA, two stents were deployed; a stent of the appropriate diameter was implanted distally and, an oversized stent, proximally. | Easy Wallstents, whether normally sized or oversized by 30–40%, preserved 94–96% of the luminal diameter after 4 months, with no significant difference in neointimal hyperplasia compared to appropriately sized stents. | [128] | |||
Dog | 6 stents | A model of end-to-end anastomosis between iliac arteries and polytetrafluoroethylene grafts was developed; a Wallstent was placed across the anastomosis and the opposite limb served as a control. | Wallstents reduced hyperplasia at the anastomotic site, but caused a significant increase in intimal thickening at the proximal stent edge. All stented grafts remained patent. | [129] | |||
Rabbits | 5 stents | Stents were placed in the infrarenal aorta of 13 New Zealand white rabbits. | The Wallstent significantly reduced local arterial wall compliance and distensibility. | [130] | |||
FDA testing | N/A | N/A | N/A | N/A | |||
Acculink | Yes | Published articles | Sheep | 4 stents | Eleven stents of three types were placed in ovine carotid arteries. Precise stents were deployed three times, while Acculink and X-Act stents were placed four times each. | Stent design can affect Doppler readings. The X-Act stent may cause the Doppler to overestimate the blood velocity, leading to potential misinterpretation of restenosis, while the Precise and Acculink stents did not encounter this problem. | [131] |
FDA testing | Pig | 90 stents | Stents were implanted in the carotid arteries of a non-atherosclerotic swine model. | Implanted stents did not elicit acute or chronic thrombosis, adverse inflammatory reactions, or excessive neointimal proliferation. | [132] | ||
Xact/Xpert | Yes | Published articles | N/A | N/A | N/A | N/A | |
FDA testing | Pig | 44 stents | Carotid and iliac arteries. | Good outcomes in terms of safety and performance. | [133] | ||
LifeStent/LifeStar | Yes | Published articles | Pig SFA: LifeStent showed slightly higher neointima vs. the competitor (9–12% vs. 5–8% area, ns) in the 30 d study. Swine iliac arteries patent at 6 months; neointima ~0.3 mm. Animal models of high vs. low radial force suggest high COF stents (like LifeStent) might induce more IH if oversized. | ||||
FDA testing | Pig | 14 pigs (the number of stents not specified) | The stents were implanted in various peripheral vasculatures, including femoral and iliac arteries. | The vessel patency was high and the wall response to the stent was minimal. The results support the safety and expected performance of the stent. | [134] | ||
Casper/Roadsaver | Yes | Published articles | N/A | N/A | N/A | N/A | |
FDA testing | Pig | 48 stents | Chronic studies: Stents were placed in various locations of the porcine carotid and subclavian arteries. | The results of the chronic animal study demonstrated that the stent and delivery system performed as expected and demonstrated the safety of the device for use in humans. | [135] | ||
Dog | 10 stents | Acute animal study: Stents were implanted in one canine animal in various target vessels and locations. | The results of the acute animal study demonstrated that all of the devices performed successfully. | [135] | |||
Enterprise/Solitaire AB | Yes | Published articles | Pig | 6 stents | Each animal received 1 Enterprise and 1 Pipeline embolization device contralaterally, across the carotid bifurcation (PED). | The results disclosed no difference in thrombogenicity between the two devices, with a thromboembolic event rate of 33.3% for both. | [136] |
Pig | 18 stents | In a swine model of acute ischemic stroke, the Solitaire AB/FR stent retriever was compared to a new stent retriever (the Aperio) targeting the subclavian and carotid arteries. | Both devices achieved 100% recanalization. No device-related complications were reported. The results indicated no significant difference between Aperio and Solitaire in terms of performance. | [137] | |||
Pig | 4 stents | 6 PED Flex devices, 6 PED Shield devices, and 4 Solitaire AB devices were implanted in the carotid arteries of 4 pigs (2 stents per vessel). | The neointimal area and ratio were significantly lower in the Solitaire group compared to the PED Flex and PED Shield devices. Solitaire recorded no thrombosis events during the early single antiplatelet therapy phase, whereas the PED Flex group experienced high early thrombosis rates. | [138] | |||
FDA testing | N/A | N/A | N/A | N/A | |||
River Stent | No | ||||||
Viva stent | Yes | Published article | Pig | 9 stents | Implantation in the mammal vein; comparison to 6 Precise stents. | No thrombus formation was observed. CT venography confirmed vessel patency, absence of stent migration, and complete structural integrity. Histopathology revealed a mild, expected foreign body reaction at 30 days that had resolved by 180 days, and an increased luminal diameter and reduced wall thickness at 180 days. | [39] |
BoStent | No |
Purpose/Tier | Species and Target Site | Access/Condition | What to Test | Key Endpoints | Key Ref. |
---|---|---|---|---|---|
Deployment and healing in a dural sinus (foundational) | Sheep—SSS | Well-described venography; chronic in sinus implantation feasible despite smaller diameters. | Stent deliverability, apposition, endothelialization. | Patency, neointima, inflammation grading, endothelial coverage at 3–6 months. | [26,27] |
Access feasibility and intracranial sizing | Pig—SSS | Percutaneous SSS catheterization demonstrated. | Sizing rules, OCT/IVUS guidance. | Intraluminal imaging quality; safe navigation. | [29,31] |
Create venous hypertension (disease construct) | Baboon or Pig—dural outflow | Stepwise partial occlusion proximal to petrosquamous sinus. | Reproducible gradient and ICP elevation without infarction. | Sustained ICP/venous pressure rise; neuro intact survival. | [22] |
Disease + treatment (efficacy model) | Baboon or Pig—chronic TS stenosis→stenting | Gradual TS occlusion to induce venous gradient, then stent application. | Hemodynamics and ICP response to stent. | Trans-stenotic gradient; ICP correction; venography. | [22,158] |
Peripheral vein first-stage design screening | Sheep IVC/iliac; pig jugular/iliac; rabbit paired iliac; pig internal mammary vein | Long-term survival; sizes in regard to human transverse sinus; paired control possible. | Design variables (length, ring spacing, metal-to-vein ratio), oversizing tolerance. | Patency, neointima vs. design; migration risk with oversizing. | [34,38,40,44] |
Small animal mechanistic screening (rapid) | Rat IIH (obese ± androgen) ± reversible venous stenosis | Telemetric ICP where feasible; transient sinus occluder to simulate “pre-stent” environment. | ICP/CSF dynamic changes. | ICP drop; improved ICP pulsatility; CP/optic nerve markers. | [8,9,14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ognard, J.; El Hajj, G.; Alipour Khabir, S.; Bayraktar, E.A.; Ghozy, S.; Kadirvel, R.; Kallmes, D.F.; Brinjikji, W. Idiopathic Intracranial Hypertension Animal Models and Venous Sinus Stenting: Status of Disease and Device-Focused Evidence. Brain Sci. 2025, 15, 1064. https://doi.org/10.3390/brainsci15101064
Ognard J, El Hajj G, Alipour Khabir S, Bayraktar EA, Ghozy S, Kadirvel R, Kallmes DF, Brinjikji W. Idiopathic Intracranial Hypertension Animal Models and Venous Sinus Stenting: Status of Disease and Device-Focused Evidence. Brain Sciences. 2025; 15(10):1064. https://doi.org/10.3390/brainsci15101064
Chicago/Turabian StyleOgnard, Julien, Gerard El Hajj, Sevda Alipour Khabir, Esref A. Bayraktar, Sherief Ghozy, Ramanathan Kadirvel, David F. Kallmes, and Waleed Brinjikji. 2025. "Idiopathic Intracranial Hypertension Animal Models and Venous Sinus Stenting: Status of Disease and Device-Focused Evidence" Brain Sciences 15, no. 10: 1064. https://doi.org/10.3390/brainsci15101064
APA StyleOgnard, J., El Hajj, G., Alipour Khabir, S., Bayraktar, E. A., Ghozy, S., Kadirvel, R., Kallmes, D. F., & Brinjikji, W. (2025). Idiopathic Intracranial Hypertension Animal Models and Venous Sinus Stenting: Status of Disease and Device-Focused Evidence. Brain Sciences, 15(10), 1064. https://doi.org/10.3390/brainsci15101064